带有控制系统的汽车座椅的制作方法

文档序号:3952389阅读:182来源:国知局
专利名称:带有控制系统的汽车座椅的制作方法
技术领域
本发明总体上涉及汽车座椅领域,更具体地说,本发明涉及一种汽车座椅,该汽车座椅的座椅靠背具有柔性构件。
背景技术
在汽车座椅行业之外,具有在至少两个垂直间隔开的位置铰接到座椅靠背框架组件上以提供可控曲线式弯曲支撑的柔性座椅靠背的椅子是公知的。
具有可向后倾斜的靠背的汽车座椅是公知的。具有可向后倾斜的靠背以及可独立活动的座椅基座的汽车座椅也是公知的。具有可调腰部构件的汽车座椅也是公知的,该可调腰部构件包括柔性构件,该柔性构件的第一端锚固、第二端可相对于第一端移动,从而使该柔性构件改变其形状以便在汽车座椅的腰部区域提供可调支撑。同时移动座椅基座和座椅靠背以达到理想的最终位置也是公知的。例如,这在这样一种情形下或许是理想的,即汽车座椅能够记忆使用者的座椅位置,如果该位置改变,则座椅能够移回到使用者的理想位置。然而,现有技术的参考文献没有教导任何座椅靠背和座椅基座之间的运动关系。
虽然有这些已知的装置,但仍然迫切需要开发一种能够更好地支撑座椅使用者的汽车座椅。具体而言,需要提供一种能够为多种体形的座椅使用者提供连续支撑的汽车座椅。此外,需要提供一种汽车座椅,该座椅包括柔性座椅靠背,这种靠背能够自动调节以适应使用者特有的体形和坐姿,并且还能够调节以适应使用者变化的体形和坐姿。此外,还需要提供一种汽车座椅,该座椅具有座椅靠背,这种靠背能够为使用者提供个性化的支撑,并且能允许背部和脊椎运动。
还需要提供一种汽车座椅,该座椅具有座椅靠背,这种靠背能够相对于使用者更自然地转动,并且能更好地保持腰部支撑与使用者接触。
迫切需要提供一种具有一个或多个上述特征或其他有益特征的汽车座椅。其他特征或优点通过本发明将变的清楚。由实施方式所延伸的教导将落入附属权利要求的范围,而不论它们是否能实现上述的一种或多种需要。

发明内容
根据一种典型的实施方式,提供的汽车座椅控制系统包括座椅基座、座椅基座电机、座椅靠背、手动调角机构、和控制电路。座椅基座电机的配置用于前后移动座椅基座。手动调角机构的配置用于调节座椅靠背的倾斜角度。控制电路的配置用于响应倾斜角度的改变来前后移动座椅基座。
根据另一典型的实施方式,提供的汽车座椅控制系统包括座椅基座、座椅基座电机、座椅靠背、手动调角机构、和控制电路。座椅基座电机的配置用于前后移动座椅基座。手动调角机构的配置用于调节座椅靠背的倾斜角度。控制电路的配置用于响应座椅靠背的移动来移动座椅基座,座椅基座的移动比率是每倾斜大约1度座椅基座前后移动大约1mm至大约4mm。
根据另一典型的实施方式,提供的具有控制系统的汽车座椅包括导轨、座椅基座、座椅基座电机、座椅靠背、手动调角机构、座椅基座输入装置、和控制电路。座椅基座连接到导轨。座椅基座电机的配置用于前后移动座椅基座。座椅靠背铰接到导轨。手动调角机构的配置用于使座椅靠背相对于导轨转动。座椅基座输入装置的配置用于接收操作人员的命令移动座椅基座。控制电路的配置用于从座椅基座输入装置接收操作人员的命令控制座椅基座电机。控制电路还可以配置用于响应座椅靠背的移动来移动座椅基座。控制电路还可以配置用于响应从座椅基座输入装置接收命令来单独移动座椅基座。
根据另一典型的实施方式,具有电子控制系统的汽车座椅包括导轨、连接到导轨的座椅基座、铰接到导轨的座椅靠背、座椅基座及靠背输入装置、和控制电路。座椅基座具有用于前后移动座椅基座的座椅基座电机。座椅靠背具有用于调节座椅靠背倾斜角度的座椅靠背电机。座椅基座输入装置的配置用于接收操作人员的命令移动座椅基座。座椅靠背输入装置的配置用于接收操作人员的命令移动座椅靠背。控制电路的配置用于接收操作人员的命令控制座椅基座电机和座椅靠背电机。控制电路的配置用于响应从座椅靠背输入装置接收命令来移动座椅基座和座椅靠背,以及响应从座椅基座输入装置接收命令来单独移动座椅基座。
根据一个有益特征,控制电路的配置用于响应从座椅靠背输入装置接收命令以第一速度移动座椅基座,以及响应从座椅基座输入装置接收命令以快于第一速度的第二速度移动座椅基座。
根据另一典型的实施方式,汽车座椅的电子控制系统包括座椅基座电机、座椅靠背电机、操作人员输入装置、和控制电路。座椅基座电机的配置用于前后移动座椅基座。座椅靠背电机的配置用于调节座椅靠背的倾斜角度。操作人员输入装置的配置用于接收操作人员的命令来移动汽车座椅。控制电路的配置用于接收操作人员的命令来控制座椅基座电机和座椅靠背电机。控制电路的配置用于按照座椅靠背每倾斜大约1度座椅基座前后移动大约1.5毫米的比率同时移动座椅基座和座椅靠背。
根据另一典型的实施方式,汽车座椅的电子控制系统包括座椅基座电机、座椅靠背电机、操作人员输入装置、和控制电路。座椅基座电机的配置用于前后移动座椅基座。座椅靠背电机的配置用于调节座椅靠背的倾斜角度。操作人员输入装置的配置用于接收操作人员的命令来移动汽车座椅。控制电路的配置用于接收操作人员的命令来控制座椅基座电机和座椅靠背电机。控制电路包括为座椅基座电机提供第一电压以及为座椅靠背电机提供第二电压的分压电路,其中第一电压和第二电压不同。
根据一个有益特征,控制电路的配置用于按照座椅靠背每倾斜大约1度座椅基座前后移动大约1.5毫米的比率同时移动座椅基座和座椅靠背。
根据另一有益特征,控制电路为座椅基座电机和座椅靠背电机提供开环控制(open loop control)。
根据本发明的另一有益特征,座椅控制电路可以进行修改以适用于手动调节座椅。在这种可替换的实施方式中,为汽车座椅增加了传感器来检测座椅靠背的位置。根据传感器的信息,根据有益的已知关系,即座椅靠背每转动大约1度时座椅基座便同时移动大约1至1.5毫米这种关系,来自动调节座椅基座的位置。
根据可替换的实施方式,设置传感器来检测座椅靠背相对于座椅基座的角度位置,并且该传感器的第一端连接座椅基座和座椅靠背中的一者,而传感器的另一端则通过座椅靠背和座椅基座中的另一者调节。此外,根据传感器产生的读数,从面板上确定用于表示在手动调节座椅靠背的同时调节座椅基座的移动量的数值。


通过下面结合附图的详细说明将会更全面地理解本发明,在附图中相似的标记数字表示相似部件,其中图1是根据一种典型实施方式的汽车座椅的示意图;图2是根据一种典型实施方式的汽车座椅电子控制系统的示意图;图3是根据另一典型实施方式的汽车座椅电子控制系统的示意图;图4是根据另一典型实施方式的汽车座椅电子控制系统的示意图;图5是根据另一典型实施方式的汽车座椅电子控制系统的示意图;图6是根据另一典型实施方式的汽车座椅电子控制系统的示意图;图7是根据另一典型实施方式的包括手动调节座椅靠背的汽车座椅结构的局部放大透视图;图8是图7中汽车座椅的局部放大透视图,详细说明该典型实施方式的机构;
图9是图8中汽车座椅的另一局部放大透视图,详细说明根据该典型实施方式的分压传感器;图10是根据图7的典型实施方式的汽车座椅电子控制系统的示意图;图11是根据图7的典型实施方式的汽车座椅电子控制系统的示意图。
具体实施例方式
首先参照图1,示出的是一种典型实施方式中的汽车座椅10。该汽车座椅10包括座椅基座12和座椅靠背14。汽车座椅10可以是一种座椅,例如申请号为60/356,836、申请日为2002年2月12日、名称为“带有活靠背的汽车座椅(Automotive Seat With Live Back)”、发明人为Hancock等人的美国临时专利申请中所公开的座椅,该专利申请通过引用结合于此。座椅基座12和座椅靠背14连接到导轨,例如调节器或其他安装构件。座椅基座12包括用于按照箭头16的指示前后移动座椅基座的座椅基座电机(未图示)。座椅靠背14包括用于按照箭头18的指示调节座椅靠背14倾斜角度的座椅靠背电机(未图示)。座椅基座10能够进一步包括用于调节座椅基座12(箭头20)和座椅基座12背面(箭头22)的垂直高度的电机。
汽车座椅10的电子控制系统24包括控制电路26、多个电机28、和操作人员输入装置30。电机28包括用于调节座椅靠背14倾斜角度的座椅靠背电机32,和用于前后移动座椅基座的座椅基座电机34。电机28可以是许多不同类型电机中的任意一种,例如直流电机、饲服电机、电磁控制电机等。
控制电路26包括用于驱动电机28和从操作人员输入装置30接收命令所需的电路元件。控制电路26可以包括模拟和/或数字电路元件,并且可以包括数字处理器,例如微处理器、微控制器、特定用途集成电路(ASIC)等。控制电路26使用脉宽可调信号、直流信号、或其他控制信号来驱动电机28。
示意性示出的操作人员输入装置30具有座椅靠背按钮36和座椅基座按钮38。每个按钮36和38通过适当的图标分别指示使用者按钮是用于控制座椅靠背14和座椅基座12,在该典型的实施方式中,是通过将按钮的形状设计成大致对应于座椅基座或座椅靠背。通过此方式,使用者会明白哪个按钮是用于控制汽车座椅10的哪个部分。座椅靠背按钮36按照箭头40的指示前后移动,以通过控制电路26和座椅靠背电机32调节座椅靠背14的倾斜角度。座椅基座按钮38按照箭头42的指示调节座椅12的前后位置,并且按照箭头44和46的指示可选择地上下移动座椅基座12的前部和后部。在该典型实施方式中,操作人员输入装置30是“8路”开关,但是作为选择也可以是6路开关或其他开关。
在该典型实施方式中,电子控制系统24的配置用于通过输入装置30接收操作人员的命令并控制电机28。根据一种有益的实施方式,控制电路26包括“动力滑行(power glide)”特征,其中座椅基座12和座椅靠背14均响应从座椅靠背按钮36接收命令而移动。优选地,控制电路26在从座椅靠背按钮36接收命令时移动座椅基座12的速度比响应从座椅基座按钮38接收命令时移动座椅基座12的速度要慢。通常,座椅基座12的移动距离与座椅靠背14的移动距离成比例是理想的。其实现的一种方法是同时移动座椅基座12和座椅靠背14,使座椅基座12的移动速度与座椅靠背14的移动速度成比例。已经发现,座椅靠背14和座椅基座12之间提供“滑行”效果的理想移动关系包括按照座椅靠背14每倾斜大约1度座椅基座12前后移动大约1.5毫米的比率同时移动座椅基座12和座椅靠背14。作为选择,该比率可以是座椅靠背14每倾斜大约1度座椅基座12前后移动1mm至4mm之间、或者有益的是1.5mm至3mm之间的任意数值。有益地,这种响应座椅靠背按钮36的促动同时移动座椅基座12和座椅靠背14的“动力滑行”特征使使用者更加舒适,并且还避免了多种重定位命令,否则要将汽车座椅10定位在最佳固定位置时就需要这些重定位命令。
在典型实施方式中,座椅靠背14在座椅基座12没有移动时不能移动,除非座椅靠背14已经达到其倾斜角度的机械限位或预设限位。作为选择,座椅靠背14在座椅基座12没有移动时不能移动,除非座椅基座12已经到达前后移动范围的机械限位或预设限位。
典型地,汽车座椅装在汽车中,使座椅基座12非水平。例如,可以安装汽车中的汽车座椅,使座椅基座12向前倾斜大约6度。在这种情况下,座椅基座12在向后移动时将得到重力助力,在向前移动时将收到重力阻碍。这将导致座椅基座12向后移动要比向前移动快。因此,在一种实施方式中,电子控制系统24可以包括检测装置(未图示),用于检测在倾斜角度改变时座椅靠背14的移动速度。座椅靠背14的速度输入到控制电路26中,以便控制座椅基座12的速度与座椅靠背14的速度成比例。这可以使用比例反馈控制环来实现。检测装置可以使分压计、霍耳效应传感器、或其他能检测座椅靠背14速度的装置。作为选择,在座椅基座12移动时检测座椅基座12的速度以及控制座椅靠背14的速度以保持两者速度之间的理想的比例关系是理想的。
现在参照图2,控制电路26的典型实施方式将作为控制电路50进行描述。控制电路50包括四个开关开关1、开关2、开关3和开关4。控制电路50还包括继电器1、继电器2和电阻器R。电阻器R的阻抗在1到3欧姆之间,理想的为2欧姆,额定功率大约为50瓦特,但作为选择可以具有其他阻挡和功率性能。座椅靠背电机32(或调角电机)与电阻器R及座椅基座电机34(或座垫电机)并联设置。继电器1的配置用于切换电阻器R与开关3之间的座椅基座电机34的一个端子。继电器2的配置用于切换开关2与开关4之间的座椅基座电机34的第二端子。每个开关1、2、3和4的配置用于选择电池或汽车电源的接地极至电机32、34和继电器1、2。开关1和2连接到座椅靠背按钮36,不能在同一时间被触发。开关3和4连接到座椅基座按钮38,不能在同一时间被触发。当调角按钮36向前移动时(图1,箭头40),开关1将电池连接到在电机32与电阻器R之间的端子以驱动座椅靠背14向前。电池中的电力通过电阻器R提供给座椅基座电机34,按照座椅靠背14每倾斜1度时大约以1.5毫米的速度驱动座椅基座电机34。因此,电阻器R是用于为电机32提供第一电压以及为电机34提供较小的第二电压的分压网络的一部分。在响应时,电机32以正常速度移动,电机34则以从其正常速度降低的速度移动。
当座椅靠背按钮36向后移动时(图1,箭头40),开关2将电池电力提供给座椅靠背电机32的其他端子来驱动座椅靠背14向后。开关2还通过继电器2和继电器1和电阻器R将电池电力提供给座椅基座电机34,以座椅靠背14每倾斜1度时移动1.5毫米的速度向前移动座椅基座12。
当座椅基座按钮38向后移动时(图1,箭头42),开关3将电池电力提供给继电器1的线圈,将座椅基座电机34的输入端从电阻器R切换到开关3,并通过继电器2的线圈将座椅基座电机34的其他端子从开关2切换到开关4。由于汽车电源直接通过电机34提供(即不通过电阻器R),所以与电源通过电阻器R提供的情况相比,电机34以高速、稳定的速度驱动。座椅基座电机34驱动座椅基座12向后,而座椅靠背电机32不被驱动,所以座椅靠背14不运动。
当座椅基座按钮38向前移动时(图1,箭头42),开关4通过与座椅基座电机34端子相连的继电器2和继电器1的线圈将电池电力提供给开关3和4。电力通过开关3回到接地极,从而以高速、稳定的速度驱动座椅基座34向前。当开关1和3被同时触动时,表示向前移动座椅靠背和向后移动座椅基座12的命令,继电器1和2触动,并且电机32和34以全速启动来贯彻使用者的命令。如果开关1和4被同时触动,继电器1和2再次触动,以全速贯彻两个命令。同样地,如果开关2和3或者开关2和4触动(分别对应座椅靠背14向后和座椅基座12向后,以及座椅靠背14向后和座椅基座12向前的命令),以稳定速度执行电机32和34的移动,因为电阻器R没有包括在用于通过电机32和34将电池电力提供给接地极的电路中。
现在参照图3,示出了一种可替换实施方式的控制电路52的示意图。除了开关3通过二极管54连接到继电器1的线圈以及开关4通过二极管56连接到继电器2的线圈之外,控制电路52与控制电路50相同。二极管54和56的正极分别连接到开关3和4,二极管54和56的负极连接在一起并连接到继电器1和2的线圈。继电器1和2的线圈的相反端连接接地极。二极管54和56保护继电器线圈,防止受到电机34打开和关闭时电压瞬变的影响(也称为感应冲击)。
现在参照图4,控制电路26的另一典型实施方式作为控制电路58显示。该实施方式中,图2和3的实时方式中的继电器1和2由两个额外的开关取代开关3’和开关4’。在该视图或本申请其他视图中所示的开关1、2、3、3’、4、及4’中的每个开关处于休息或睡眠状态,还称为非激活(non-activated)状态。所示的座椅靠背按钮36包括箭头40,表示按钮36的向前移动对应开关1的激活,按钮36的向后移动对应开关2的激活。同样地,座椅基座按钮38与箭头42显示在一起,表示按钮38的向后移动对应开关3和3’的激活,按钮38的向前移动对应开关4和4’的激活。
该实施方式中,电阻器R连接在开关1和开关3之间。开关3在接地极和开关4’之间可选择地连接开关3的另一端子。开关4’可选择地将开关3连接到电池或电机34。电机34的另一端子连接到开关3’。开关3’将电机34的该另一端子可选择地连接到汽车电池或开关4。开关4可选择地将开关3’连接到接地极或开关2。如同图2和3的实施方式那样,调角电机32连接在开关1和开关2之间,开关1和2可选择地将电池或接地极连接到电机32,以驱动电机32前后移动。
在工作中,开关1和2连接到按钮36,不会同时激活。开关3和3’连接在一起,通过按钮38向后移动来激活。开关4和4’连接在一起,通过按钮38向前移动来激活。当按钮36向前移动时,开关1激活,提供电池电源经过电机32,到达变阻器R、开关3、开关4’,经过电机34,到达开关3’、开关4、开关2和接地极。以此方式,电机34以低速驱动,优选地是电机32每移动1度时电机34驱动1.5毫米。
当按钮36向后移动时,开关2激活,接通电池电源经过电机32到达开关1和接地极,并提供电池电源经过开关2到达开关4、开关3’,经过电机34到达开关4’、开关3,经过变阻器R到达开关1和接地极。以此方式,座椅靠背36向后移动,座椅基座12以低速向前移动。
当按钮38向前移动时,开关4和4’激活,其中电源从开关4’提供经过电机34到达开关3’、开关4和接地极,从而以正常速度向前移动电机34。如果按钮38向后移动,则开关3和3’激活,其中电源从汽车电池提供给开关3’,经过电机34达到开关4’、开关3和接地极,从而以正常速度向后移动电机34。如果按钮36和38均向前移动,则电机32以全速向前移动,电机34也以全速向前移动。如果按钮36和38均向后移动或者前后组合移动,则电机32和34以正常速度一起同时移动。
现在参照图5,控制电路26的另一典型实施方式作为控制电路60显示。该实施方式中,图4的实施方式中的开关3和3’以及开关4和4’由三相开关取代,其中开关3将电机34的一个端子连接到电池电源、接地极、或电阻器R。同样地,开关4配制成将电机34的另一端子连接到电池电源、接地极、或开关2与电机32之间的端子。电机32和34并联,一个端子由变阻器R和电机32共享。当按钮38独自驱动时,开关3提供电池电源给电机34,开关4提供闭环电路给接地极。当按钮38独自驱动向前时,电池电源经过开关4提供给电机34,开关3提供闭环电路给接地极。当座椅靠背按钮36驱动前或后移动时,开关3和4处于其休息状态,其中电源仅仅经过变阻器R提供给电机34,从而与按钮38独自驱动时相比以低速移动电机34。此外,当按钮38与按钮36同时驱动时,电源分开提供给电机32和34而不经过电阻器R,从而两个电机都在两个方向以各自正常的全速移动。
需要注意的是,在图2-5的实施方式中,电阻器R包括一部分分压电路,该分压电路为提供第一电压经过座椅基座电机34以及提供第二电压经过座椅靠背电机32而设计,其中这两个电压不同。这种电压的不同能够用来以不同于电机32的速度驱动电机34,优选地以低速驱动电机34,以提供动力滑行特征。还要注意的是,图2-5中的电路提供一种开环控制(open loop control),其中对电机32和34的位置不提供反馈。根据一种可替换的实施方式,可以提供反馈以进一步改进电机32和34的定位。
现在参照图6,控制电路26的另一实施方式作为控制电路62提供。该实施方式中,数字处理器、优选地是微处理器64向座椅基座电机34和/或座椅靠背电机32(未图示)提供控制信号。该实施方式中,在微处理器输出端66将脉宽调节信号提供给晶体管68,在该典型实施方式中晶体管68是温度保护场效应晶体管(FET),但作为替换也可以是其它晶体管。该晶体管68是由德国慕尼黑的InfineonTechnologies制造的BTS282Z。温度保护的优点是保护FET不受长时间使用或连续高电流使用所引起的过热的影响。晶体管68的源极连接到接地极,晶体管68的漏极连接到多个继电器70、72中的一个继电器的一个输出端。继电器70和72通过在输出端74和74处指示的微处理器64的数字输出激活。当座椅基座按钮38(图1)向前或向后移动时,在输出端74和76处提供的数字信号分别驱动继电器70和72,以将汽车电池电源的电能提供给电机34。当座椅靠背按钮36单独向前和向后移动时,输出端74和76不被激活,从微处理器64提供的可调控制信号经由输出端66和晶体管68,为电机34提供一定的电能,该电能小于在继电器70和72激活时所提供的电能。优选地,与在座椅基座电机按钮38被驱动时相比,在座椅靠背按钮36被驱动时控制电路64以低速控制电机34。此外,速度比优选为座椅靠背14每移动一度座椅基座12移动1.5毫米。在汽车电池电源和晶体管68之间设置二极管78,用于保护晶体管68不受电池内电压峰值的影响。
现在参照图7,所示的是根据本发明可替换典型实施方式的汽车座椅的一种手动操作实施方式,其包括座椅10,该座椅具有座椅基座12(未图示)、座椅靠背14(图示了部分框架)以及支撑座椅10在上面前后移动的座椅导轨17。如同这里所使用的,术语“手动”是指不使用电机的运动、机构等。并且,术语“手动驱动”是指用手进行移动、调节或其他动作的运动、机构等。
在图7中,座椅10还包括通过横杆112互连的第一和第二调角机构110。该调角机构110选择性地调节座椅靠背14相对于座椅基座12的位置。调角机构110优选使用任何已知的或适当类型的调角机构制造,但也可以优选地根据USP No.6,390,557的教导制造,该专利的公开内容通过引用而结合与此。调角机构110优选使用手柄114驱动,例如图8中所示。手柄114连接到一个调角机构110,横杆构件112将这个调角机构110的驱动转移给另一调角机构110。
因此,调角机构110位于座椅靠背14的框架构件与座椅基座12的框架构件之间。参照图8和图9,其中能看见调角托架120和座椅基座托架124。为了确定座椅靠背14的调角托架120相对于座椅基座托架124的位置,设置有传感器130。在一种实施方式中,传感器130是一种柱塞式分压计,通过延伸托架125支撑在座椅基座托架124上。传感器130精确检测座椅靠背14相对于座椅基座12的运动。传感器130通过座椅靠背14驱动,其中延伸托架121连接到调角托架120以接触传感器130的柱塞131和使柱塞131相对于传感器130的基座132移动,所移动的量与通过调角机构110调节的座椅靠背14的转角成比例。可替换地,传感器130可以是霍耳效应传感器。应该理解,也可以使用其它传感器设计来代替分压计式传感器130,从而可以使用任何已知的或适当设计的传感器130,只要该传感器能给出座椅靠背14的倾斜位置或倾斜速度的精确指示。
如同应该理解的,图7-9中所示实施方式中座椅10的调角机构110可以手动驱动来调节座椅靠背14的位置。然而,座椅基座12设计成能使用电机140来移动以便沿着座椅导轨17移动座椅10。此外,如上文针对电动控制电路26所强调的,提供下面的特定比率是有益的座椅靠背14每移动1度座椅基座12移动大约1毫米至大约4毫米,理想地是大约1.5毫米与大约3毫米之间。因此,传感器130每检测到座椅靠背14转动1度,座椅基座14就被相应地调整。这可以使用图10和11中所示的控制电路160和170实现。控制电路160和170的特征和原理可以互相组合或单独使用,或者以任意的优选结构使用。
一种实施方式中,传感器130检测座椅靠背14的转动角度,该角度作为具有特定数值的传感器130的输出来提供。控制电路160或170从传感器130检测特定的数值,并确定座椅基座12基于下面的理想比率应该移动的量,理想比率是座椅靠背14每转动1度、座椅基座12移动大约1毫米至4毫米。座椅基座12可以使用闭环反馈控制移动到理想位置。例如,一旦座椅靠背14移动且其新的位置已知,该新的位置可以用作输出来确定座椅基座12的理想位置。在这种配置中,座椅基座12可以包括能检测座椅基座12位置的传感器。因此,座椅基座12使用闭环反馈控制进行移动直到座椅基座12处在理想位置。
在一种典型实施方式中,控制电路160和170配置成能延迟移动座椅基座12直到座椅靠背14已经停止移动。一种实施方式中,这能使用传感器130监控座椅靠背14何时停止来实现。典型地,在移动座椅基座12之前的延迟是大约1秒,但是也可以是在大约0.5秒与大约3秒之间的任意时间,或者在大约0.5秒与大约2秒之间的任意时间。
另一实施方式中,座椅基座12通过简单地将电机140开启一段合适的时间进行重定位。在此配置中,不检测座椅基座12的位置。而是,电机140开启的时间是预定关系的函数。此外,由于汽车座椅通常被安装成座椅基座12非水平,所以为了移动相同的距离,需要让电机140在一个方向开启的时间比在另一个方向更长一些。例如,汽车中的汽车座椅可以被安装成座椅基座12向前倾斜大约6度。在此情况下,座椅基座12在向后移动时将得到重力助力,而在向前移动时将受到重力阻碍。这会使得座椅基座12向后移动比向前移动的速度更快。正如所解释的,根据座椅基座12是向前移动还是向后移动改变电机140的开启时间,以此来说明重力效果。例如,与座椅靠背14向前倾斜3度(座椅基座12向后移动并得到重力助力)的情况相比,在座椅靠背向后倾斜3度(座椅基座12向前移动并受到重力阻碍)时电机140可以开启更长一段时间。电机140的开启时间的差别对于每个汽车座椅和驱动器的性能来说是特定的。但是,每个驱动器的性能可以使用平均技术和其他统计技术来加以近似。
如图10所示,现在来详细说明控制电路160。控制电路160包括微处理器220、继电器224、调压器226和聚合物开关(polyswitch)。电力从电源230经过二极管250和调压器226流到微处理器220和传感器130。二极管250充当极性反接保护器件,如果电路中的一个元件极性反接,其不会损坏元件。调压器226将电力从12伏特降低到5伏特。调压器226还用于检测电力的突然下降并向微处理器220发送信号指示其关闭。以此方式,调压器226防止微处理器220不经过必须的关闭程序而突然关闭。
如图10所示,微处理器220是掩码存储器类型,具有1千字节的随机访问存储器和8位的中央处理单元。微处理器220可以是从STMicroelectronics(1060 East Brokaw Road,San Jose,CA 95131)获得的ST6微处理器,或者微处理器220是从Microchip Technology Inc.(2355West Chandler Blvd.,Chandler,AZ 85244)获得的PIC微处理器。但是应当理解,可以在控制电路160中使用任何微处理器。
控制电路160包括输入端232,该输入端包括传感器130以及能被使用者激活来单独移动座椅基座12(即座椅基座12移动但座椅靠背14不移动)的开关。通过一个或多个缓冲器234将输入信号从输入端232发送给微处理器220,其中缓冲器的配置用于保护微处理器220不受其他破坏性电压和电流变化的影响。微处理器220使用输入信号通过继电器224来控制电机140。传感器130可以是分压器或任何类型的合适的传感器,例如霍耳效应传感器。
微处理器220使用继电器224来控制电机140的方向,以前后移动座椅基座12。信号从微处理器220经过放大器或电流增强器236提供给继电器224,其中放大器或电流增强器234的配置用于放大信号强度。继电器224移动开关238来控制电机140的极性。引线240将电机140连接到电源230和高电流接地极242。一个引线240是高电流侧,另一引线240是低电流侧,这取决于开关238的配置。在控制电路160中,电机140具有专用馈电和接地极连接(即高电流接地极242指电机140的接地极,低电流或逻辑接地极248是微处理器220的接地极),以防止过噪音干扰控制电路160种其他元件的工作。电机140通过用作自复式保险丝的聚合物开关228连接到电源230和高电流接地极242。因此,如果电机140承受太大电流,则聚合物开关将打开电路防止电机140不被损坏。微处理器220接收有关电机140的状态信号,如线244所示。状态信号经过一个或多个与缓冲器234具有相似功能的缓冲器246。
同样作为控制电路160一部分的还有电容器252和瞬态抑制器254。电容器252过滤控制电路160的噪音以及存储电荷来帮助维持控制电路160中各个部分的理想的稳定电压。瞬态抑制器254的配置用于捕获控制电路160中可能出现的电压峰值。
如图11所示,控制电路170包括模块210,该模块的配置用于接收分压器212和开关214的信号并根据该信号相应地控制座椅基座电机216。分压器212的配置用于确定座椅靠背14是否移动,如果移动则确定座椅靠背14的新位置。一种实施方式中,分压器212和微开关组合在一起,以检测手柄114的移动(图8)。该实施方式中,控制电路170包括唤醒功能,以便在不对座椅靠背14进行任何调节的预定的时间段之后,控制电路170进入休眠模式。在唤醒模式,控制电路170连续确定分压器212的位置。在休眠模式,控制电路170不确定分压器212的位置。微开关的配置用于确定座椅靠背14是否移动,作为响应向控制电路170发送信号,退出休眠模式而开始读取分压器212的位置。在另一实施方式中,元件如霍耳效应传感器可以用来取代分压器212和微开关。该实施方式中,微开关可以是不必要的,因为霍耳效应传感器仅仅在座椅靠背14移动时才发出信号。该信息进入模块210,该模块相应地调节座椅基座电机216。开关214的配置用于独立于座椅靠背14移动座椅基座电机216。该特征在用户想要单独调节座椅基座时是有用的。
结合控制电路170所述的唤醒功能可以应用于控制电路160以及其他用于响应座椅靠背14的移动来移动座椅基座12的控制电路。通常,唤醒功能防止控制电路160和170在座椅靠背14的位置不改变、从而不需要移动座椅基座12以保持预定移动比率时不必要地浪费电能。
虽然在附图中所示的以及在上文中描述的典型实施方式是优选的,但应该理解,这些实施方式仅仅作为例子来提供。也可以使用其他实施方式。本发明不限于特定的实施方式,而是延伸到落入附属权利要求的范围和精神之内的各种修改、组合以及置换。
权利要求
1.一种汽车座椅的控制系统,包括用于前后移动座椅基座的座椅基座电机;用于调节座椅靠背倾斜角度的手动调角机构;以及用于响应倾斜角度的变化向前或向后移动座椅基座的控制电路。
2.如权利要求1所述的控制系统,其特征在于该控制系统被配置成按照座椅靠背每倾斜大约1度、座椅基座移动大约1.5毫米至大约3毫米的比率移动座椅基座。
3.如权利要求1所述的控制系统,其特征在于控制电路被配置成响应座椅靠背的向后倾斜而向前移动座椅基座,以及响应座椅靠背的向前倾斜而向后移动座椅基座。
4.如权利要求1所述的控制系统,其特征在于还包括用于检测座椅靠背位置的传感器。
5.如权利要求4所述的控制系统,其特征在于所述传感器是分压器。
6.如权利要求1所述的控制系统,其特征在于控制电路被配置成在座椅靠背停止移动之后大约0.5秒至大约2秒之间开始移动座椅基座。
7.如权利要求1所述的控制系统,其特征在于控制电路被配置成在座椅靠背停止移动之后至少大约1秒开始移动座椅基座。
8.一种汽车座椅的控制系统,包括用于前后移动座椅基座的座椅基座电机;用于调节座椅靠背倾斜角度的手动调角机构;以及用于响应座椅靠背的移动来移动座椅基座的控制电路,所述座椅基座的移动比率是每倾斜大约1度座椅基座向前或向后移动大约1毫米至大约4毫米。
9.如权利要求8所述的控制系统,其特征在于所述比率是每倾斜大约1度座椅基座向前或向后移动大约1.5毫米。
10.如权利要求8所述的控制系统,其特征在于控制电路被配置成响应座椅靠背的向后倾斜而向前移动座椅基座,以及响应座椅靠背的向前倾斜而向后移动座椅基座。
11.如权利要求8所述的控制系统,其特征在于控制电路被配置成在座椅靠背停止移动之后大约0.5秒至大约2秒之间开始移动座椅基座。
12.一种具有控制系统的汽车座椅,包括导轨;连结到导轨的座椅基座;用于前后移动座椅基座的座椅基座电机;铰接到导轨的座椅靠背;用于相对于导轨转动座椅靠背的手动调角机构;用于接收操作者命令来移动座椅基座的座椅基座输入装置;以及用于从座椅基座输入装置接收操作者命令并控制座椅基座电机的控制电路;其中,所述控制电路用于响应座椅靠背的移动来移动座椅基座;以及其中,所述控制电路用于响应从座椅基座输入装置接收命令来单独移动座椅基座。
13.如权利要求12所述的汽车座椅,其特征在于所述控制系统被配置成按照座椅靠背每倾斜大约1度、座椅基座移动大约1.5毫米至大约3毫米的比率移动座椅基座。
14.如权利要求12所述的汽车座椅,其特征在于还包括用于检测座椅靠背位置的传感器,其中所述控制电路被配置成将座椅基座移动到与座椅靠背的位置成比例的位置。
15.如权利要求14所述的汽车座椅,其特征在于所述传感器是分压器。
16.如权利要求14所述的汽车座椅,其特征在于所述控制电路被配置成通过开启座椅基座电机第一时间量来向前移动座椅基座;以及所述控制电路被配置成通过开启座椅基座电机第二时间量来向后移动座椅基座;其中第一时间量和第二时间量不同。
17.如权利要求12所述的汽车座椅,其特征在于所述控制电路被配置成响应座椅靠背的向后转动来通常向前移动座椅基座,以及响应座椅靠背的向前移动来通常向后移动座椅基座。
18.如权利要求12所述的汽车座椅,其特征在于所述控制电路用于在座椅靠背停止移动之后大约0.5秒至大约2秒之间开始移动座椅基座。
19.如权利要求12所述的汽车座椅,其特征在于所述手动调角机构通过手柄驱动。
20.如权利要求12所述的汽车座椅,其特征在于所述控制电路包括微处理器。
全文摘要
本发明提供一种汽车座椅的控制系统,包括座椅基座、座椅基座电机、座椅靠背、手动调角机构及控制电路。座椅基座电机的配置用于前后移动座椅基座。手动调角机构的配置用于调节座椅靠背的倾斜角度。控制电路的配置用于响应倾斜角度的变化来前后移动座椅基座。
文档编号B60N2/22GK1741917SQ03825962
公开日2006年3月1日 申请日期2003年6月18日 优先权日2003年1月3日
发明者罗伯特·L·汉考克, 泰伦斯·M·库森, 约瑟夫·W·麦克尔罗伊, 戴维·M·亨塞尔 申请人:约翰逊控制技术公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1