车辆的制作方法与工艺

文档序号:13094764阅读:159来源:国知局
技术领域本发明涉及车辆,更特别地涉及包括再生制动器和摩擦制动器的车辆。

背景技术:
日本专利No.3438242描述了电动车辆。电动车辆包括通过在车辆减速期间将能量转换为电能而改进燃料消耗的制动器系统。在通过驾驶员的制动器踏板操作而使用再生制动和摩擦制动使车辆减速的同时,启动防抱死(anti-lock)制动器系统的情况下,制动器系统使再生制动的比例减小。在再生制动和摩擦制动两者均被使用的状态中,为了获得大制动力,需要将制动力从再生制动切换到摩擦制动。为了抑制总制动力的改变,优选地逐渐执行该制动力的切换。因此,当为了改进燃料消耗的目的而以大比例启动再生制动时,存在制动力的切换费时的不便。另一方面,存在一种已知的基于除了驾驶员的制动器踏板操作之外的车辆的运行状态,执行自动制动器控制以便生成制动力的系统。该系统主要是在没有检测到驾驶员制动器踏板操作的情况下,为了避免危险而使用。因此,由驾驶员的操作引起的制动和由系统引起的制动之间所期望的制动并不相同;然而,日本专利No.3438242中描述的制动器系统并没有考虑到这一点。

技术实现要素:
本发明提供一种于自动制动器控制期间能够减少制动距离的车辆。本发明的一个方面是提供一种车辆。车辆包括制动器操作检测器、摩擦制动器、再生制动器及电子控制单元(ECU)。制动器操作检测器被配置为检测驾驶员的制动器操作量。ECU被配置为:(a)通过控制摩擦制动器和再生制动器而控制车辆中产生的总制动力;(b)基于制动器操作量而执行用于控制车辆的制动力的第一制动器控制;(c)基于制动器操作量判定驾驶员的制动器操作是否正被进行;(d)当ECU判定驾驶员的制动器操作未被执行时,响应于除制动器操作量以外的车辆的状况,执行用于自动地控制车辆的制动力的第二制动器控制;以及(e)与当第一制动器控制被执行时相比,当第二制动器控制被执行时,减小再生制动器的制动力在总制动力内的比例。当再生制动器的制动力的比例高时,有利于减小燃料消耗。另一方面,当再生制动器的制动力的比例低时,因为在以摩擦制动器的制动力替换再生制动器的制动力的处理中替换量变小,所以可控性高,并且有可能减小制动距离。根据以上方面,在第一制动器控制期间(在正常制动器控制期间),通过重视燃料消耗而大大地确保再生量;然而,在第二制动器控制期间(在自动制动器控制期间)通过减小再生量,有可能通过重视可控性而减小制动距离。在以上方面中,ECU可以被配置为执行:响应于对车辆的停止要求而控制总制动力以停止车辆的停止控制,或者响应于对车辆的减速要求而控制总制动力以减速车辆的减速控制,作为第二制动器控制。ECU可以被配置为,当减速控制被执行时,通过使用再生制动器和摩擦制动器两者而控制总制动力。ECU可以被配置为,当停止控制被执行时,控制再生制动器的制动力在总制动力内的比例为0。根据以上方面,当停止控制被执行时,从一开始再生制动器的制动力的比例就被设定为零,所以在停止的时候不需要将制动力从再生制动器切换到摩擦制动器,并且有可能减小制动距离。另一方面,当减速控制被执行时,不需要重视制动距离,所以通过进行再生也有可能改进燃料消耗。在以上方面中,ECU可以包括被配置为互相通信的第一ECU和第二ECU。第一ECU可以被配置为产生停止要求。第一ECU可以被配置为计算需要的制动力,并且在执行第一制动器控制时基于制动器操作量而控制摩擦制动器。第二ECU可以被配置为,计算由再生制动器产生的再生制动力,并且响应于从第一ECU接收的指令而将再生制动力发送回到第一ECU。第一ECU可以被配置为,当产生停止要求时,控制摩擦制动器,而不管来自第二ECU的响应为何。根据以上方面,第一ECU执行制动器在第二制动器控制(自动制动器控制)期间执行制动器控制,而无需等待来自第二ECU的响应,所以有可能在第二制动器控制期间,减小对应于由与再生制动器的协调控制所造成的通信延迟的控制时间。在以上方面中,车辆可以进一步包括车辆周边情况检测器。车辆周边情况检测器可以被配置为检测前方车辆的减速及具有与车辆碰撞的可能性的碰撞物体。ECU可以被配置为,当车辆周边情况检测器在车辆跟随行驶期间检测到前方车辆已减速时,产生减速要求。ECU可以被配置为,当车辆周边情况检测器检测到具有与车辆碰撞的可能性的碰撞物体时,产生停止要求。车辆周边情况检测器可以包括车间传感器和被配置为监测车辆前方的情况形的摄像机。根据本发明,有可能在自动制动器控制期间减小制动距离,同时通过使用再生制动器尽可能地改进燃料消耗。附图说明本发明的示例性实施例的特点、优点、以及技术和工业意义将参照附图描述如下,其中相同的标号指示相同的元件,且在附图中:图1为示出根据实施例的车辆的主要配置的方框图;图2为用于说明对制动器ECU控制的流程图;图3为在正常时期(当自动制动器处于关闭状态时)制动器控制的操作波形图;图4为当撞前制动器被启动时(当发出停止要求时)制动器控制的操作波形图;以及图5为当在自动巡航控制期间发出减速要求时制动器控制的操作波形图。具体实施方式下文中将参照附图详细描述本发明的实施例。在图中相同的参考标号指示相同的或对应的部分,并且其描述将不做重复。包括制动器系统的车辆的概要描述图1为示出根据实施例的车辆的主要配置的方框图。如图1所示,根据本实施例的车辆10包括制动器踏板341(制动器操作单元)、摩擦制动器358、再生制动器及控制单元20。制动器踏板341由驾驶员来操作。再生制动器使用电动发电机MG2。控制单元20通过使用摩擦制动器358和再生制动器来控制车辆10中产生的总制动力。控制单元20执行正常制动器控制或自动制动器控制。在正常制动器控制中,车辆基于制动器踏板341的操作量而被制动。在自动制动器控制中,车辆被自动地制动。在制动器踏板341不被操作的情况下,当控制单元20开始自动制动器控制时,控制单元20执行控制以使再生制动器的制动力在总制动力内的比例比正常制动器控制被执行的情况更小。当再生制动器的制动力的比例高时,有利于减少燃料消耗。另一方面,当再生制动器的制动力的比例低时,因为在以摩擦制动器358的制动力替换再生制动器的制动力的处理中替换量变小,所以可控性高并且有可能减小制动距离。采用以上配置,在正常制动器控制期间,通过重视燃料消耗而大大地确保再生量,并且在自动制动器控制期间,通过重视可控性有可能减小制动距离。优选地,自动制动器控制包括停止控制和减速控制。如图4所示,响应于对车辆的停止要求,开始停止控制。如图5所示,响应于对车辆的减速要求,开始减速控制。当控制单元20执行减速控制时,如图5中从时间t21到时间t23所示,控制单元20通过使用再生制动器和摩擦制动器两者而产生总制动力。当控制单元20执行停止控制时,如图4中时间t1所示,控制单元20将再生制动器的制动力在总制动力内的比例设定为0。采用以上配置,因为在停止控制期间从一开始再生制动器的制动力的比例被设定为0,不需要以摩擦制动器的制动力来替换再生制动器的制动力,所以有可能减小制动距离。更优选,控制单元20包括驾驶支持电子控制单元(ECU)330(判定单元)、制动器ECU340(制动器控制单元)及HV-ECU320(再生控制单元)。驾驶支持ECU330产生停止要求。制动器ECU340在正常制动器控制期间通过检测制动器踏板341的操作量而计算需要的制动力,并且控制摩擦制动器358。一经接收需要的制动力,HV-ECU320确定摩擦制动器358和再生制动器之间产生的制动力的比例,并且响应于来自制动器ECU340的指令,将有关由再生制动器产生的制动力的信息(例如,比例)传送回到制动器ECU340。当制动器ECU340已从驾驶支持ECU330接收到停止要求时,制动器ECU340启动摩擦制动器358,而不管来自HV-ECU320的响应为何。采用以上配置,制动器ECU340在自动制动器控制期间执行制动器控制,而无需等待来自HV-ECU320的指令。因此,在自动制动器控制期间,有可能减小对应于由与再生制动器的协调控制而造成的通信的延迟的控制时间。更优选,如图5所示,当在前方车辆跟随行驶期间,控制单元20检测到前方车辆已减速时,控制单元20产生减速要求。如图4所示,当控制单元20检测到具有与车辆碰撞的可能性的碰撞物体时,控制单元20产生停止要求。下面将进一步详细描述车辆10的部件。(车辆10的详细配置)其中车辆为混合动力车辆的示例将在以下实施例中描述。然而,车辆也可以为混合动力车辆、电动车辆和燃料电池车辆中的任何一种。根据本发明实施例的混合动力车辆的控制方框图将参照图1来描述。混合动力车辆10包括内燃发动机(下文中被称为发动机)120及电动发电机MG1、MG2。内燃发动机120用作驱动源。电动发电机MG1、MG2用作转动电机(electricmachines)。在以下的描述中,电动发电机MG1被称为发电机MG1,而电动发电机MG2被称为电动机MG2。然而,根据混合动力车辆10的行驶状态,发电机MG1起电动机的作用,或者电动机MG2起发电机的作用。发动机120包括多个气缸和燃料喷射装置。每个燃料喷射装置为多个气缸中的对应一个气缸提供燃料。每个燃料喷射装置基于来自发动机ECU280的燃料喷射控制信号,在合适的时机以合适的量向对应的气缸喷射燃料。进气量、电子节气门开度等等被输入到发动机ECU280。进气量由空气流量计(未示出)来检测。电子节气门开度由节气门位置传感器来检测。指示发动机冷却剂温度的信号从冷却剂温度检测传感器输入到发动机ECU280。冷却剂温度检测传感器检测发动机120的冷却剂的温度。曲柄位置传感器被设置于发动机120的输出轴上。指示输出轴的转动速度的信号从曲柄位置传感器输入到发动机ECU280。混合动力车辆10进一步包括减速齿轮180及动力分配机构200。减速齿轮180将由发动机120、电动发电机MG1或电动发电机MG2产生的动力传送到驱动轮160,或者将驱动轮160的转动力传送到发动机120、电动发电机MG1或电动发电机MG2。动力分配机构200例如是行星齿轮系,并且将由发动机120产生的动力分配到两条路径,也就是,驱动轮160(也就是电动机MG2)和发电机MG1。例如,行星齿轮系的太阳轮被连接到发电机MG1,导轮被连接到发动机120,以及环形齿轮被连接到电动机MG2。变速机构可以被设置于环形齿轮和电动机MG2之间。混合动力车辆10进一步包括驱动电池220和逆变器240。驱动电池220为电动发电机MG1、MG2提供驱动电力。电容器等可以替代驱动电池,被用作蓄电装置。在驱动电池220的直流电与各个发电机MG1和电动机MG2的交流电之间的转换时,逆变器240执行电流控制。混合动力车辆10包括电池控制单元(下文中被称为电池ECU)260、发动机ECU280、MG-ECU300和HV-ECU320。电池ECU260管理和控制驱动电池220的充电或放电状态。发动机ECU280控制发动机120的操作状态。MG-ECU300根据混合动力车辆10的状态控制电池ECU260、逆变器240等等。HV-ECU320以协调的方式管理和控制电池ECU260、发动机ECU280、MG-ECU300、制动器ECU340等等,并且控制整个混合动力系统,以使混合动力车辆10能够以最高效率运行。加速器位置传感器346和变速位置传感器344被连接到HV-ECU320。加速器位置传感器346检测加速器踏板345的位置。变速位置传感器344检测变速杆343的位置。变速位置传感器344传送变速位置信号到HV-ECU320。变速位置信号指示变速杆343的位置。转换器242被设置在驱动电池220和逆变器240之间。转换器242根据车辆速度使驱动电池220的电压步增,并且将步增的电压输出到逆变器240。混合动力车辆10进一步包括驾驶支持ECU330、制动器ECU340和摩擦制动器358。驾驶支持ECU330执行巡航控制或撞前安全控制。巡航控制为用于以相同的速度跟随前方车辆的控制。撞前安全控制为当检测到碰撞物体时用于启动自动制动器控制的控制。驾驶支持ECU330从车间传感器332及捕捉车辆周边环境的摄像机334接收指示车辆周围情况的信号,并且从巡航控制开关333接收驾驶员的巡航控制启动要求。驾驶支持ECU330基于接收的车间距离和由摄像机334获取的视频或图像而执行巡航控制或撞前安全控制。摩擦制动器358包括制动盘(brakerotor)352、制动钳(brakecaliper)354和制动致动器(brakeactuator)350。制动盘352被固定到对应的驱动轮160的转动轴上,并且与对应的驱动轮160一起转动。制动钳354被设置以便通过使用液压压力以平行于转动轴的方向夹入(sandwich)制动盘352。制动致动器350基于来自制动器ECU340的控制信号使用螺线管等来调节提供到制动钳354的液压压力。轮速传感器356被连接到制动器ECU340。轮速传感器356检测对应的驱动轮160的转速。轮速传感器356将指示对应的驱动轮160的转速的信号传送到制动器ECU340。此外,制动器踏板行程传感器342被连接到制动器ECU340。制动器踏板行程传感器342检测制动器踏板341的操作量。制动器踏板行程传感器342将指示制动器踏板341的操作量的信号传送到制动器ECU340。可以使用检测驾驶员对制动器踏板341的下压力(depressionforce)的下压力检测传感器(例如,主气缸压力传感器)来替代制动器踏板行程传感器342。制动器ECU340基于接收的制动器踏板341的操作量来计算对应于驾驶员意图的总制动力(总制动力)。计算总制动力,以使其增加与制动器踏板341的操作量的增加成比例。通过将由摩擦制动器358产生的摩擦制动力(液压制动力)与由电动发电机MG2的再生扭矩产生的再生制动力(电制动力)的结合,来协作地确保总制动力。例如,当制动器ECU340接收制动器踏板341的操作量时,制动器ECU340计算总制动力,并且根据制动器踏板341的操作量将再生制动力的所需值设定成级别。制动器ECU340将设定的再生制动力的所需值传送到HV-ECU320。HV-ECU320根据接收的再生制动力的所需值、驱动电池220的充电状态、再生制动是否受限等等来确定将要产生的再生制动力,并且对电动机MG2执行再生控制,从而实现确定的再生制动力。HV-ECU320将确定的再生制动力传送到制动器ECU340。制动器ECU340控制制动致动器350以使对于总制动力不足的量(不包括发动机制动器的制动力和确定的再生制动力)通过使用摩擦制动器358而产生的摩擦制动力而被确保。在图1中,控制单元20的ECU单独形成;替代的,集成两个或更多ECU的ECU也可以被包括在内。加速器踏板345被设置于驾驶员座椅处,并且加速器位置传感器346检测加速器踏板345的下压量。加速器位置传感器346将指示加速器踏板345的下压量的信号输出到HV-ECU320。HV-ECU320根据对应于下压量的需要的驱动力,控制发动机120的输出或者经由发电机MG1、电动机MG2和发动机ECU280而产生的电力量。为了向驱动轮160和发电机MG1两者分配发动机120的动力,行星齿轮系被用作动力分配机构200。通过控制发电机MG1的转速,动力分配机构200也起无级变速机(continuouslyvariabletransmission)的作用。在安装有图1所示的混合动力系统的混合动力车辆10中,在发动机120的效率低的情况下,例如,在车辆启动时或在低速行驶期间,混合动力车辆10仅由电动发电机MG1、MG2中的电动机MG2推进;反之,在正常行驶中,例如,通过动力分配机构200将发动机120的动力分配为两条路径,驱动轮160通过路径中的一条路径被直接驱动,并且发电机MG1通过路径中的另一条路径被驱动以产生电力。在这时,通过以将要产生的电力来驱动电动机MG2,来辅助驱动轮160的转动。在高速行驶期间,进一步通过采用来自驱动电池220的电力对电动机MG2供电,电动机MG2的输出被增大,并且对驱动轮160增加驱动力。另一方面,在减速期间或在制动操作期间,由驱动轮160驱动的电动机MG2起发电机的作用以使电力再生,并且重新获得的电力被储存在驱动电池220中。当驱动电池220的充电量降低并且特别需要充电时,通过增加发动机120的输出而使由发电机MG1产生的电力的量增加,因而增加驱动电池220的充电量。当然,即使在低速行驶期间,必要时存在用于执行增加发动机120的驱动力的控制的情况。例如,这是如上所述需要驱动电池220充电的情况、诸如空调的辅助设备被驱动的情况、发动机120的冷却剂的温度升高到预定的温度的情况等。此外,在安装有图1所示的混合动力系统的混合动力车辆10中,取决于车辆的操作状态和驱动电池220的状态,为了改进燃料消耗,发动机120被停止。其后,检测车辆的操作状态和驱动电池220的状态,并且通过使用发电机MG1而重新启动发动机120。图2为用于说明制动器ECU340的控制的流程图。流程图的处理以一定时间间隔或在每次满足预定状态时由主路径调用并且被执行。如图1和图2所示,当流程图的处理开始时,在步骤S1中首先检查对于自动制动器控制的要求。驾驶支持ECU330基于由车间传感器332检测的车间信息、由监测车辆前方(或周边)情况的摄像机334捕捉的视频、巡航控制开关333的设定等,确定对自动制动器控制的要求,并且经由控制器局域网络(CAN)将确定的要求传送到制动器ECU340或HV-ECU320。例如,对自动制动器控制的要求包括需要的制动力的大小,不论要求是减速要求还是停止要求等。在步骤S1中,制动器ECU340接收从驾驶支持ECU330传送的要求,并且检查要求。随后,在步骤S2中,制动器ECU340计算驾驶员需要的车辆减速力。具体地,制动器ECU340从制动器踏板行程传感器342接收驾驶员的制动器踏板341的操作量。制动器ECU340基于操作量来计算驾驶员需要的减速力。在步骤S3中,制动器ECU340计算自动制动器或驾驶员的减速要求所需要的制动力。在步骤S4中,制动器ECU340判定是否存在对自动制动器的要求。具体地,在步骤S1中,判定在从驾驶支持ECU330传送的要求中是否存在执行自动制动器控制的要求。执行自动制动器控制的要求包括减速要求和停止要求。当驾驶支持ECU330在前方车辆跟随行驶期间检测到前方车辆已减速时,如图5所示,驾驶支持ECU330产生减速要求。当驾驶支持ECU330检测到具有与车辆碰撞的可能性的碰撞物体时,如图4所示,驾驶支持ECU330产生停止要求。当在步骤S4中不存在执行自动制动器控制的要求时,处理进行到步骤S6,并且制动器ECU340将再生要求级别设定为“高”。当在步骤S4中存在执行自动制动器控制的要求时,制动器ECU340判定在步骤S5中执行自动制动器控制的要求为减速要求还是停止要求。当在步骤S5中执行自动制动器控制的要求为减速要求时,处理进行到步骤S7,并且制动器ECU340将再生要求级别设定为“低”(级别低于步骤S6的再生要求级别)。当在步骤S6或步骤S7中设定再生要求级别时,处理进行到步骤S8,并且制动器ECU340将再生要求级别传送到HV-ECU320。在步骤S9中,制动器ECU340从HV-ECU320接收回允许具有传送的再生要求级别的再生制动(或可再生等级)。制动器ECU340确定通过从总制动力减去再生制动力而获得的剩余制动力,作为由摩擦制动器358共享的制动力。另一方面,在步骤S5中,当执行自动制动器控制的要求为停止要求时,处理进行到步骤S10,并且制动器ECU340将再生要求级别设定为0(无再生)。在步骤S11中,制动器ECU340将无再生被执行传送到HV-ECU320。在这种情况下,因为由摩擦制动器358共享的制动力为总制动力,所以处理进行到步骤S10,而无需等待步骤S9中来自HV-ECU320的响应。当在步骤S9中来自HV-ECU320的可再生级别的接收已完成时,或者在步骤S11中无再生被执行的信息的传送已完成时,处理进行到步骤S12。在步骤S12中,制动致动器350被操作,从而产生由摩擦制动器358共享的制动力。下文中,在正常时期每种控制(当发出停止要求时的控制及当发出减速要求时的控制)的示例将参照对应的一张波形图来描述。图3为在正常时期(当自动制动器控制处于关闭状态时)制动器控制的操作波形图。驾驶支持ECU330不发出执行自动制动器控制的要求的情况将参照图1和图3来描述。在时间t1,响应于驾驶员开始压下制动器踏板341的事实,将操作量从制动器踏板行程传感器342输入到制动器ECU340。因为操作量已从0增加,驾驶员制动要求从关闭状态改变到开启状态。制动器ECU340基于操作量来计算总制动力和再生要求级别,并且经由CAN将再生要求级别传送到HV-ECU320。当再生被允许时,HV-ECU320将再生被允许传送到制动器ECU340。例如,当驱动电池220的SOC已达到上限值时或者当驱动电池220的温度不是适当的温度时,HV-ECU320将再生不被允许传送到制动器ECU340。图3示出再生被允许的情况。从时间t1到时间t2,由再生制动器产生具有预定比例的再生制动力,并且剩余部分(摩擦制动力)通过从由摩擦制动器产生的总制动力减去再生制动力而获得。那之后,当在时间t2之前检测到车轮中的任何一个打滑时,朝向时间t2执行以摩擦制动的制动力替换再生制动的制动力。在时间t2和时间t3之间,防抱死制动器系统(ABS)被启动,并且制动力被调节。在时间t3,车辆停止。图4为当撞前制动器被启动时(当发出停止要求时)制动器控制的操作波形图。将参照图1和图4来描述驾驶支持ECU330输出停止要求作为执行自动制动器控制的要求的情况。在时间t11,驾驶支持ECU330响应于碰撞物体的检测,将停止要求输出到制动器ECU340。制动器ECU340在时间t11检测到停止要求已经从关闭状态改变到开启状态。作为结果,制动器ECU340确定无再生被执行(再生要求级别被设定为0),并且经由CAN将无再生被执行传送到HV-ECU320。HV-ECU320不执行再生制动。因而,在时间t11之后总制动力完全为摩擦制动力,并且由摩擦制动器产生。在此之后,即使当在时间t12之前检测到车轮中的任何一个打滑时,因为从一开始就确定了无再生被执行,所以不需要以摩擦制动的制动力来替换再生制动的制动力。因为不需要替换,所以有可能迅速启动ABS。在时间t12和时间t13之间,防抱死制动器系统(ABS)被启动,并且制动力被调节。在时间t13,车辆停止。混合动力车辆或电动车辆意在通过在制动期间执行再生制动尽可能地增加能量效率。然而,如果再生扭矩在制动期间被过度增加,则存在制动距离延长的情况。特别地,在这种ABS被启动的突然制动期间,可以预期再生制动力一旦被以液压制动力完全地替换,则ABS被启动。这是因为采用电动机的ABS控制困难,反之,使用摩擦制动器的ABS控制已经被建立,并且因此应用容易。尽管不可能预先获取所有突然制动的情况,但预先已知车辆甚至在制动开始时就意图停止,例如,以撞前控制检测到碰撞物体时。在这样的情况下,即使牺牲燃料消耗,也最好改进制动的性能。在本实施例中,当发出自动制动器控制的停止要求时,从制动的开始仅以摩擦制动器(液压制动器)执行ABS控制。作为结果,因为不存在从再生制动器到摩擦制动器的改变,所以有可能减小在制动器ECU(需要的制动力由制动器行程检测,及需要再生的份额)、HV-ECU(是否允许再生作为响应被传送)和制动器ECU(液压压力的份额的液压制动控制)之间通信的改变时需要的时间。因而,在本实施例中,通过执行如图2和图4所示的控制,改进在紧急自动停止时的制动性能。图5为在自动巡航控制期间当发出减速要求时制动器控制的操作波形图。将参照图1和图5来描述驾驶支持ECU330输出减速要求作为执行自动制动器控制的要求的情况。在时间t21,当驾驶支持ECU330检测到车辆正在跟随的前方车辆的减速时,驾驶支持ECU330将减速要求输出到制动器ECU340。在时间t21,制动器ECU340检测到减速要求已经从关闭状态改变到开启状态。结果是,制动器ECU340确定具有比图4所示的再生要求级别低的比例的再生要求级别,并且经由CAN将再生要求级别传送到HV-ECU320。当再生被允许时,HV-ECU320将再生被允许传送回到制动器ECU340。例如,当驱动电池220的SOC已达到上限值时或者当驱动电池220的温度不是适当的温度时,HV-ECU320将再生不被允许传送回到制动器ECU340。图5示出再生被允许的情况。从时间t21到时间t23,由再生制动器产生具有预定比例的再生制动力,并且由摩擦制动器产生通过从总制动力减去再生制动力而获得的剩余部分(摩擦制动力)。随后,从时间t22到时间t23,响应于在时间t22减速要求从开启状态变到关闭状态的事实使制动力降低到0,在时间t23减速完成,并且以与前方车辆相同的车辆速度继续跟随行驶。当由车间传感器332和驾驶支持ECU330获取车间距离时,如果在当前方车辆接近车辆时再生制动力的比例被预先抑制,则在突然制动期间转变成液压制动所需的时间可被缩短。例如,可预想以下两点作为原因。1)摩擦制动力的增大速率取决于制动致动器350的性能(例如,执行液压控制的电磁阀)。摩擦制动力仅能够以某一斜率而增大。仅为此目的而利用具有高性能的执行器会导致高成本。2)在从再生制动器到液压制动器的转变中,存在担心:当每个制动器的比例在极短时间中急剧地被增大或降低时,如果控制时机偏离,则总制动力显著地波动。因而,优选为转变花费时间。在紧急停止可能发生的情形(例如,在跟随行驶期间前方车辆的接近)被检测到的情况下,有可能通过预先设定再生制动力的比例在短时间内完成从再生制动到摩擦制动的转变,所以甚至当发生紧急停止时也有可能迅速启动ABS。在本实施例中,制动器踏板行程传感器342对应于“制动器操作检测器”。正常制动器控制对应于“第一制动器控制”。自动制动器控制对应于“第二制动器控制”。制动器ECU340、HV-ECU320和驾驶支持ECU330对应于“ECU”。这些当中,制动器ECU340对应于“第一ECU”,HV-ECU320对应于“第二ECU”。车间传感器332和摄像机334对应于“车辆周边情况检测器”。在本实施例中,说明了制动器ECU340执行确定再生/摩擦制动的比例的处理的情况。作为替换,由制动器ECU340确定的总制动力可以被传送到HV-ECU320,并且可以由HV-ECU320执行确定再生/摩擦制动的比例的处理。同样在这种情况下,获得类似的有益效果。以上描述的实施例从各个方面都只应被看作示例性的而非限制性的。本发明的范围由随附的权利要求限定,而不是以上实施例的说明。本发明的范围旨在包含在随附的权利要求及其等同物的范围内的所有修改。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1