控制机动车起动阶段的方法

文档序号:3850945阅读:91来源:国知局
专利名称:控制机动车起动阶段的方法
技术领域
本发明涉及一种控制机动车起动阶段的方法,所述机动车由内燃机驱动,内燃机 通过至少一个电机来起动,所述电机可以被用作电动机,并且优选地是,在内燃机和电机之 间的驱动系中具有自动离合器。
本发明进一步涉及一种控制机动车起动阶段的方法,所述机动车由内燃机驱动并 且具有一自动离合器,首先内燃机被起动机从静止加速,从一预定临界速度,离合器的啮合 进程被起动,以便开始起动阶段,且在一段同步时间后起动喷射进程。
术语“同步”的意思是,电动机控制单元可以识别内燃机曲轴瞬时位置的绝对角 度。这包含了这样的信息,即,每个汽缸定位在哪个循环的部分中。由于采用通常使用传感 器系统,这只有在曲轴首次转动后过了一定角度后才是可能的。
本发明还涉及起动车辆内燃机的方法,内燃机的曲轴通过至少一个可分离离合器 与一个包括变速器的驱动系相连,所述驱动系包括至少一个电机,在起动准备阶段最好由 电机将内燃机曲轴带到一个预先设定的起始转动位置,在工作期间,曲轴的角速度和角度 位置由车辆速度传感器确定。
本发明进一步涉及一种减少车辆驱动系的变速器噪音的方法,内燃机作用到一个 驱动轴和一个电机上,该电机通过一个转换箱连接到驱动轴上,一个可致动的离合器设置 在内燃机和转换箱之间。
背景技术
为了满足未来的移动性要求,机动车必须满足一些附加的要求。在环境政策讨论 中,对污染和噪声所产生的干扰给与了特别的关注。作为国际条约的结果,立法者已经规定 了严厉降低汽车CO2排放和全体油耗(Flottenverbrauch)。
除了环境政策的目标外,还必须注意到世界市场和车辆用户的需求。机动车辆结 构更加舒适和安全的倾向和有蓬车和所谓的SUV(多功能运动汽车)的市场份额的增加导 致车辆重量的增加,因此使得达到油耗和排放目标变得更困难。完全忽略机动性的感情因 素也是不可能的。驾驶乐趣也是非常重要的方面,没有驾驶乐趣的汽车很难卖得出去。
为了达到一方面要较少油耗和排放、另一方面要增加舒适度和操控性能这些相互 矛盾的目标,必须实施包括整个驱动系的系统措施。
机动车的功能越来越自动化。这特别指的是机动车的起动步骤。当一辆机动车以 空转的发动机从静止开始移动时,必须首先起动内燃机,然后啮合离合器,以便在内燃机和 驱动轮之间产生正面接合。这时间周期是关键的,其经过起动过程的开始和机动车加速的 开始之间的时间。汽车驾驶者是否接受的自动化系统主要取决于其是否设法使延时、噪音和颤振方面的客观标准最小化和使主观标准最优化。
在传统的系统中,内燃机首先由起动机加速而不实施喷射,以避免排放未燃碳氢 化合物,使废气的极限值劣化。第一次喷射过程在同步时间后进行,在同步时间阶段,一方 面,活塞和阀门的相位在允许的区域,另一方面,发动机的速度足够高确保充分燃烧。从第 一次有效喷射,可以认为内燃机将提供一正力矩。然后离合器的啮合过程开始启动,因此, 在第一次空转时间后,力矩能够传递到机动车的驱动轮上,且加速过程开始。直到机动车开 始加速的整个持续时间基本上取决于从该过程的开始直到同步时间所经过的这段时间。这 段时间部分依赖于起动机的输出,内燃机的转动惯量和摩擦力矩,同步时间的所需速度和 内燃机在该过程起动时的相位。
特别是在轮式车辆的驱动轮忽然起动时会产生反冲动量,这种反冲动量在乘客感 觉来说就是一个令人烦扰的振动。
EP0743216A2介绍了一种混合动力车,其具有一个内燃机和一个电离合器电动机 还有一个辅助电动机。起动过程通过电离合器电动机发生,离合器电动机和辅助电动机由 如下方式激发作用于驱动轮的驱动轴的转矩保持恒定。
美国专利号6244368B1介绍了一种混合动力车,其具有一个电动机和一个内燃 机。在电驱动模式下,当内燃机被电动机起动时,它的驱动力增加到内燃机所要求的起动功 率的程度。
机动车内燃机的一个起动和驱动单元从DE19858992A1可以知道。内燃机通过一 个曲轴和离合器可被连接到包含转换箱的驱动系上。所述转换箱与一个电机相连接,利用 所述电机可以实施各种起动方法。每种起动方法之前都有一起动净化阶段,其间曲轴由电 机转动,并且其间探测起动条件且离合器闭合,作出随后的操作阶段的决定,且确定这些操 作阶段的起动参数。一个电起动控制装置通过设置在离合器两侧的两个速度传感器探测在 离合器的输出和输入侧的速度状态和速度进程,在一个起动净化阶段决定所要采用的起动 方法,并且决定其起动参数。
速度传感器作为一个标准判断例如曲轴转速是相对便宜的,但是带来了只能在一 个最小速度以上以不精确的方式确定曲轴的位置这样的缺点。特别地,在曲轴慢转的情况 下,速度传感器就不再能够用来探测曲轴的位置了。位置传感器即使再低速或者相对复杂 的静止情况下也能提供曲轴位置的精确角度信息。
DE19808472A1介绍了一种用于起动机动车燃料喷射式内燃机的方法。在点火之前 的时间内,发动机被一个驱动装置低速带到一个位置,在所述位置上,一个气缸的活塞停在 上止点上,随着点火命令,电动机被迫执行一个进一步的小转动位移,然后喷射并点火。曲 轴的位置通过一个单独的曲轴位置传感器探测。
WO 01/88370A1介绍了一种内燃机的起动进程和起动机装置,曲轴被一个电机转 动到一个预定的起始位置。曲轴的位置被一个与曲轴配合的单独的旋转和位置传感器探 测,这种位置传感器相对较昂贵。
DE10062985A1介绍了一种测定内燃机曲轴角度的方法和控制装置,内燃机与一 个电机相联合,这样其转子与曲轴以一种扭转刚性的方式连接。所述电机包括一个对其进 行控制的控制装置和一测定仪器,该测定仪器用于对转子的相对于定子的角度位置进行测 定。为了测定曲轴角度,转子的当前角度位置由用于测定角度位置的仪器来探测并发送到控制装置。然后相应的实时曲轴角度由控制装置在探测到的角度位置值的基础上进行确 定。然后,这样测定的曲轴角度通过控制装置发送到内燃机的控制单元。
EP1113169A1描述了一种内燃机的起动装置和一种在内燃机起动和停止进程期间 控制所述起动装置的方法。所述起动装置具有一套含有一电机的电驱动系统,所述电机可 以通过一个离合器与内燃机相连。
当一个被称作侧部安装的起动机发电机(SSG)通过一离合器被内燃机驱动时,一 个交替动量通过在电机和驱动系之间的传送齿轮来传输,所述的交替动量由内燃机的燃烧 冲程所产生。当一个低的发电机动量经由所述电机取回时,内燃机和电机之间的传输动量 可以转换其正负。干预齿轮的齿侧通常在要求的情况下彼此刚性支撑,所述齿侧可以在可 能的游隙范围内相互分开并再次相互碰撞,从而可以听见卡嗒卡嗒的声音。这种情况在低 速时发生,特别是在内燃机的空转转速时发生。发明内容
本发明的目的是通过优化起动阶段的控制来使动力传输开始前的时间最短并因 此而使机动车的加速度最小。本发明的另一个目的是在脉冲起动期间至少减少反作用动 量。本发明还有一个目的是通过优化起动阶段的控制、特别是优化离合器的啮合来使动力 传输开始前的时间最短并因此而使机动车的加速度最小。本发明的另一个目的是能够用最 简单的可能的方式把曲轴定位成适合起动进程。本发明的另一个目的是避免齿轮箱的卡嗒 声,特别是在内燃机空转的时候。
所述目的以如下的方式根据本发明来实现,在起动进程中内燃机在离合器闭合时 被电机驱动,离合器的离合器容量至少根据至少一个限定的参数降低,所述参数优选地是 内燃机的发动机速度、电动机的电动机转速、时间、电机的转矩等等,优选地是,自动离合器 是放开的。
在带有电机的驱动系中的内燃机的起动期间,经由离合器在驱动机和内燃机之间 进行动力传输。按照目前的技术水平,离合器通常在内燃机加速进程时保持闭合直到达到 一个目标速度。尽管所述程序可保证起动,但是,需要相对较长的时间,因为只有在这之后 变速器中的一个齿轮才啮合,这样车辆的实际移动才能开始。根据本发明的方法可以节省 时间,这是因为甚至在喷射燃料开始前也可以开始分开离合器的缘故。
内燃机预先加速到一个明显大于起动进程所要求的最小速度的这样一个速度。
根据所述的发明构思,因而可以减少起动阶段的时间,从而,即使在动量被电机传 输到内燃机上之前也可以启动离合器的松压进程,且内燃机随着连续增加的滑动离合器被 持续加速。内燃机的拖曳转矩取决于曲轴的位置。一方面为了能够尽可能长的传输转矩, 另一方面为了快速放开离合器,离合进程的开始被设置在内燃机的一个活塞经过一个上止 点之后。放开的时刻可以如下方式来确定
I)通过使用叫做编码器的装置来精确地测定电机的旋转角的位置,所述电机的绝 对角度在所有时间都能被读出。当在之前在内燃机的位置传感器和电机的编码器之间进行 了校准时,该编码器可以用来得出内燃机位置的结论。这种同步或者校准由这样的方式完 成当离合器闭合且曲轴速度超过一预定最小速度的情况下,在位置传感器和用于精确测 定电机旋转角度位置的装置之间实施同步,后者被调整到适应位置传感器。
2)当电机的转矩跟随内燃机的拖曳转矩时,可以从转矩曲线推导出活塞的上止点位置。根据预定的参数,因此可以在活塞经过上止点后开始打开离合器。
在起动阶段开始前,在内燃机和电机之间的驱动系中的所有离合器都是闭合的, 因此产生了电机和内燃机之间的转动连接。如果电机与驱动轮相连接,则切断这样的连接。 然后电机以最大的转矩驱动内燃机。当达到一预定速度,例如δΟΟπ ιΓ1,在上止点位置后离合器容量被减少或者自动离合器的打开就开始了。燃料的喷射也在离合器开始打开后开始。在喷射进程开始时,发动机速度应该比一个能实现可靠的起动进程的临界速度至少大 IOOmirf1。
为了使得在自动变速系统中能以一种非常快的方式啮合第一齿轮,电机的驱动在自动离合器打开后停用或者短暂反转。或者也可以自动变速器或者与自动变速器相连的驱动系的一部分被制动,同时优选地是制动转矩由电机提供。
在内燃机的起动进程之后,离合器再度啮合,同时机动车开始加速。在内燃机的起动进程之后,所述内燃机提供很大的转矩,从而,一方面增加自己的速度,另一方面进一步使机动车加速。
根据本发明的方法使机动车加速过程前移,因此实现了明显更快的响应性能。
本发明进一步涉及一种控制机动车起动阶段的装置,所述机动车被装备有一个内燃机和一个自动离合器,所述装置被设置成触发一个电机以使内燃机从静止开始加速,所述装置进一步设置成触发自动离合器。这种装置根据本发明具有这样的特征所述装置以活塞经过上止点后离合器转矩的减少而开始。根据本发明的电动机控制装置减少了所述加速过程开始前的时间。
本发明进一步涉及一种机动车,其具有一个内燃机和一个电机,还有一在内燃机和电机之间的驱动系中的自动离合器,以及控制起动阶段的控制装置。
为了在脉冲起动过程中减少反冲动量,电机在脉冲起动过程期间以这样的方式操作其至少部分的补偿或者至少减少内燃机的反冲动量。优选地是,所述脉冲起动过程优选地是通过驱动轮产生。
主要有两种控制的可能性
I)驱动机由内燃机的拖曳转矩进行精确操作。离合器容量随着电机的转矩被精确的传送。如果为了传输电机的转矩而产生过快或过高的冲击,然后这导致了可转换 (schltbar)离合器的滑动,结果那些冲击被缓冲。这种方法当内燃机的拖曳转矩可以完全被电机补偿的时候是合适的。
2)当电机不能补偿内燃机的全部拖曳转矩时,其以一平均转矩操作。为了不允许离合器的任何永久滑动,这一转矩必须足够高。所述离合器以在所有情况下都相当于所述转矩的一容量来工作。如果冲击由气缸压缩产生,例如比离合器容量还高,因而这将导致离合器的滑动和所述冲击的缓冲。如果产生比所述平均拖曳转矩小的转矩,内燃机的动量就随之减少。
为了使动力传输开始前的时间最短,有利地是,离合器的啮合过程的启动时间设在同步时间之前。
与本发明有关的 相关发现是,在所述系统组件各自配置的情况下,所述发动机速度在同步时间比一个能成功进行起动进程的临界速度要高很多。根据本发明的方法,内燃机首先在离合器完全打开的情况下有一个加速,加速到超过起动进程要求的最低速度的第 一速度。作为接着开始离合器啮合的相应的结果,内燃机的速度降低,同时机动车的加速开 始。控制以这样的方式发生为了成功地完成起动进程,在同步时间的速度仍然足够高。这 样,内燃机将提供一额外的转矩,一方面增加所述速度,另一方面进一步加速车辆。根据本 发明的方法允许将机动车的加速进程的开始提前,因此实现一明显加快的响应性能。
当离合器的啮合进程的结束在同步时间之后时,可以实现特别平稳的起动性能。 因此,在离合器仍然具有一定的滑动的时候,实现了内燃机的第一次点火,从而,转矩冲击 的一大部分仍然在此时被离合器吸收。
根据本发明的方法的一个特别优选实施例,在起动阶段的开始时刻离合器是打开 的,换言之,在内燃机静止的时候是打开的。所述离合器在起动阶段的开始时刻也可以是闭 合的,换言之,在内燃机静止及机动车的变速器在空转位置时可以是闭合的,因此离合器在 第一时间点打开,在第二时间点一个齿轮被啮合,在第三时间点离合器的啮合进程开始,然 后在一同步时间喷射进程开始。所述方法的这种变形也是有利的,即使在长时间静止期间, 也不必将离合器保持在打开状态。
特别优选地是,在喷射进程开始时,发动机速度比一个能实现可靠的起动进程的 临界速度至少大IOOmin'这样可以保证在所有的工作条件下的可靠的起动进程。
本发明进一步涉及控制机动车起动阶段的装置,所述机动车配备有一个内燃机和 一个自动离合器,以及该装置配置成触发起动机,以便从静止加速内燃机,以配置成启动离 合器的啮合过程,以便开始起动阶段和在同步时间开始喷射过程。所述装置根据本发明具 有如下特征所述装置确定离合器的啮合时间的开始先于所述同步时间。根据本发明的发 动机控制装置减少了加速进程开始前的时间。
本发明进一步涉及一种机动车,其具有一个内燃机,一个自动离合器和控制所述 起动阶段的控制装置。本发明可以以特别有利的方式应用于被配备有一起动机发电机的机 动车。被连接在驱动系中的是一电机,该电机可以同时被用做起动机和发电机。
为了确定最佳的同步时间,特别优选地是,用于控制起动阶段的装置同时连接到 凸轮轴传感器和曲轴传感器。这样可以可靠地决定在哪个气缸发生第一次喷射和点火。
当机动车的变速器设置为自动变速器时能获得特别的优势。当变速器设置为连续 变速器时是特别有利的。如上所述,起动进程可以这样的方式执行,即,不需要驾驶者的任 何介入,在这种情况下,首先采用一个闭合离合器,其首先被打开,以便啮合一个齿轮,然后 执行实际的啮合进程。根据本发明的一个特别优选实施例,机动车被装备有一自动停车制 动装置,其与起动阶段的控制耦合。这样的自动泊车制动装置是第二制动装置,其在车辆静 止时候启动,并且持续工作直到为了起动加速进程而把足够的转矩施加到驱动系上。用这 样的一个自动停车制动装置,驾驶者不需要采取任何特别的措施,就能很容易的在倾斜的 路面上起步。
为了满足起动期间的各种载荷条件,可以适当地提供一倾斜传感器,其与控制起 动阶段的装置相连。所述倾斜传感器在纵向测量车体的倾斜程度,这样可以选择性地决定 一个起动进程必须执行上坡。
当机动车重载时提供的进一步的相关的负荷情况。在这种情况下,在离合器的啮 合进程开始后,必须希望内燃机的一更强的制动,因此啮合进程的开始必须被稍微推迟。这种情况可以通过把现在的发动机转矩和预先计算出的转矩相比较来确定,预先计算出的转矩代表车辆除了驾驶者之外是空载的、并且刚刚被移动的状态。所述转矩可以从离合器啮合开始,通过内燃机速度的下降情况来确定。由于在旅途中,车辆的负载不变或者变化很少,先前测定的值可以被用做一个估计值,直到确定了新的数值。
根据本发明的解决措施的特别优点在被配备有自动的起动一停止系统的车辆中获得。这样的自动起动一停止系统在机动车静止或者不需要转矩时关闭内燃机,而在从驾驶者那里检测到相应的需要时自动起动内燃机。
当具有用于精确检测电机的旋转角度位置的装置时,可以获得起动进程的曲轴的位置,当在离合器闭合和曲轴速度在一预定最小速度之上时发动机速度传感器和用于精确测定电机的旋转角度位置的装置之间执行了同步,所述旋转角度位置调整到适应发动机速度传感器,在同步进程后借助于用于测定电机的旋转角度位置的装置来检查和控制起始旋转位置的设定。
用于精确测定旋转位置的装置有时候在电机中被用做标准配件。它们可以由单独的位置传感器或者也可以由测定电机的旋转角度位置的非传感器方法来形成。
在根据本发明的方法中,为了在内燃机的关闭阶段测定精确的旋转曲轴位置,和在起动准备阶段监控精确的旋转曲轴位置,应用了精确测定电机的旋转位置的装置。因此就不需要其他附加的精确位置传感器。
可以设置成这样,8卩,通过电机驱动曲轴使之处于起始位置,或者优选地是通过电机制动曲轴使之处于起始位置。
为了避免内燃机空转时变速器的卡嗒声,可以根据转换箱中的状态,即拉伸的或者轴向负载,通过可变换离合器的交互作用这样地控制驱动系中的转矩即抑制驱动振荡, 且离合器优选由一离合器转矩驱动,其比内燃机的驱动转矩的转矩峰值低,所述内燃机转矩以循环方式起伏。离合器容量被弓I导成稍微高于电机的平均转矩。
转矩的逆转主要发生在压缩进程,导致电机不能跟随的曲轴制动,这是由于惯性和低产生转矩的结果。
如果离合器的容量移动成稍微高于电机的产生转矩,离合器由于压缩循环和最大化传递离合器容量,在曲轴制动的情况下,将会开始滑动,即使是在反方向。在后来的燃烧冲击中,当产生的转矩比离合器容量大的时候,离合器仍然会滑动。现有的方法不能避免内燃机和电机之间的切齿阶段的松 弛。由于最大正向和最大反向转矩之间的差值小,齿面相遇时的撞击被有效地消减,因此有效地避免了变速器的卡嗒声。
当离合器容量在压缩进程期间被减少时,获得了进一步的提高,其最理想化是达到零值,因为这样,上面提到的最大正向和最大反向转矩值之间的不同被进一步减小。


现在通过参照附图对本发明进行详细的描述,其中
图1示意性地示出了根据本发明的驱动系;
图2示出了一个驱动装置的斜视图3示出了一个变速器的轮副的示意图4示出了驱动装置的电气系统;
图5示出了一个电驱动的示意图6示出了驱动系在第五档时的转矩特性曲线;
图7示出了驱动系的转矩分布;
图8示出了在城市外的一个行驶循环,内燃机的速度;
图9示出了在城市外的一个行使循环,驱动系的油耗;
图10不出了在城市外的一个行使循环,驱动系的NOx排放量;
图11示出了在发动机的快速起动期间,驱动系的速度;
图12示出了具有电动支持的车辆的内燃机速度和车辆纵向加速度;
图13示出了没有电动支持的车辆的内燃机速度和车辆纵向加速度;
图14示出了解释本发明第一实施例的转矩图15示出了解释本发明第二实施例的转矩图16示出了解释根据本发明的方法的第三实施例的曲线图17示出了解释本发明第4实施例的曲线图18示意性地示出了根据本发明第5实施例的汽车的驱动系的必要组成部分;
图19示出了所述驱动系的第6实施例;
图20示出了一个驱动系的第7实施例;
图21不出了另外实施例的驱动系;
图22示出了转矩-时间图。
具体实施方式
为了达到预先设定的目标,包括减小油耗和排放,还包括部分相互矛盾的舒适度和操控性,必须有由包括整个驱动系组成的系统措施。图1和2示出了这样一个用于小型 和中型汽车的混合动力驱动系,其可以达到上述的目标。图1示出了混合动力驱动系统10 的整体结构。驱动系11的主要驱动源是一个内燃机12 (例如一个柴油发动机),该内燃机 相比基本动力化(Basismotorisierung)较小,且该内燃机通过自动离合器50与例如六齿 轮的自动变速器14耦合。一个电机16通过可变换离合器50a、50b(例如可变换同步离合 器)经由转换箱18与自动变速器14相连。所述电机16可以同时被用作发电机和发动机, 在所述实施例中该电机16具有约IOkW的持久动力和约持续5秒的25kW的峰值动力,并且 由具有12伏电压的电池组22和具有42伏电压的双层电容器24组成的大功率电子设备 (Leistungselektronik)触发。转换箱18可以通过电机16的一个开关一方面与自动变速 器14的驱动轴30 f禹合,另一方面与自动变速器14的输出轴32 f禹合。所述输出轴32导向 驱动轮34。与将电机16安置在内燃机12的曲轴上的布置相比,本发明的混合驱动系统10 具有自动变速器14的整个长度不要求在离合器区域延伸的优点,这对发动机在前方横向 安装的应用尤其重要。所述混合动力驱动系10的电机16是单独的、固有的可优化单元,与 自动变速器14无关。就位于曲轴上的系统来说,在异步电机情况下,对定子(位于变速器 箱体上)和转子(位于曲轴上)之间的空隙的优化尤其困难,从而有时会导致效率损失。
由处理器26、转换器28和直流电-直流电变换器(参见图4)组成的大功率电子 设备20被螺栓固定在转换箱18上。用做能量储存器的双层电容器24设置在自动变速器 14上面并固定在车体上(参见图2)。大功率电子设备20和电机16的冷却直接统一到内燃机12的冷却循环中。
所述电机16可以同时用作起动机和发电机,因此,这两个组件可以被省略。另外, 制动力可以通过电机16进行回收(补偿),所述内燃机12与其摩擦功率相耦合,在系统安 装在曲轴侧的情况下,这只能通过一第二离合器来实现。
所述混合动力驱动系统10的另外一个重要方面是电机16可以填补在变速器换档 时的牵引力中断,使得自动变速器14换档时非常顺畅。这导致与自动变频变速器的换档舒 适度相接近的换档舒适度。
选择双层电容器24而不是42V电池,这允许使电机16同时作为电动机和发电机 能在短时间具有非常高的电流。这提供了在提速和换档期间提供牵引力时以及在电容器恢 复期间的优点。双层电容器24储存的能量比电池要少,因此不要要求电机16提供长时间 的电动机操作的电动功能是较佳的。能量管理的策略因此设计成要求双层电容器24提供 尽量多、短的加载和卸载循环,双层电容器24也适合这样的目的。
所述电气系统的结构如图4所示。除电机16以外,为电气水泵36提供了 42V电 压。为其他的电气组件(空调压缩机,可变阀门调整装置等)提供电力也是可能的。所述控 制单元经由控制单元连接装置38连接到车辆的控制网络上,控制单元连接装置38导引必 要的信息和指令到内混合动力驱动系的控制网络42上,所述驱动系与发动机控制单元ECU 和变速器控制单元T⑶相连。通过所谓专用CAN(控制局域网)与大功率电子设备20进行 通信,大功率电子设备20包括处理器26、转换器28和直流电-直流电变换器29,专用CAN 由附图标记44表示。车辆的控制网络40和驱动系的控制网络42可以设置为CAN总线系 统。
在目前的情况下,内燃机12被设置为三气缸式柴油机,每个汽缸具有两个阀门, 和错流式气缸盖方案以及变量涡流系统。内燃机12具有一普通压力轨道喷射系统;一废 气再循环系统,该系统具有冷却器和电废气再循环阀;一电水泵;一电恒温调节器阀。变量 润轮几何学当做载荷概念(Aufladekonzept)被提供。
图4中的附图标记46表不12V网络,附图标记48表不42V网络。
在具有分别改善了内燃机12热力效率的举例行驶循环(例如NEDC-新欧洲行驶 循环)中的相当高的发动机负荷可以通过容积调整载荷转移(Lastenverschiebung durch Hubraumanpassung)的方式和自动变速器14获得。然而,产生的较高负荷导致了更加困难 的关于NOx排放的边界条件。然而,NOx排放基本上可以通过优化相关燃烧参数降低,所说 的参数例如活塞槽,压缩,喷嘴规格,喷嘴突出长度,AGR比率,进气活动(漩涡)以及在各 自高特定发动机载荷的边界条件之下的喷射压力和喷射起点。
图3显示了自动变速器14和转换箱18的简要布置。前进档齿轮I到6时同步的, 倒档齿轮R设置为一个滑动齿轮。
离合器50由一个放松杆通过一个电驱动离合器致动器激励。变速器的换档也以 电动方式产生。两个齿轮选择器鼓由两个齿轮架(Zahnradstufen)分别激励,因此,所述齿 轮可以被哨合和脱离。一个齿轮选择器鼓与倒档和2、4档齿轮相联系,另一个则与齿轮1、 3、5和6联系。这种换档策略保证了非常短的变速换档时间。由于相邻的齿轮处在不同的 齿轮选择器鼓上,通过同时脱离起始齿轮和啮合目标齿轮,可以获得非常短的变速器换档 时间,这在以前只由用液压传动才是可能的。双数换档(例如从5到3)可以很快速发生,因为不需要啮合一个中间齿轮。
所述电机16和自动变速器14的耦合是通过转换箱18产生的。动力流从电机16 经过两个圆柱齿轮副(Stirnradstufen)(齿轮副(Stufe) S4和S3)移动到中间轴52上,该 中间轴上被设置有齿轮副S2和齿轮副SI的变换齿轮54、56。这两变换齿轮54、56可以被 齿轮R/2/4的齿轮选择器鼓转换,因此,这样就不需要另外的激励器系统。齿轮副S2经由 驱动轴30上的第四档齿轮58与电机16相连。内燃机12例如可以在这个换档位置起动。 齿轮副SI连接电机16和输出轴31,从而允许推进、即驱动短暂输出峰值的结果是允许的。 由于电机16可以达到例如ZOOOOmirr1的转速,因而,必须特别注意齿轮的配置,特别是齿轮 副S4,以及轴承和套管的结构。
电机16和大功率电子设备20在目前的例子里连接到所述转换箱18,大功率电子 设备20包括在一个壳体内的处理器26、直流电-直流电变换器29和转换器28。这导致了 非常紧凑的布置,且一方面导致了用于引导电流和用于对电动机16和大功率电子设备20 之间的电线进行冷却的非常短的路径,另一方面导致了双层电容器24的相邻部件和发动 机冷却器之间的短路径。电气系统及接口的配置如图5所示。
一个强壮的异步电机例如适合达到电机16上的要求。关于冷却方面特别关键的 频率转换器28经由一个旁路直接连到内燃机12的冷却循环中。只有在这之后,冷却剂被 引导到热方面更加不重要的电机16。因此,冷却和紧凑配置是对转换器28的重要要求。直 流电-直流电变换器29用来耦合42V车上网络48和12V车上供电网46。其主要担任发 电机的任务。作为紧凑配置的结果,一个简单拓扑可以被实施。由于在目前的车辆概念一 般没有42V网络,现在的观念通过一个高电压总线为需求动力高的用电设备提供了一个扩 展存在的车辆家族的简单可能性。所述42V网络48也可以被限制到电机16区域本地。这 样只用来耦合转换器28和能量存储器。传感器系统60和诊断接口 62 (例如RS-232)补充 了电力驱动的特性曲线。诊断接口 62和专用CAN44可以通过车辆嵌入连接器63或者端子 15/30/CAN 相连。
与传统的驱动系相比,将电机16集成到所述的混合动力驱动系统10中提供了以 下附加功能
-内燃机12的安静、快速和降低排放的起动,
-发电机运行向车上的12V和42V车载网络供电,
-恢复(通过电力制动或内燃机猛推仿真提供的制动能量恢复),
-随着发动机的安静快速起动在空转(起-停功能)期间熄火,
-有牵引力支持的换档,
-电起动支持,
-加速推进,
-脉冲起动。
所述拓扑结构主要允许电驱动和滑行。然而,这些功能还被能量储存器所限制。
在车辆长时间静止(例如在交通灯前面)且启用脚刹车的时候,内燃机12的熄火 在行驶循环上的消耗方面具有明确的优势。在空转时熄火的功能的果断接受是内燃机12 重新起动的短暂反应时间。这意味着在刹车的松动和气动踏板的动作之间,内燃机必须起 动,这样,车辆将开始移动,而没有通常这种情况下的延迟。通过刹车压力的减少或刹车踏板的微小放松动作开始重新起动,于是电机16加速内燃机12。然后,起始齿轮被啮合,于是导致与驱动轮的正向啮合。
在本发明的混合动力驱动系统10中很高效率地使用一个自动变速器14,还可以通过换档点的自由选择,帮助在自动模式行驶周期中降低油耗。同时,通过手动模式,也给驾驶者提供了运动性方便换档的可能性。比较自动转换变速器,这样的变速器配置的唯一缺点是牵引力的短暂中断。本混合动力驱动系统10现在提供了在所述牵引力短暂停顿时通过电机16驱动车辆的可能性,从而可以非常便利的执行换档。当在满载荷换高速档时, 牵引力支持根据档位和发动机速度在30%和100%之间。这意味着在换档时的牵引力可高达在换档后牵引力的100%。特别是在从I到2和从2到3换档时,其在考虑到自动变速器的换档舒适感时是很重要的,牵引力支持比内燃机的全部速度范围还要高50%。
推进功能的目标是改善车辆的动力性和机动性。图6示出了内燃机12、电机16和可获得的总转矩Me的转矩特性曲线。内燃机12的转矩是Mb,电机16的转矩用Me表示。转矩M示出在速度η之上。
移动离开并以第一档加速对于驾驶的机动性尤其重要,其也适用于特别是在高档位的自发性。图6以示意性的方式示出了动力驱动电机16(持续操作)的转矩札曲线, 还有内燃机12的转矩特性曲线Μβ,以及输出轴32上的电机16在5档时可获得的总转矩 Mgo如图所示,与内燃机12的最大动力相对应的总转矩Me可以在已经空转速度的情况下提供。通过短暂过载电机16,对所有档位分析这样的曲线性是可能的。由于采用本系统,不可能在任何随意的时间推进,则必须提供一个最有效范围的限制。当驾驶者通过一个加速踏板要求一个相应的输出时,推进功能从起动到最大发动机转矩的速度(在本实施例中接近ZOOOmin-1)是可用的。为了避免过载变速器,来自内燃机12和电动机16的总转矩Me可以限制到内燃机12的最大动力Μβ。这给车辆提供了在工作范围内的动力性,特征是所谓的 “涡轮孔”,因此特别有利于认可和驾驶乐趣。由于这些速度范围(特别是在低档)滑过非常快,为了这个目的从双层电容器24要求的功率仍然在界限内。
所述推进功能也提供了再次消耗补偿动力,这将在下面进行更详细的说明。
在本实施例中的一个测试过的NEDC行驶周期中,具有混合动力驱动系统10的车辆的总的能量消耗大约是4. 3MJ。大约1. 3MJ在制动期间损失掉。这表示了整个周期制动能量恢复和节能的理论潜能。智能能量管理的目标是尽可能地通过恢复的制动利用这些制动损失,并可以以一种有用的方式把这些制动损失再次投入到车辆的操作过程中。考虑到 “电机的最大输出”和“能量存储器的最大电压偏移”的边界条件,在NEDC行驶周期期间可以获得大约410kJ。这个值也考虑了在实际的驾驶操作中能量管理的可用性。能量存储器的加载和卸载在NEDC行驶周期中是可精确预定的。这样当在下一段希望一个加载周期时, 可以接收一个长时期的非常低的能量水平。在实际的驾驶操作中缺乏这种知识。这就是为什么必须确保能量存储器总是保持一个最低能量储备,且确保例如在有牵引力支持的换档的所有时间可获得充足的能量储备。这意味着最大电压偏移的降低,因此在NEDC行驶周期把恢复潜能降低到大约410kJ。
为了确保存 储器的能量存量在NEDC行驶周期前后是吻合的,所补偿的能量需要在行驶周期期间消耗掉。当考虑到整个效率链,简单平行于内燃机12操作电机16是没有意义的。对NEDC行驶周期的分析显示了短暂的高加载点,然而其基本上导致了(^和勵?因此,在这些特别范围(推进),用电机16支持内燃机的12的选择策略是必然的。
图7显示了在NEDC行驶循环的一部分中,内燃机12和电机16的转矩MB、Me的总和。为了解释的更清晰,牵引力支持在换档期间被忽略。图8显示了内燃机12的速度η的相应曲线。
图9和10显示了 0)2和NOx排放的节约潜能。电动机16支持的能量输入是393KJ, 结果能量存储器在行驶周期前后基本完全平衡。目前的策略能使NOx排放大约减少15%以及CO2排放大约减少9%。曲线V。和N。显示了没有电机16支持的消耗和NOx排放,曲线Vu 和Nu显示了具有电机16支持的消耗V和NOx排放。
随着所述的制动踏板的移动,开始了发动机的快速起动,从而开始了内燃机12的更新起动的起动命令。在几乎同时,电机16的转矩累积开始,结果内燃机被加速。只要第一齿轮被啮合,驾驶准备就做好了,然后,利用电机16就可以把车开走。图11显示了内燃机12在起-停功能期间的快速起动,电机16的速度ηΕ和内燃机12的速度ηΒ在时间t上被绘出。在S点处发出起动命令。第一齿轮在T点啮合,且转矩可以传输到驱动轮上。线 G显示了档级(Gangstufe),在这种情况下,档级“9”象征了中间位置。
图12示出了在有电机16支持时的发动机速度nB和车辆的加速度a (由在滚筒实验台上测得轮速度计算而来)的曲线。附图13示出了在没有电机16支持时的发动机速度 nB和车辆的加速度a的曲线。没有电动力的支持,在换档期间(加速度a变成负的)产生了典型的牵引力中断。有了电机16的帮助,就可能提供一个持续的正向转矩并部分的补充了牵引力的中断。
为了节省燃油,内燃机可以在特定车辆状态下熄火。当车辆状态改变,内燃机又重新起动,其在一个移动的车辆中也必须是可能的。设置为一个起动机发电机的电机16的一个脉冲可以用于混合动力驱动系统10中,以便加速内燃机12和驱动轮34的脉冲。位于变速器14中的一装置是必需的,该装置用于将电机16耦合到变速器输入端,可以仅仅在达到一限定的、相对低的车辆速度(第一档)之前使用该装置。内燃机12直接经由电机16起动因此可以不必保证在一个移动的车辆上。当电机16与变速器输出端相耦合时,经由驱动轮34的脉冲的起动可以在车辆的整个速度范围内工作。然而,在这种情况下会产生一个反抗转矩,其可以通过令人烦扰的冲击的形式被车辆乘客感受到。
这个反抗转矩可以通过在电机16的效能范围内使用电机16进行补偿或者减弱。
I)电机16随内燃机12的拖曳转矩Ms被精确操作。因此,离合器50的离合器容量Mk精确地跟随动力驱动电机16的转矩Me。如果为了调整电机16的转矩Me而突然发生太快或太高的振荡,那么,这将导致离合器50的滑动,结果振荡被缓冲。当内燃机12的拖曳转矩Ms可以完全被电机16补偿时,这种方法是适合的。
2)如果电机16不能补偿内燃机12的全部拖曳转矩Ms,其将以相当于平均拖曳转矩Mm的转矩Me进行操作,为了保证离合器50不持续滑动,所述转矩Me必须足够大。离合器50以容量Mk进行操作,其也与所述平均拖曳转矩Mm相当。如果振荡动由气缸压缩产生, 例如其比离合器容量仏大,那么这样将导致离合器50的滑动来缓冲所述振荡。如果产生的转矩比平均拖曳转矩Mm小,电机16的转矩就会相应地减少。
在混合动力驱动系统10中的内燃机12的起动中,动力传输经由离合器50在电机 16和内燃机12之间产生。根据目前的技术水平,内燃机12将被加速直到达到 目标速度,且离合器50是闭合的。这虽然提供了安全驱动,但其需要一段相当长的时间。
这个时间可以通过甚至当一个转矩正被电机16传输时开始打开离合器50、并且通过随着离合器50的逐渐增加滑动而继续使内燃机12加速来缩短。内燃机12的拖曳转矩取决于曲轴的位置。为了一方面尽可能长时间的传输转矩,另一方面快速地打开离合器 50,离合进程的开始被移动到内燃机12的一个上止点。因此,打开转矩可以下面两种方式来决定
I)通过使用一种叫做编码器的装置来精确测定电机16的旋转角度位置,就可以随时读出电机16的绝对角度。当在之前对内燃机12的位置传感器和电机16的编码器之间进行了校准时,这个编码器可以被用来得出对内燃机12的位置的结论。这种对内燃机12 的位置传感器和电机16的编码器之间进行的校准以这样的方式进行当离合器50闭合和曲轴速度在一预定最小速度之上的情况下,在内燃机12的位置传感器和电机16的编码器之间实施一同步操作,后者被调整到适应位置传感器。
2)当电机16的转矩Me跟随内燃机12的拖曳转矩Ms时,可以从电机16的转矩曲线Me中导出活塞的上止点位置。
图16的曲线图显示了在时间t上的发动机速度η。在时间t = O时,内燃机处在静止状态,假设一旦检测到驾驶者发出的例如以踩下加速踏板的方式表明的相应要求时, 就发出起动内燃机和驾驶离开的信号。内燃机101的速度η随着起动机的起动开始增加。 一旦达到一预定的速度Ii1,离合器102开始啮合,且开始把转矩传输到驱动轮104上。一个驱动转矩经由滑动离合器102从内燃机101传输到轮102上。内燃机101的速度η通过转矩传输最后降低到值η2,但其被驱动系控制的一个合适装置保持在为起动阶段所选的水平。值112将总是处在最小速度nmin之上,并且一般总是在空转速度之上。保证通过系统功效的可预测性,所述值不会落在最小速度nmin之下。
第一次喷射在时间ts开始,其处在时间tsyn。之后一点,内燃机101于是开始提供正向转矩。离合器102的哨合进程在时间完成,其处在时间tsyn。之后,于是,一个直接的动力传输产生了。
图17的方法的实施例与图16在这些地方不同离合器最初被啮合直到时间tlt) 变速器处在空档位置,所以没有动力传输。离合器在时间h和t2之间打开,所以可以给一个控制命令到自动变速器,让该自动变速器去啮合第一个齿轮。从时间tes开始,所述方法模拟图16的方式进行。
在图17的t-n图下的曲线示出了离合器的动作过程,ο表示打开状态,e表示啮合状态。
图18示意性地显示了根据本发明第一实施例的机动车的驱动系的主要组成部分。一个内燃机101经由一个自动离合器102与自动变速器103相连。所述变`速器103经由一个驱动系(这里用附图标记110来表示)来驱动驱动轮(这里用104示意性地表示)。 在离合器102的上游提供了一个曲轴起动机发电机109,所述发电机用尤其是为了起动内燃机101。另一个离合器112可选择地配备在内燃机101和曲轴起动机发电机109之间,从而允许车辆的纯粹电动操作。这个实施例同时适合根据图16的方法和根据图17的方法。
在图19的实施例中,起动机发电机109设置为与变速器103并联。一个第一带驱动器105设置在变速器103的上游,一个第二带驱动器106设置在变速器103的下游。带驱动器105和106经由离合器107和108与电机109相连,所述电机用做一个起动机发电机。在变速器103的相应配置下,也可能把离合器107和108设置为同步环或者用同步环替代它们。
由于离合器102设置在带驱动器105的上游,因而,只有根据图17的方法可以适用这样的实施例。通过在时间t2打开离合器102,从起动机发电机109到内燃机的转矩传输中断,所以速度η在时间t2后开始下降。
对本领域的技术人员来说,显然,通过相应的改动,也可能以一个类似的实施例来执行根据图16的方法。
图20示出了一个内燃机201,其经由一个曲轴202和一个可转换离合器203连接到一个驱动系204,在驱动系204中设置了一个变速器205。一个电机206可选择地与变速器205连接,所述电机可选择地可操作地连接到变速器输入轴210或者变速器输出轴207。 内燃机201、离合器203、变速器205和电机206这样的设置在混合动力车辆中经常应用。
为了监控曲轴202的速度,一个速度传感器208例如被设置在飞轮的区域,所述传感器可以仅从曲轴202的一个预定最小速度、例如每分钟100转来检测曲轴202的旋转位置。
提供了一个高精确度位置传感器209或者一个无传感器方法,来检测或监控电机 206的旋转角度的精确位置。因此,所述旋转角度的位置可以以大约O. 5°的曲柄角度的精确度进行测定。这样的位置传感器或者无传感器方法在设置为多相电机的电机中作为一种标准应用。
为了在内燃机201熄火后可以快速起动,在起动准备阶段,曲轴202被带到一个预定的起始旋转位置。因为在喷射和点燃燃料之前,曲轴202就被带到一个精确的预定起始旋转位置,所以,一方面发动机的电子系统可以快速同步,另一方面内燃机可以优化起动, 以便尽可能快的克服第一次压缩阶段。为了实现这些,根据本发明的方法,曲轴202的旋转角度的位置通过电机206的位置传感器209或者无传感器方法来监视,以测定旋转角度的位置。然而,先决条件是在这之前,调整所述位置传感器209或者所述无传感器方法以适应该曲轴位置。这由速度传感器208执行,该速度传感器作为一个测量曲轴速度的标准。在第一步检查离合器203是否已经闭合。如果不是,带来这样的状态和带来曲轴202和驱动系204和电机206之间的一个刚性旋转连接,同时从驱动轮切断所述驱动系。还要检查曲轴202的速度是否处在一个最小速度之上,这样速度传感器208可以被用来测定所述 位置。 当这两个先决条件被满足(离合器203闭合和曲轴202的速度高于最小速度)时,位置传感器209或者无传感器方法被调整到适应速度传感器28,从而完成同步。这个过程,只要求几分之一秒到几秒,可以在内燃机201熄火后和惯性运转期间进行。
在起动准备阶段,其可以在熄火后或者仅在接近起动前执行,在电机206和位置传感器209的帮助下,曲轴202被带到预定起始旋转位置。这可以通过电机206对曲轴202 的有效驱动,或者特别是在内燃机201熄火后,通过特别是在电机206的帮助下把曲轴202 制动到预定起始位置而发生。
因此,在无需附加的精确位置传感器的情况下,也可以有一个曲轴202的高精确度起始准备位置和非常快的起动进程。
图21示出了一个具有一个内燃机301的驱动系310,该内燃机作用于一个驱动轴302。驱动轴302经由一个转换箱303进一步连接到电机304上,该电机被设置为一个侧置 起动机发电机。一个可变换离合器305设置在内燃机301和转换箱303之间。尤其在机器 空转时,转换箱303中发出卡嗒声,这起因于内燃机301的压缩和燃烧振动。
图22示出了一个曲线图,图中表示出了在时间t上的转矩M。内燃机301的驱动 转矩Mb、离合器容量Mk和电机304的平均转矩Me都在图里表示出来了。变速器的卡嗒声来 自内燃机301的压缩和燃烧振动。可以通过以这样的方式操作离合器305来减少变速器的 卡嗒声内燃机301的转矩Mb的转矩峰值被截断,如虚线所示。当离合器容量Mk设置到稍 微高于电机的平均矩Me是特别有优势的。离合器转矩Mk可以比内燃机的转矩Mb小。
权利要求
1.一种起动车辆内燃机的方法,内燃机的曲轴通过至少一个可分离的离合器连接到包含一个变速器的驱动系上,所述驱动系包括至少一个电机,由所述电机在起动准备阶段将内燃机的曲轴带到一预定起始旋转位置,曲轴的角度速度和角度位置在操作过程中由一个车辆速度传感器测定,其特征在于提供了一个用于精确测定电机的旋转角度位置的装置,所述速度传感器和用于精确测定电机旋转角度位置的装置之间的同步在离合器闭合并且曲轴速度在一个预定最小速度之上时执行,使所述装置被调整到适应所述速度传感器,在同步进程后,通过用于测定电机旋转角度位置的装置来检查和控制起始旋转位置的设定。
2.一种根据权利要求1所述的方法,其特征在于用于测定所述旋转角度位置的装置由所述电机的一个位置传感器形成。
3.一种根据权利要求1所述的方法,其特征在于用于测定所述旋转角度位置的装置 由一个无传感器进程形成。
4.一种根据权利要求1所述的方法,其特征在于所述曲轴由所述电机驱动,以便处于所述起始位置。
5.一种根据权利要求1所述的方法,其特征在于所述曲轴被制动,以便处于所述起始位置。
6.一种根据权利要求5所述的方法,其特征在于所述曲轴被所述电机制动。
7.一种用于执行根据权利要求1-6之一所述的方法的起动装置,内燃机(201)的曲轴(202)经由一个可分离的离合器(203)连接到一包括一变速器(205)的驱动系(204),所述驱动系包含至少一个电机(206),具有一个用于测定曲轴速度的速度传感器(208),其特征在于电机(206)配备有一个用于测定所述旋转角度位置的装置,在曲轴(202)旋转和离合器(203)闭合的情况下,用于测定电机(206)的旋转角度位置的装置可以与速度传感器(208)同步,且在一个起动准备阶段曲轴(202)可以在用于测定所述电机(206)的旋转角度位置的装置的监督下,被所述电机带到一个预定的起始旋转位置。
8.一种根据权利要求7所述的装置,其特征在于用于测定所述旋转角度位置的装置由所述电机(206)的位置传感器(209)形成。
9.一种根据权利要求7所述的装置,其特征在于用于测定所述旋转角度位置的装置由一个无传感器进程形成。
全文摘要
本发明涉及一种控制机动车起动阶段的方法,所述机动车由一个内燃机(12)驱动。所述内燃机(12)由一个电机(16)起动,所述电机可以被用作一电动机,且优选地是,在内燃机(12)和电机(16)之间的驱动系(11)里有一个自动离合器(50)。如果内燃机(12)在起动阶段中当离合器(50)啮合时由电机(16)驱动,且如果离合器容量(MK)根据一限定参数降低,那么,就可以获得一个更为快速的起动响应,所述参数优选为发动机速度、时间或者电机(16)的转矩(ME)或其它类似的参数。
文档编号B60K6/387GK103047070SQ20121013576
公开日2013年4月17日 申请日期2005年4月14日 优先权日2004年4月16日
发明者M·瑟尤费尔特, F·瑟尤勒纳尔, R·里齐特, J·格莱特哈尔, R·泰尔勒, V·德吉欧亚, R·克莱恩, J·瓦格纳, R·施奈德, G·吉利亚斯, P·伊贝纳, S·斯特欧博 申请人:Avl里斯脱有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1