混合燃料电池系统及其电压变换控制方法

文档序号:3824081阅读:133来源:国知局
专利名称:混合燃料电池系统及其电压变换控制方法
技术领域
本发明涉及一种混合燃料电池系统,特别是涉及一种可提高高压转换器的效率的燃料电池系统。
背景技术
在搭载于电动汽车等上的燃料电池系统中,为了应对燃料电池的发电应答性不能追随这样的负荷变动等,有时要利用使蓄电池的输出升压或降压并与燃料电池的输出端连接的混合系统。
在这样的混合燃料电池系统中,作为考虑了其运行效率的技术,例如在日本特开2002-118979号公报中,公开了将燃料电池与蓄电池的最大输出比,设定在燃料电池占总输出的65~80%的范围内,抑制DC-DC转换器中的损失的技术。
但是,在上述的技术中,没有考虑通过转换器本身的利用方法来进行效率改善这一点。因此未必会在良好的效率条件下利用转换器,整体上未能追求到最佳的效率。

发明内容
为此,本发明的目的在于提供一种谋求了转换器的效率改善的混合燃料电池系统。
为解决上述的技术问题,本发明在通过电压变换器连接燃料电池和蓄电装置的混合燃料电池系统中,电压变换器是具备多个相的电压变换器,具有按照通过电压变换器的功率的等效值,变更所使用的该相的数量的控制部。
另外,本发明在通过电压变换器连接燃料电池和蓄电装置的混合燃料电池系统中,其特征在于,电压变换器是具备多个相的电压变换器,且背构成为按照电压变换器的输入输出变换能量或作功量的等效值,变更运行的相数。
再者,本发明在通过电压变换器连接燃料电池和蓄电装置的混合燃料电池系统的电压变换控制方法中,在电压变换器具备多个相的情况下,检测出通过电压变换器的功率的等效值,与所检测出的该等效值相对应地,变更所使用的该相的数量。
具备多个相的电压变换器,变换效率随着该变换器的输入输出变换能量或者作功量的等效值而变化。一般而言,在具有多个相的电压变换器中,根据在电压变换器中通过的功率的等效值,例如输入输出变换能量或者作功量,在变换器中损失的能量、即损失会变动。在此,对于多个相驱动时的效率和用比该相数少的相驱动时的效率中,有时较高效率的相数会变动。这是由于因电抗器成分而损失的电抗器铜损,围绕着IGBT等开关元件的动作而发生的元件损失,因电抗器成分而损失的电抗器铁损等综合地进行作用,决定了效率的缘故。依据上述的构成,由于被构成为能够根据通过电压变换器的功率的等效值、例如输入输出变换能量或作功量的等效值,来变更相数,因此能够与所述等效值相对应地,选择效率更高的相数进行电压变换,可大幅改善电压变换器的效率。
在此,本发明中并不限于“蓄电装置”,例如也可以是将镍氢电池或铅蓄电池设为单数或层叠多个而成的装置。
另外“电压变换器”是由多个相构成的具有直流电压变换功能的转换器(DC-DC转换器)。
再者,“电压变换器的输入输出变换能量或作功量的等效值”,是在电压变换器中与电压变换所需要的能量或作功量相对应的数值,具体而言相当于功率值、电流值、其他的参数。只要是成为用于选择电压变换器的变换效率良好的相数的指标的就可以,没有特别的限定。
例如电压变换器为三相桥形转换器,以根据该电压变换器的输入输出变换能量或作功量的等效值变更运行的相数的方式被控制。具有三相桥形的回路构成的转换器就比较适合。
即,在上述构成中,在等效值小于规定值的情况下,最好以比该等效值大于或等于该规定值时运行的相数少的相数运行。具体而言,若使输入输出变换能量或作功量从零开始逐渐向上上升,则电抗器铜损、元件损失不断上升,另一方面,电抗器铁损则不论输入输出变换能量或作功量的大小如何都基本恒定,单相比多相的铁损多。合计判断这些损失时,作为全体的效率,在比某个值高的输入输出能量或作功量的等效值下,多相驱动的一方比单相驱动高,但在比该值低的等效值的区间中,会产生变成为单相驱动的一方效率高的逆转现象。依据该构成,在输入输出变换能量或作功量的等效值在相对较高的区域中以多相进行驱动,但在产生全体损失逆转的区域中,以比多相少的相数进行驱动,因此就能够始终以最佳的效率运行。
在此“规定值”设定为与电压变换器全体效率逆转的值相对应,但也不一定必须为该值,也可鉴于动作的稳定性及其他的事宜适当地设定变更。
此外,在本发明中优选为,电压变换器是能够在以多个相数运行的多相运转与以单相运行的单相运行之间进行切换的电压变换器,在多相运行时,在等效值变得小于第1值时,切换到所述单相运行,在单相运行时,在等效值超过了比所述第1值大的第2值时,切换到所述多相运行。
依据上述构成,因为使得切换运行的相数的动作程序形成了滞后环,因此可将相数切换后又返回到原相数的不稳定的波动状态除去。
在此,“第1值”以及“第2值”设定为与在多相运行和与之相比的单相运行下电压变换器全体的效率逆转的值相对应,但也不一定必须是该值,可鉴于动作的稳定性及其他的事宜适当地设定变更。


图1为本实施例的混合燃料电池系统的框图。
图2为说明本实施例的混合燃料电池系统的控制方法的流程图。
图3为表示本混合燃料电池系统的动作滞后的图。
图4为三相桥形转换器中的各种损失特性图。
图5为三相桥形转换器中的全效率的说明图。
具体实施例方式
下面参照附图,说明用于实施本发明的最佳实施例。
本发明的实施例,是将本发明适用在搭载于电动汽车上的燃料电池系统中的实施例。
图1示出了本发明的混合燃料电池系统1的系统整体图。该混合燃料电池系统1具有DC-DC转换器20、二次电池21、燃料电池22、逆流防止用二极管23、变换器24、三相电机25、减速装置26、轴27、车轮29、电源控制部10、行驶控制部11。
二次电池21为本发明的蓄电装置,通过将充放电自如的镍氢电池等蓄电池组件层叠多个并串联连接,从而输出规定的电压。在二次电池21的输出端子上,设置有可通过控制信号Cb与电源控制部10通信的蓄电池计算机14,将二次电池21的充电状态维持在不至于过分充电和过分放电的适当的值,并且在万一二次电池出现异常时进行动作以保证安全。该二次电池21的输出可通过电流传感器15以及电压传感器16实测得到。
DC-DC转换器20是将向一次侧输入的电力,变换成与一次侧不同的电压值而输出的电压变换器。在该实施例中,通过将二次电池21的直流输出电压(例如约200V)进一步升压到较高的直流电压(例如约500V),从而能够以小电流·高电压驱动三相电机25,抑制因电力供给产生的电力损失,能够使三相电机25高输出化。该DC-DC转换器20取三相运行方式,作为具体的回路方式,有作为三相桥形转换器的回路构成。该三相桥形转换器,是把将输入的直流电压暂时变换成交流的类似逆变器的回路部分,和对该交流再次整流、变换成不同的直流电压的部分组合而成的。如图1所示,该转换器的构成为,在一次输入端子间以及二次侧输出端子间,分别三相(P1、P2、P3)并联连接着将开关元件Tr以及整流器D二段重叠而成的部件。而且,制成为一次侧和二次侧的各个二段重叠构造的中间点相互由电抗器L连接的构造。作为开关元件Tr,例如可利用IGBT(Insulated Gate BipolarTransistor),作为整流器D,可利用二极管。该DC-DC转换器20,按照被调整使得相间的位相差成为120度(2π/3)的定时来进行开关。各个相被构成为可根据来自电源控制部10的控制信号Cc独立地运行。该DC-DC转换器20的输出可通过电流传感器17以及电压传感器18实测得到。另外,DC-DC转换器20的输入电流值可从电流传感器15向电源控制部10输出,输出电流值可从电流传感器17向电源控制部10输出,而输入电压值可从电压传感器16向电源控制部10输出,输出电压值可从电压传感器18向电源控制部10输出。
而且,该DC-DC转换器20在轻负荷运行时和制动动作时,能够将三相电机25反过来作为发电机进行发电,从转换器的二次侧向一次侧对直流电压进行降压,进行向二次电池21充电的再生动作。
燃料电池堆22,是将多个单电池堆积并串联连接而构成的。单电池的构造为,将用燃料极以及空气极这二个电极夹着高分子电解质膜等的构造物,由用于供给燃料气体(氢)和作为氧化气体的空气(氧气)的分离器挟持的构造。燃料极为将燃料极用催化剂层设置在多孔质支承层上,空气极为将空气极用催化剂层设置在多孔质支承层上。
在燃料电池堆22上,设置有图未示的已知的供给燃料气体的系统、提供空气的系统、和提供冷却水的系统,通过由这些系统控制燃料气体的供给量和空气的供给量,从而能够以任意的发电量发电。
逆变器24,将由DC-DC转换器20升压的高压电流转换为位相相互错开120度的三相交流。该逆变器24,与转换器20同样地通过来自电源控制部10的控制信号Ci进行电流控制。
三相电机25成为本电动汽车的主动力,且在减速时也产生再生电力。减速装置26是所谓的差速器,将三相电机25的高速回转减速到规定的转速,使车轮29旋转。在轴27上设有车轮速度传感器28,以将车轮速度脉冲Sr向行驶控制部19输出。
行驶控制部11是行驶状态控制用的计算机系统,根据来自制动踏板的制动位置信号Sb和车轮速度脉冲Sr,向电源控制部10输出三相电机25的再生要求值。该再生要求值也可根据来自其他的转向舵角传感器、偏航率&G传感器、主缸压力传感器、轮缸压力传感器的检测信号输出。
电源控制部10为电源控制用的计算机系统,具备例如中央处理装置(CPU)101、RAM102、ROM103等。该电源控制部10,输入加速器位置信号Sa或轴位置信号Ss、来自其他的各种传感器的信号,求得与运行状态相应的燃料电池堆22的发电量以及三相电机25中的扭矩,并被进行程序控制,以进行在燃料电池堆22、三相电机25、以及二次电池21的电力收支上加上了转换器20、变换器24的损失的电源的整体控制。
接下来,说明本实施例的混合燃料电池系统1的动作。首先,对DC-DC转换器20中发生的损失进行说明。
通常,在具备多相的电压变换器中,在变换器中损失的电力、即损失,根据通过电压变换器的功率(输入输出变换能量、作功量的等效值)而变动。在此,在多相驱动时的效率和以比该相少的相驱动时的效率中,已知效率更好的相数有时会变动。例如,图4示出了在如该DC-DC转换器20的三相桥形转换器中产生的损失特性图。如图4所示,三相桥形转换器中的损失,存在着因电抗器成分损失的电抗器铜损、伴随IGBT等的开关元件的动作发生的模块损失(モジユ一ル損失)、由电抗器成分损失的电抗器铁损等。因为电抗器铜损起因于线圈,所以随着通过的功率的增大而增加,单相运行时比三相运行时还大。模块损失也随着通过功率的增大而增大,单相运行时比三相运行时还大。与此相对,由电抗器L的磁性体引起的电抗器铁损,即使通过的功率的增减也几乎没有变化,三相运行时比单相运行时要大。
图5示出了将这些损失相加时的转换器全损失和转换器变换效率的关系。正如上述,在电抗器铜损以及模块损失和电抗器铁损中,在单相和三相中损失的大小关系逆转,变化率相反。因此,在通过功率较大的区域中,相数大的三相运行比单相运行的损失要小,但在小于或等于规定的通过功率Pth的区域中,单相运行比多相运转的损失要小,产生逆转现象。若以转换器全体的变换效率来看它的话,在通过功率相对较小的情况时,单相运行的效率比三相运行的效率要高。因此,在本发明中,其特征为,在通过功率比较小的区域中,采用相数少的单相运行,在通过功率变大时,切换到相数大的三相运行而工作。
在此,可以根据比每个相的全损失的大小关系发生逆转的通过功率Pth大还是小来切换运行的相数,而如果要依据实测值检测这样的通过功率则需要花费工夫。此外,存在着通过功率越高则切换产生的波动等不好情况就越变大的倾向。因此,在本实施例中,以在小到某种程度的通过功率的区域中切换单相和多相的方式进行控制。例如图5所示,将第1电力值P1和第2电力值P2作为相数切换的阈值。
即,如图3所示,在本实施例中,在使DC-DC转换器20以三相进行运行的情况下,以在通过功率变得比第1电力值P1(例如4kW)小时切换为单相运行的方式进行控制。另外,在单相运行时,则以在通过功率超过了比第1电力值大的第2电力值(例如5kW)的情况下切换为三相运行的方式进行控制。之所以这样使其具有二个阈值,是为了防止切换动作时产生的波动(如振荡那样的不稳定现象)。即,如图3所示,这样的动作程序,会形成滞后环。因此,一旦运行的相数被变更就处于稳定状态,可消除将相数切换后返回或切换回到原来的相数的不稳定的波动状态。
下面,参照图2的流程图,说明本混合燃料电池系统1的电源控制动作。
首先,电源控制部10参照来自图未示的氢压力传感器(例如设置在燃料电池堆的阳极侧气体通路上的氢压力传感器)·温度传感器(例如设置在燃料电池堆的冷却液出口上的温度传感器)的检测信号,特定燃料电池堆22的输出电流-输出电压(I-V)特性(S1)。在作为燃料气体的氢的供给压为一定的情况下,燃料电池的输出电流和输出电压的关系唯一地确定。另外此关系还受燃料电池的温度的影响。在ROM103等中存储有按照每个氢的供给压特定这样的温度和I-V特性的关系的数据表,电源控制部10可参照该表,决定与所检测出的温度相对应的输出电流-输出电压特性。在不存在与所检测出的温度相对应的数据表的情况下,则参照其前后的温度的数据表,用所检测到的温度对各个数据表上的特性值进行加权平均,计算出近似的输出电流-输出电压特性。
接下来,为了求取该混合燃料电池系统1的负荷,电源控制部10参照加速器位置信号Sa(加速要求值)以及轴位置信号Ss(前进、后退、变速比要求值)(S2),计算三相电机25上所必需的扭矩(负荷)(S3)。该扭矩的量成为逆变器24应当输出的三相交流电力的有效电力。另外,还加进了由逆变器24、转换器20产生的电力损失,电源控制部10决定系统整体所要求的要求输出功率Pr(S4)。
在负荷量小的情况下,根据输出电流-输出电压特性求出补充要求输出功率Pr那样的燃料电池堆22的目标发电量Pfc(S5),根据控制信号Cc控制转换器20的二次侧电压,以成为可输出该发电量Pfc的输出端电压。在仅通过二次侧电压的变更,由燃料电池堆22产生的发电量仍不能维持要求输出功率Pr的总量的情况下,电源控制部10进行控制,使燃料气体和空气供给量变化,变更I-V特性,补偿功率的不足。
但是,在起动时或加速时等负荷量急剧地上升的情况下,因燃料电池的应答性或输出限制的原因,有暂时不能通过燃料气体或空气供给量的增加彻底补偿急剧变化的负荷量的情况。此时,从二次电池21将电力经由转换器20向二次侧供给。在这种情况下就必需本发明的控制。
电源控制部10通过实施电力收支计算,计算必须从二次电池21向逆变器24供给的电力,即转换器通过功率Pc(S6)。在负荷量小时,该电力收支计算的结果为电力收支均衡,即,转换器通过功率Pc基本为零。
另一方面,在电力收支计算的结果为必须由二次电池21补偿一部分电力的情况下,转换器通过功率Pc成为与电力收支的差分相当的值。
电源控制部10,根据DC-DC转换器20是否在三相运行中来使切换相数的阈值变化(S8)。即,在当前为三相运行中时(S8是),如从图5判断的那样,如果是较高的通过功率则效率较好,通过功率越低则效率越下降。因此,电源控制部10,比较第1电力值P1和通过功率Pc(S10),在通过功率Pc比第1电力值P1大的情况下(否),继续保持三相运行不变,但在通过功率Pc变为小于或等于第1电力值P1的情况下(是),则输出用于切换到在相对较小的通过功率的情况下效率较好的单相运行的控制信号Cc(S11)。
另一方面,在当前已经是单相运行的情况下(否),如为是较低的通过功率则效率较好,但若变为较高的通过功率则效率下降。因此,电源控制部10,比较第2电力值P2和通过功率Pc(S12),在通过功率Pc比第2电力值P2小的情况下(否),继续保持单相运行不变,但在通过功率Pc变成为大于或等于第2电力值P2的情况下(是),则输出用于切换到在相对较高的通过功率情况下效率较好的三相运行的控制信号Cc(S13)。
另外,在上述的动作中,虽然推定电力收支并计算出转换器通过功率,但也可从电流传感器15以及电压传感器16实测转换器20的一次侧电力,从电流传感器17以及电压传感器18实测二次侧电力,由其差算出转换器20的通过功率。
以上,根据本实施例的处理,由于根据DC-DC转换器20的通过功率Pc的电力值来选择在该电力值下效率较好的相数,执行该相数下的运行,所以能够提供一种考虑到了转换器的动作的效率良好的混合燃料电池系统1。
其他的实施例本发明除了上述实施例以外还可以进行各种变更而加以运用。
例如,虽然在上述实施例中是切换三相运行和单相运行,但也可以是不同的组合、例如切换三相运行和二相运转或切换二相运转和单相运行的控制。
另外,在上述实施例中,例示了三相桥形转换器,但并不仅限定于该回路构成。只要是由多相(二相以上)驱动、可独立地切换相的电压变换器就能够适用本发明,能够进行运行而起到本发明的作用效果。
此外,在上述实施例中,是在单相运行和三相运行间切换转换器的,但也可根据通过功率,在从单相至多相的任何阶段中连续切换,或在从多相至单相的任何阶段中连续地切换。
另外,在上述实施例中,作为转换器的通过功率,除了使用作为通过电流和端子电压的积的狭义的电力值以外,还可以构成为根据输入输出变换能量、作功量的等效值以及在一定条件下的电流值和电压值等变换相数。
产业上的可利用性根据以上的本发明,由于构成为能够与通过电压变换器的功率的等效值相对应地变更运行的相数,因此可通过适宜选择电压变换器的效率良好的相数来谋求整体的效率改善。因此,本发明适用于电压变换器的通过功率频繁地被变更的系统,例如搭载于车辆、船舶、航空机等移动体、机器人、便携电子末端等电子仪器上的燃料电池系统。
权利要求
1.一种混合燃料电池系统,它是通过电压变换器连接燃料电池和蓄电装置的混合燃料电池系统,其中,该电压变换器为具备多个相的电压变换器;具有根据通过该电压变换器的功率的等效值,变更在该电压变换器中所使用的该相的数量的控制部。
2.一种混合燃料电池系统,它是通过电压变换器连接燃料电池和蓄电装置的混合燃料电池系统,其特征在于,所述电压变换器为具备多个相的电压变换器;且被构成为可根据所述电压变换器的输入输出变换能量或作功量的等效值,变更运行的相数。
3.按照权利要求1或2所述的混合燃料电池系统,其特征在于,在所述等效值小于规定值的情况下,以比该等效值大于或等于该规定值时运行的相数少的相数运行。
4.按照权利要求1或2所述的混合燃料电池系统,其特征在于,所述电压变换器是切换以多个相数运行的多相运行和以单相运行的单相运行的电压变换器,在所述多相运行时,在所述等效值变为比第1值小的情况下,切换成所述单相运行;在所述单相运行时,在所述等效值超过比所述第1值大的第2值的情况下,切换成所述多相运行。
5.按照权利要求1~3中任意一项所述的混合燃料电池系统,其特征在于,所述电压变换器为三相桥形转换器,以根据所述等效值变更运行的相数的方式被控制。
6.一种混合燃料电池系统的电压变换控制方法,它是通过电压变换器连接燃料电池和蓄电装置的混合燃料电池系统的电压变换控制方法,其特征在于,在该电压变换器具有多个相的情况下,检测通过该电压变换器的功率的等效值,与所检测出的该等效值相对应地,变更所使用的该相的数量。
7.按照权利要求6所述的混合燃料电池系统的电压变换控制方法,其特征在于,在所述等效值小于规定值的情况下,使用比该等效值大于或等于该规定值时运行的相数少的相数。
8.按照权利要求6或7所述的混合燃料电池系统的电压变换控制方法,其特征在于,在所述电压变换器能够切换以多个相数运行的多相运行和以单相运行的单相运行的情况下,在所述多相运行时,在所述等效值变为小于第1值的情况下,切换成所述单相运行;在所述单相运行时,在所述等效值超过比所述第1值大的第2值的情况下,切换成所述多相运行。
全文摘要
提供一种谋求转换器中的效率改善的混合燃料电池系统。在通过电压变换器(20)连接燃料电池(22)和蓄电装置(21)的混合燃料电池系统(1)中,电压变换器(20)具有多个相(P1、P2、P3),被构成为能够根据通过电压变换器(20)的功率来变更运行的相数。由于被构成为可根据通过电压变换器(20)的功率来变更相数,所以能够根据通过功率选择效率更高的相数、进行电压变换,能够大幅度地改善电压变换器(20)的效率。
文档编号B60L11/18GK1914780SQ20058000398
公开日2007年2月14日 申请日期2005年2月2日 优先权日2004年2月3日
发明者石川哲浩, 矢野刚志, 吉田宽史 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1