多种能量存储和管理的系统及其制造方法

文档序号:3918620阅读:116来源:国知局
专利名称:多种能量存储和管理的系统及其制造方法
技术领域
一般来说,本发明的实施例涉及驱动系统,更具体来说,涉及例如用于蓄电池 (battery)供电的电动车辆或混合车辆的蓄电池供电驱动系统。
背景技术
近来,电动车辆和混合电动车辆越来越普遍。这些车辆通常由一个或多个蓄电池 单独或者结合内燃机供电。在电动车辆中,一个或多个蓄电池向整个驱动系统供电,由此消 除对内燃机的需要。另一方面,混合电动车辆包括补充蓄电池电力的内燃机,其极大地增加 车辆的燃料效率。在传统上,这些车辆中的电动和混合电推进系统使用大型蓄电池、超级电容器 (ultracapacitor)、飞轮(flywheel)或者这些构件的组合,以便提供充分能量来向电动机 供电。虽然一般有效,但是这些构件的尺寸和重量降低推进系统的总效率,并且为集成到车 辆本身提出难题。与常规电推进系统相关的另一个难题在于,能量存储单元(S卩,蓄电池和超级电 容器)的标称(nominal)电压设置总系统电压。因此,可用于向电动机供电的能量局限于能 量存储单元本身中可用的能量。这种配置限制电推进系统的整体可靠性和效率,因为电动 机的电压需求往往比能量存储单元电压大得多。要防止这个问题,双向升压转换器(boost converter)可用于将能量存储单元与直流(DC)链路(link)电压去耦(decouple),其中DC 链路耦合到电动机。双向升压转换器起作用(act)以增加或“升高”从能量存储单元提供 给DC链路的电压,以便满足电动机的功率需求。实际上,DC链路电压与能量存储单元电压 的比率通常大于2 1。双向升压转换器在无需增加能量存储单元尺寸的情况下实现提供 给DC链路的电压的此类增加。虽然双向升压转换器在无需对应增加能量存储单元尺寸的情况下成功地允许向 DC链路的增加电压供应,但是双向升压转换器的效率在某些操作模式期间降级。具体来说, 在车辆高速和高功率加速及减速期间,DC链路电压与蓄电池电压的比率往往大于2. 5 1。 在这些操作模式下,升压转换器的组件经受的电流的级别(level)非常高,并且因此存在 对于耗散升压转换器的功率电子组件中热量的适当热设计的后续需要。这种对双向升压转 换器的组件的热循环压力(stress)可降低可靠性以及总系统效率。此外,在高速和高功率减速期间,称作“再生制动”的概念使电动机所产生的可能 较高电压的功率通过双向升压转换器向后循环以供存储在能量存储单元中。但是,在高DC 链路电压与蓄电池电压比率,双向升压转换器中的高损耗要求电组件中的适当热耗散。提 供给能量存储单元的再生功率又往往受到能量存储单元本身的充电接受能力限制,这进一 步降低系统的效率。因此,希望提供一种在高功率再生制动期间具有更大总系统效率连同增加的能量 捕捉级别的电动和/或混合电推进系统。

发明内容
本发明的实施例提供一种推进系统,该推进系统包括电驱动器(electrical drive)、与电驱动器电耦合的直流(DC)链路以及与电驱动器电耦合的第一能量存储系统, 第一能量存储系统至少包括高比功率(high specific-power)能量存储装置。推进系统还 包括第二能量存储系统,其中第二能量存储系统的正极端子通过DC链路与电驱动器电耦 合,并且第二能量存储系统的负极端子与高比功率能量存储装置的正极端子串联耦合。多 通道双向升压转换器耦合到第一能量存储系统以及第二能量存储系统,其中高比功率能量 存储装置的正极端子与第二能量存储系统的负极端子之间的串联连接将多通道双向升压 转换器旁路(hypass)。根据本发明的另一方面,示出一种装配控制系统的方法,该方法包括将超级电容 器与能量蓄电池耦合,以便形成第一能量存储系统;通过直流(DC)链路将第二能量存储系 统耦合到电驱动器;以及将多通道双向升压转换器耦合到第一能量存储系统和第二能量存 储系统中的每个。该方法还包括将超级电容器的正极端子与第二能量存储系统的负极端子 串联连接,使得超级电容器的正极端子与第二能量存储系统的负极端子之间的连接将多通 道双向升压转换器旁路。根据本发明的另一方面,示出一种供电系统的能量存储布置,该布置包括至少包 含超级电容器的第一能量存储系统以及多通道双向升压转换器,多通道双向升压转换器在 多通道双向升压转换器的低电压侧耦合到第一能量存储系统。该布置还包括在多通道双向 升压转换器的高电压侧耦合到多通道双向升压转换器的第二能量存储系统,其中第二能量 存储系统还与超级电容器串联耦合,使得第二能量存储系统与超级电容器之间的串联连接 将多通道双向升压转换器旁路。从以下详细描述和附图,其它各种特征和优点将显而易见。


附图示出当前考虑用于执行本发明的优选实施例。附图中图1示意示出根据本发明一个实施例的推进系统。图2示意示出推进系统的另一个实施例。图3示意示出推进系统的另一个实施例。
具体实施例方式系统示为包括电驱动器(drive)、包含例如超级电容器的至少一个高比功率能量 存储装置的第一能量存储系统以及通过直流(DC)链路与电驱动器电耦合的第二能量存储 系统。第一能量存储系统和第二能量存储系统均与多通道双向升压转换器电耦合。此外, 高比功率能量存储装置的正极端子还耦合到第二能量存储系统的负极端子,以便将多通道 双向升压转换器旁路。高比功率能量存储装置与第二能量存储装置之间的这种连接实现在 加速期间提供给电驱动器的高电压级别以及在再生制动事件期间在第一能量存储系统中 能量捕捉的增加能力。参照图1,示出根据本发明一个实施例的推进系统100。推进系统100部分地包括包含能量蓄电池102和高比功率能量存储装置104的第一能量存储系统。推进系统100 还包括多通道双向升压转换器106。高比功率能量存储装置104可以是例如超级电容器。 在这种情况下,超级电容器表示包括相互耦合的多个电容器单元的电容器,其中电容器单 元可各自具有大于500法拉的电容。本文所使用的术语“能量蓄电池”描述证明实现大约 100ff-hr/kg或更大能量密度的高比能量蓄电池或高能量密度蓄电池(例如锂离子、钠金属 卤化物、钠-氯化镍、钠硫或锌空气蓄电池)。能量蓄电池102和高比功率能量存储装置104 在多通道双向升压转换器106的低电压侧202耦合在一起,其中能量蓄电池102的负极端 子204和高比功率能量存储装置104的负极端子206耦合到母线(bus) 108,而能量蓄电池 102的正极端子208耦合到母线110,母线110是通过电感器在多通道双向升压转换器106 的低电压侧202连接到多通道双向升压转换器106中一个通道的正母线。高比功率能量存 储装置104的正极端子210耦合到母线220,母线220通过电感器在低电压侧202耦合在多 通道双向升压转换器106的第二端子(b)。系统100还包括包含能量存储装置112的第二能量存储系统以及包含DC-AC逆变 器114和耦合到多通道双向升压转换器106高电压侧214的AC电机116的AC牵引驱动器 212。能量存储装置112可以是例如具有额定高比功率的蓄电池。备选地,能量存储装置 112也可以是超级电容器。在一个备选实施例中,通过用DC斩波器(未示出)取代逆变器 114以及通过用DC电机(未示出)取代AC电机116,AC牵引驱动器212可由DC牵引驱动 器(未示出)取代。能量存储装置112经由正DC链路118与多通道双向升压转换器106 耦合。DC-AC逆变器114还耦合到正DC链路118和负DC链路120,DC-AC逆变器114通过 它们接收DC电压,并且然后向AC电机116提供交变电流。负DC链路120通常具有与在多 通道双向升压转换器106的低电压侧202的母线108相同的电位。在典型操作期间,多通道双向升压转换器106起作用以升高由系统100低电压侧 202提供给系统100高电压侧214的电压,以及调节电压并且向能量蓄电池102、高比功率 能量存储装置104和能量存储装置112提供过电流保护。虽然能量存储装置112 (或者能量 存储装置112和高比功率能量存储装置104的组合)一般能够提供充分电压以向AC电机 116供电,使得车辆可工作在较慢速度,但是在增加加速的周期期间提供给AC电机116的电 压可需要得到补充。在这类情况下,来自在多通道双向升压转换器106低电压侧202的能量 蓄电池102的能量被用于提供车辆的增加加速所需的电压。当高比功率能量存储装置104 的荷电状态(S0C:State of Charge)消耗到低于某个预定最小值、通常低于蓄电池102的 电压的值时,使用来自能量蓄电池102的能量。当高比功率能量存储装置104的S0C达到 这个预定最小值时,单向耦合装置122导通,使得多通道双向升压转换器104使用多通道双 向升压转换器106的两个通道抽取主要来自能量蓄电池102的能量,由此与多通道双向升 压转换器106的单通道相比,允许额定功率的大约两倍。单向耦合装置122在图1的实施 例中示为二极管,但是要理解,单向导通设备122可使用其它已知组件和电路技术来实现。 这种配置起作用以促进增加车辆的工作速度,特别是当高比功率能量存储装置104的可用 能量耗尽或者接近预定电压极限时。在高比功率能量存储装置104处于较低S0C或低电压的情况下,能量蓄电池102 的电压可通过正母线110经由多通道双向升高转换器106的低侧(通道“a”)升高到高侧 DC链路118和120。能量蓄电池102通过正母线110和/或高比功率能量存储装置104通过正母线220所提供的电压经由多通道双向升压转换器106按照通常大于2 1的升压比 率来“提升”或增加。这样,甚至通过能量蓄电池102和/或高比功率能量存储装置104的 输出能力,由于多通道双向升压转换器106的电压升高能力,可提供加速AC电机116所需 的电压和功率。另外,来自能量蓄电池102的能量可用于经由多通道双向升压转换器106 同时对高比功率能量存储装置104和能量存储装置112中之一或二者进行充电。虽然多通道双向升压转换器106的操作可在正常操作条件(例如低加速和/或减 速)下是充分的,但是例如多通道双向升压转换器106的多通道双向升压转换器的效率在 车辆的高加速或减速期间可能降级。也就是说,由于向AC电机充分供电所需的电压与多通 道双向升压转换器相应低电压侧的可用电压的比率增加,多通道双向升压转换器可遇到增 加的电损耗,从而因通过多通道双向升压转换器中组件的电流增加而导致热循环压力。这 些增加的电流可降低双向升压转换器的效率,它们要求适当热设计和硬件以耗散来自功率 电子组件中这些损耗的热量。但是,图1所示的实施例针对这个问题,以便极大地提高系统 100的效率,特别是工作在较高功率、高速车辆加速和减速期间。具体来说,高比功率能量存储装置104的正极端子210经由链路124与能量存储 系统112的负极端子216串联耦合。链路124将多通道双向升压转换器106的一个通道旁 路,以便使高比功率能量存储装置104和能量存储装置112的电压输出能够被求和,由此利 用能量存储装置112和高比功率能量存储装置104的高比功率特性。在例如脉动载荷、稳 态载荷、车辆巡航(cruise)和车辆加速的电动回转(motoring)事件期间,这两个能量存储 装置的组合电压可用于向AC电机116提供充分电压和功率,而没有引起与使电流经过多通 道双向升压转换器106相关的损耗。另外,与具有与逆变器或负载的DC链路直接耦合的一 个或多个牵引蓄电池的常规牵引蓄电池系统相比,将高比功率能量存储装置104和第二能 量存储装置112串联耦合实现更少的待使用蓄电池组电池,由此减小成本、重量、平衡和可 靠性问题。除了提供用于电机加速的增加的功率能力之外,高比功率能量存储装置104和能 量存储装置112的串联连接还提供再生制动事件期间的更大能量捕捉效率。与能量蓄电 池102不同,高比功率能量存储装置104和能量存储装置112均可工作在低S0C,并且能 够进行快速高功率充电接受。因此,这些能量存储装置能够接受来自例如车辆减速的超运 (overhauling)荷载期间由AC电机116所产生的高电压再生能量的大量再生功率。在这类 再生制动事件期间,再生能量可被有效地存储在高比功率能量存储装置104和能量存储装 置112中,同样没有引起与多通道双向升压转换器106关联的损耗,因为链路124实现对多 通道双向升压转换器106的旁路。然后,高比功率能量存储装置104和能量存储装置112 中存储的能量可用于后续加速,这再次提高整个推进系统100的总效率。图1的示范实施例的又一个优点是动态控制提供给以及来自能量存储装置的能 量级别的能力。多通道双向升压转换器106可操作为能量管理系统(EMS),以便根据例如车 辆速度、AC牵引驱动转矩需求、AC牵引驱动速度的参数以及例如S0C、电压级别、健康状态 和温度的各种能量存储单元电特性自适应地控制这些能量级别。例如,这种动态控制使多 通道双向升压转换器106能够单独控制典型车辆加速期间由高比功率能量存储装置104和 /或能量蓄电池102所提供的能量的量。同样,在减速期间,多通道双向升压转换器106操 作成控制提供给能量存储装置112、高比功率能量存储装置104和/或能量蓄电池102的再生能量的量,以便使系统的整体充电接受最大。这种动态控制极大地提高系统100的总效率。图2示出本发明的另一个实施例。图2所示的推进系统200包括与图1的系统 100所示的组件相似的组件,并且因而用于表示图1的组件的标号也将用于表示图2中的相 似组件。如图所示,系统200包括系统100的组件连同例如多个电压感测器(seonsor) 126、 电流感测器128、预充电电路132和车辆系统控制(VSC) 134的其它组件。预充电电路132 起作用以便在车辆启动期间将初始预充电提供给与DC-AC逆变器114关联的DC链路滤波 电容器218外加与EMS关联的其它滤波器和能量存储电容器。这种车辆启动的命令来自 VCS134, VCS 134接收例如启动、加速和减速的操作人员输入,并且相应地控制系统200的 操作。要理解,可按照与以上针对系统100所述相似的方式来操作系统200的能量蓄电池 102、高比功率能量存储装置104、多通道双向升压转换器106和能量存储装置112。备选地, 可将能量蓄电池102从第一能量存储系统去除,由此使高比功率能量存储装置104成为系 统200低电压侧202的唯一能量存储装置。这种配置主要用于混合电动驱动列车配置,其 中热力发动机(未示出)可对经由第一能量存储系统和第二能量存储系统所提供的能量进 行补充。图3示出本发明的又一实施例。图3所示的推进系统300包括与图1和图2的系统 100及200所示的组件相似的组件,并且因而用于表示图1和图2中组件的标号也将用于表 示图3中的相似组件。如图所示,系统300包括在多通道双向升压转换器106低电压侧202 的辅助功率单元302。辅助功率单元302包括热力发动机136、交流发电机(alternator) 138 和整流器140。系统300的辅助功率单元302还包括包含AC插头142、隔离变压器144、接 地故障电流断路器(GFI) 146和整流器148的插入式(plug-in)电气系统。整流器140的 输出耦合到母线222,使得热力发动机136和交流发电机138所产生的能量可补充高比功 率能量存储装置104和/或能量蓄电池102所提供的能量。此外,当热力发电机136工作 时,可使用经由热力发电机136、交流发电机138和整流器140所提供的能量选择性地对能 量蓄电池102、高比功率能量存储装置104和能量存储装置112进行充电。电流、电压和功 率的控制在充电操作期间经由VSC 134和EMS进行控制。备选地,当能量蓄电池102、高比功率能量存储装置104和能量存储装置112没有 用于操作电机116时,AC插头142可耦合到外部电源(即公用电网),以便通过整流器148 向系统300中的能量存储装置102、104、112供应能量。整流器148的输出304通过电感器 耦合到多通道双向升压转换器106的独立通道(例如通道“c”),使得来自外部电力源的电 压、电流和功率受到控制,并且能够提供给系统300中能量蓄电池102、高比功率能量存储 装置104和能量存储装置112中的任一个。图3中,接触器130起作用以防止在将系统经 由AC插头142插入电气公用接口时在对能量蓄电池102、高比功率能量存储装置104和能 量存储装置112充电期间启动DC-AC逆变器114。虽然接触器130示为在能量存储装置112 与DC-AC逆变器114之间,但是接触器130可位于系统300中的任何位置,包括AC电机116 上的各相(Phase)。相应地,当结合到车辆时,图3所示的系统300不仅能够在操作期间经 由热力发动机136进行能量再充电,而且还可在车辆未使用时再充电。与图1和图2分别所示的系统100、200不同,图3所示的系统300示为在能量蓄 电池102与高比功率能量存储装置104之间没有单向耦合装置(例如二极管)。没有这种单向耦合装置,高比功率能量存储装置104可放电到实质上低于能量蓄电池102的电压的 值。这样,极大地提高系统300在AC电机116工作在低速和低功率期间的效率。
虽然仅结合有限数量的实施例详细描述了本发明,但是应当易于理解,本发明并 不局限于这类公开的实施例。相反,可修改本发明以结合前面没有描述的任何数量的变化、 变更、替换或等效配置,但它们与本发明的精神和范围相当。另外,虽然已经描述本发明的 各个实施例,但是要理解,本发明的方面可以仅包含所述实施例的一部分。因此,本发明不 能被看作受到以上描述限制,而仅由随附权利要求书的范围进行限制。原配件清单
100推进系统
102能量蓄电池
104高比功率能量存储装置
106多通道双向升压转换器
108母线
110母线
112能量存储装置
114DC-AC逆变器
116AC电机
118正DC链路
120负DC链路
122单向耦合装置
124链路
126电压感测器
128电流感测器
130接触器
132预充电电路
134车辆系统控制(VSC)
136热力发动机
138交流发电机
140整流器
142AC插头
144隔离变压器
146接地故障电流断路器(GFI)
148整流器
200推进系统
202低电压侧
204负极端子
206负极端子
208正极端子
210正极端子
212AC牵引驱动器
214高电压侧
216负极端子
218DC链路滤波电容器
222母线
300推进系统
302辅助功率单元
304输出
权利要求
一种推进系统(100,200,300),包括电驱动器(212);直流(DC)链路(118,120),与所述电驱动器(212)电耦合;第一能量存储系统,与所述电驱动器(212)电耦合,所述第一能量存储系统至少包括高比功率能量存储装置(104);第二能量存储系统(112),其中所述第二能量存储系统(112)的正极端子通过所述DC链路(118,120)与所述电驱动器(212)电耦合,并且所述第二能量存储系统(112)的负极端子与所述高比功率能量存储装置(104)的正极端子串联耦合;以及多通道双向升压转换器(106),耦合到所述第一能量存储系统以及所述第二能量存储系统(112),其中所述高比功率能量存储装置(104)的正极端子与所述第二能量存储系统(112)的负极端子之间的串联连接将所述多通道双向升压转换器(106)旁路。
2.如权利要求1所述的推进系统,其中,所述第二能量存储系统(112)包括功率蓄电池。
3.如权利要求1所述的推进系统,其中,所述第二能量存储系统(112)包括超级电容器ο
4.如权利要求1所述的推进系统,其中,所述第一能量存储系统的所述高比功率能量 存储装置(104)和所述第二能量存储系统(112)配置成在与包括车辆减速的超运荷载关联 的再生制动事件期间接收再生能量。
5.如权利要求4所述的推进系统,其中,所述多通道双向升压转换器(106)配置成在 所述再生制动事件期间按照车辆速度、所述高比功率能量存储装置的荷电状态、所述功率 蓄电池的荷电状态、电动驱动转矩需求和电动驱动速度中至少之一的函数来控制传送给所 述第一能量存储系统的所述高比功率能量存储装置(104)和所述第二能量存储系统(112) 的再生能量的量。
6.如权利要求1所述的推进系统,其中,所述第一能量存储系统的所述高比功率能量 存储装置(104)和所述第二能量存储系统(112)配置成在与脉动载荷、稳态载荷、车辆巡航 和车辆加速中至少之一关联的电动回转事件期间供应能量。
7.如权利要求6所述的推进系统,其中,所述多通道双向升压转换器(106)配置成在 所述电动回转事件期间按照车辆速度、所述高比功率能量存储装置的荷电状态、所述功率 蓄电池的荷电状态、电动驱动转矩需求和电动驱动速度中至少之一的函数来控制传送给所 述第一能量存储系统的所述高比功率能量存储装置(104)和所述第二能量存储系统(112) 的能量的量。
8.如权利要求1所述的推进系统,其中,所述高比功率能量存储装置(104)包括超级电容器。
9.如权利要求1所述的推进系统,其中,所述第一能量存储装置还包括耦合到所述高 比功率能量存储装置(104)的能量蓄电池(102)。
10.如权利要求1所述的推进系统,还包括辅助功率单元(302),耦合到所述第一能量 存储系统和所述第二能量存储系统(112)中至少之一。
全文摘要
示出一种推进系统,其包括电驱动器、与电驱动器电耦合的DC链路以及与电驱动器电耦合的第一能量存储系统,第一能量存储系统至少包括高比功率能量存储装置。推进系统还包括第二能量存储系统,其中第二能量存储系统的正极端子通过DC链路与电驱动器电耦合,并且第二能量存储系统的负极端子与高比功率能量存储装置的正极端子串联耦合。多通道双向升压转换器耦合到第一能量存储系统以及第二能量存储系统,其中高比功率能量存储装置的正极端子与第二能量存储系统的负极端子之间的连接将多通道双向升压转换器旁路。
文档编号B60K6/28GK101992678SQ201010260530
公开日2011年3月30日 申请日期2010年8月11日 优先权日2009年8月11日
发明者G·R·基林斯基, R·D·金 申请人:通用电气公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1