动力传递装置及其控制装置的制作方法

文档序号:15466483发布日期:2018-09-18 19:25阅读:147来源:国知局

本发明涉及具备发动机、发电机及电动机的动力传递装置及其控制装置。



背景技术:

专利文献1记载了一种具备混合动力驱动装置和四速自动变速器的混合动力车用的动力传动系。该混合动力驱动装置构成为将发动机和发电机与差动机构连结,通过电动机对发动机转速进行控制并将发动机转矩放大而从差动机构输出,另外通过由发电机发电产生的电力来驱动电动机而将电动机的输出转矩加到从差动机构输出的转矩上。该发电机和电动机与蓄电装置电连接,构成为在由发电机发电产生的电力量比由电动机消耗的电力量多的情况下,将剩余的电力充入蓄电装置。另外,在专利文献1记载的装置中,使设置在电动机的输出侧的离合器滑移来消耗剩余的能量。

在先技术文献

专利文献

专利文献1:日本特开2014-113895号公报



技术实现要素:

发明要解决的课题

若通过使离合器滑移来消耗剩余能量,则发电机的发电量的制约与该消耗能量的量相应地减少,因此发动机的输出的抑制得以缓和而能够通过发电机来补偿转矩的降低。然而,在如专利文献1记载那样通过离合器的摩擦来消耗能量的情况下,该能量会成为热,因此离合器的温度会升高而其耐久性可能会降低。另外,若为了维持离合器的耐久性而对发电机的发电量进行限制,则除了发动机的输出的限制之外,还会对发电机的转矩进行限制,因此用于使车辆行驶的驱动转矩可能会不足。

本发明着眼于上述的技术问题而完成,目的在于提供一种控制装置,即使在充电受到限制的情况下,也能够不会导致动力传递装置的耐久性的降低等不良情况而能够良好地控制驱动转矩。

用于解决课题的方案

为了实现上述的目的,本发明是一种动力传递装置的控制装置,通过差动机构将发动机输出的动力分配到驱动轮侧和发电机侧,并且利用由所述发电机产生的电力来驱动电动机并将所述电动机的转矩朝向所述驱动轮输出,且能够将由所述发电机产生的电力的至少一部分充入蓄电装置,其特征在于,所述电动机配置在从传动路径偏离的位置,所述传动路径是经由所述差动机构将所述发动机的动力向所述驱动轮传递的路径,在所述电动机与所述传动路径之间配置有液力偶合器,所述动力传递装置的控制装置构成为:在由所述发电机发电产生的电力向所述蓄电装置的充入受到限制的情况下,通过一边使所述液力偶合器差动一边利用所述电力驱动所述电动机,来产生动力损失。

此外,“发电产生的电力向所述蓄电装置的充入受到限制的情况”包括由于蓄电装置中已经充入的电力多而可充电电力值小于预先确定的规定值从而充电受到限制的情况、虽然可充电电力值大但是为了满足要求驱动力而控制发电机时的发电电力会超过可充电电力值的情况等。

本发明中,可以构成为:以使所述发动机输出的功率中无法充入所述蓄电装置的功率与通过所述液力偶合器的差动而消耗的功率相等的方式控制所述电动机的转矩。

另外,本发明中,可以构成为:在所述发动机正在输出规定的功率的情况下,以使经由所述传动路径向所述驱动轮传递的转矩与经由所述液力偶合器向所述传动路径传递的转矩之和成为最大的方式控制所述电动机的转矩。

本发明中,所述传动路径可以包括通过至少三个旋转要素来实现差动作用的动力分配机构,所述差动机构构成为,在所述旋转要素中,第一旋转要素被输入所述发动机的转矩,第二旋转要素与所述发电机连结,第三旋转要素作为输出要素,从所述电动机经由所述液力偶合器而在从所述第三旋转要素向所述驱动轮传递的转矩上叠加转矩。

另外,为了实现上述的目的,本发明是一种动力传递装置,通过差动机构将发动机输出的动力分配到驱动轮侧和发电机侧,并且利用由所述发电机产生的电力来驱动电动机并将所述电动机的转矩朝向所述驱动轮输出,且能够将由所述发电机产生的电力的至少一部分充入蓄电装置,其特征在于,所述电动机配置在从传动路径偏离的位置,所述传动路径是经由所述差动机构将所述发动机的动力向所述驱动轮传递的路径,在所述电动机与所述传动路径之间配置有液力偶合器。

发明效果

根据本发明,在驱动发动机的状态下由发电机产生的电力向蓄电装置的充入受到限制的情况下,使电动机的转速增大并通过液力偶合器消耗动力,因此发电机的发电和/或发电机的反力转矩的限制得以缓和。因此,经由差动机构输出的发动机转矩足够大。

这种情况下,通过以使无法充入蓄电装置的剩余的功率与损失功率相等的方式控制电动机的转矩,能够抑制过度地消耗功率的情况。

另外,在发动机正在输出规定的功率的状态下,以使向驱动轮传递的发动机转矩与经由液力偶合器向驱动轮传递的电动机的转矩之和成为最大的方式控制液力偶合器的差动量和电动机的输出转矩,因此能够充分确保行驶用的驱动转矩。

附图说明

图1是表示作为本发明的控制装置的控制对象的动力传递装置(混合动力车)的齿轮系的一例的示意图。

图2是用于说明该混合动力车的控制系统的框图。

图3是将该混合动力车的各行驶模式下的第一离合器、第二离合器和制动器的卡合及释放的状态以及各电动发电机的功能汇总表示的图表。

图4是表示混合动力模式下的动作状态的列线图。

图5是用于说明由本发明的控制装置执行的控制的一例的流程图。

图6是表示功率及转矩的平衡的关系的线图。

图7是表示用于说明由本发明的实施例的控制装置执行的运算的模型的图。

图8是用于说明求出发动机和第二电动发电机的目标转矩的控制的一例的流程图。

图9是表示第二电动发电机的转矩与发动机功率及直接传达转矩之间的关系的图。

图10是表示在为混合动力模式下的起步做准备而处于停车时由本发明的控制装置进行了控制的情况下的第二电动发电机的转速和锁止离合器的液压等的变化的时间图。

标号说明

20…发动机,21…超速传动机构,22…动力分配机构,23…第一电动发电机(MG1),31…驱动轮,32…第二电动发电机,33…液力偶合器,CL…锁止离合器,35…泵轮,36…涡轮,40…逆变器,41…蓄电装置,42…电源部,43…电动发电机用电子控制装置(MG-ECU),44…发动机用电子控制装置(ENG-ECU),45…混合动力用电子控制装置(HV-ECU),L…传动路径。

具体实施方式

图1示出了由本发明的控制装置控制的混合动力车中的动力传递装置的齿轮系的一例,在与发动机(ENG)20相同的轴线上,从发动机20侧起依次配置有超速传动机构21、动力分配机构22、第一电动发电机(MG1)23。发动机20是汽油发动机、柴油发动机等内燃机。超速传动机构21是用于使输出转速与发动机转速相比增大的机构,在图1所示的例子中,由单小齿轮型的行星齿轮机构构成。因此,超速传动机构21具备太阳轮S21、相对于太阳轮S21配置在同心圆上的齿圈R21、以及将与太阳轮S21及齿圈R21啮合的小齿轮保持为能够自转和公转的齿轮架C21。在该齿轮架C21上连结有从发动机20接受动力传递的输入轴24。另外,设有将太阳轮S21和齿轮架C21选择性地连结的第一离合器C1、以及将太阳轮S21选择性地固定的制动器B1。因此,通过使离合器C1卡合,会成为超速传动机构21的整体成为一体而旋转的所谓直接连结级(低),超速传动机构21中的变速比成为“1”。相对于此,若使制动器B1卡合而使太阳轮S21的旋转停止,则齿圈R21的转速变得比齿轮架C21高,成为变速比小于“1”的所谓超速传动级(高)。另外,若使第一离合器C1及制动器B1均卡合,则超速传动机构21的整体被固定,发动机20的旋转也停止。而且,若使第一离合器C1及制动器B1均释放,则太阳轮S21成为自由旋转状态,因此超速传动机构21不进行转矩传递。

上述的齿圈R21是输出要素,向动力分配机构22传递动力。在图1所示的例子中,动力分配机构22由单小齿轮型的行星齿轮机构构成,相当于本发明的实施例中的差动机构。因此,动力分配机构22具备太阳轮S22、相对于太阳轮S22配置在同心圆上的齿圈R22、将与太阳轮S22及齿圈R22啮合的小齿轮保持为能够自转和公转的齿轮架C22这三个旋转要素。在该齿轮架C22上连结有超速传动机构21的齿圈R21。动力分配机构22的输出要素是齿圈R22,在齿圈R22上连结有输出齿轮25。在太阳轮S22上连结有第一电动发电机23,太阳轮S22成为反力要素。第一电动发电机23相当于本发明的实施例中的发电机。

太阳轮S22与太阳轮轴一体化,输入轴24能够旋转地贯通该太阳轮轴的内部。并且,设有将输入轴24和太阳轮S22选择性地连结的第二离合器CS。如后所述,该第二离合器CS是用于设定串联模式的离合器。

与输入轴24平行地配置有副轴26,从动齿轮27和驱动齿轮28以一体旋转的方式设于该副轴26。前述的输出齿轮25与该从动齿轮27啮合。另外,作为最终减速器的差动齿轮装置29中的齿圈30与驱动齿轮28啮合。驱动力从差动齿轮装置29向左右的驱动轮31传递。由这些从动齿轮27及驱动齿轮28构成的齿轮列构成了减速机构。从上述的输出齿轮25经由副轴26及差动齿轮29向驱动轮31传递动力的路径L相当于本发明的实施例中的传动路径。此外,在图1中,为了作图的方便,将驱动齿轮28及差动齿轮29的位置改变到了图1中的右侧。

相当于本发明的实施例中的电动机的第二电动发电机32与输入轴24及副轴26平行地配置。而且,在与第二电动发电机32相同的轴线上配置液力偶合器33。该液力偶合器33具备锁止离合器CL。因此,第二电动发电机32和液力偶合器33设置在从前述的传动路径偏离的位置。液力偶合器33中,使作为驱动侧构件的泵轮35与作为从动侧构件的涡轮36相对配置,构成为通过将由泵轮35产生的流体(或油)的螺旋流向涡轮36供给,而在泵轮35与涡轮36之间传递转矩。锁止离合器CL相对于上述泵轮35和涡轮36并联地配置。并且,该泵轮35与第二电动发电机32连结。另外,与涡轮36一体的涡轮轴37贯通第二电动发电机32的中心部而向所述从动齿轮27侧延伸。并且,在涡轮轴37安装有与从动齿轮27啮合的其他的驱动齿轮38。

锁止离合器CL是将泵轮35或与泵轮35一体的构件和涡轮36或与涡轮36一体的构件机械性地连结而传递转矩的离合器,由通过液压控制而传递转矩容量连续地变化的离合器构成。此外,与锁止离合器CL串联地设置有阻尼器39。另外,液力偶合器33及锁止离合器CL可以是以往已知的带锁止离合器的变矩器。

发动机20输出的动力(功率)由前述的动力分配机构22分配到第一电动发电机23侧和输出齿轮25侧。这种情况下,第一电动发电机23通过作为发电机发挥功能而向太阳轮S22赋予反力转矩。其结果是,发动机转矩由动力分配机构22放大而从输出齿轮25输出。有时将该发动机转矩称为直接传达转矩,直接传达转矩经由所述传动路径L向驱动轮31传递。换言之,发动机20输出的转矩不会作用于液力偶合器33,因此可以使液力偶合器33为容量小的小型偶合器。

由第一电动发电机23产生的电力向第二电动发电机32供给而第二电动发电机32作为马达发挥功能,其输出转矩在所述从动齿轮27处与从输出齿轮25输出的转矩叠加。因此,各电动发电机23、32经由包含逆变器40和蓄电装置41的电源部42而电连接。此外,作为一例,这些电动发电机23、32由三相同步电动机构成。

在图2中用框图示出了上述的混合动力车的控制系统。设有对各电动发电机23、32进行控制的电动发电机用电子控制装置(MG-ECU)43和对发动机20进行控制的发动机用电子控制装置(ENG-ECU)44。这些电子控制装置43、44以微型计算机为主体而构成,且构成为基于输入的各种信号或数据进行运算,并输出其运算结果作为控制指令信号。MG-ECU43构成为主要控制第一电动发电机23及第二电动发电机32各自的电流(MG1电流、MG2电流)。另外,ENG-ECU44构成为主要对发动机20输出指示其电子节气门(未图示)的开度的电子节气门开度信号和指示点火及其正时的点火信号。

设有对这些电子控制装置43、44输出指令信号,且一并进行前述的各离合器C1、CS、CL和制动器B1的卡合及释放的控制和传递转矩容量的控制的混合动力用电子控制装置(HV-ECU)45。该HV-ECU45与前述的各电子控制装置43、44同样,以微型计算机为主体而构成,且构成为基于输入的各种信号或数据进行运算,并输出其运算结果作为控制指令信号。若例示该输入的数据,则有车速、加速器开度、第一电动发电机(MG1)的转速传感器的检测数据、第二电动发电机(MG2)的转速传感器的检测数据、输出轴(例如所述副轴26)的转速传感器的检测数据、充电剩余量(SOC)、来自越野开关的信号等。另外,若例示输出的指令信号,则向所述MG-ECU43输出第一电动发电机(MG1)的转矩指令及第二电动发电机(MG2)的转矩指令,向所述ENG-ECU44输出发动机转矩指令。而且,从HV-ECU45还输出各离合器C1、CS、CL及制动器B1的控制液压PbC1、PbCS、PbCL、PbB1。此外,上述的各ECU43、44、45构成了控制器。

通过使上述的各电动发电机23、32作为马达或发电机发挥功能,并将各离合器C1、CS和制动器B1控制成卡合或释放的状态,来设定各种行驶模式。在图3中汇总示出了行驶模式。混合动力模式(HV)是由发动机20和各电动发电机23、32产生驱动力来行驶的模式,能够选择并联模式和串联模式。并联模式下的前进中,能够进行将前述的超速传动机构21设定为超速传动级(高)的行驶和将其设定为直接连结级(低)的行驶。超速传动级通过仅使制动器B1卡合来设定,这种情况下,第一电动发电机23作为发电机(G)发挥功能而将发动机20的转速控制成燃料经济性良好的转速。由第一电动发电机23产生的电力向第二电动发电机32供给而第二电动发电机32作为马达(M)发挥功能。相对于此,直接连结级通过仅使第一离合器C1卡合来设定,这种情况下的各电动发电机23、32的功能与以超速传动级行驶的情况是同样的。

图4示出了以混合动力模式行驶的情况下的构成超速传动机构21的行星齿轮机构及构成动力分配机构22的行星齿轮机构的列线图。图4的左侧是关于超速传动机构21的列线图,右侧是关于动力分配机构22的列线图。在前进时,通过制动器B1将太阳轮S21固定,齿轮架C21通过发动机20而旋转,因此齿圈R21以比发动机转速高的速度旋转。即,成为变速比小于“1”的超速传动级。在动力分配机构22中,齿轮架C22与超速传动机构21中的齿圈R21一起旋转,其转矩成为正向(发动机20的旋转方向)的转矩。在该状态下,第一电动发电机23作为发电机发挥功能,其负向(阻止旋转的方向)的转矩作用于太阳轮S22,与之相伴的正向的转矩作用于齿圈R22。即,发动机20的动力被分配到太阳轮S22侧和齿圈R22侧。并且,由第一电动发电机23发电的电力向第二电动发电机32供给而第二电动发电机32作为马达发挥功能,因此其转矩与从所述齿圈R22输出的转矩叠加而朝向驱动轮31输出。在图4中由虚线示出了利用超速传动机构21设定了直接连结级的情况下的动作状态。此外,后退行驶以如下方式来进行:利用发动机20输出的动力使第一电动发电机23旋转而发电,并利用该电力使第二电动发电机32向负的旋转方向作为马达发挥功能。

串联模式是通过如下方式来行驶的模式:利用发动机20将第一电动发电机23作为发电机而驱动,并利用其电力将第二电动发电机32作为马达而驱动。因此,通过仅使第二离合器CS卡合,而将发动机20的动力向第一电动发电机23传递,第一电动发电机23作为发电机(G)发挥功能。另外,第二电动发电机32接受由第一电动发电机23产生的电力而作为马达(M)发挥功能,正旋转而进行前进行驶,另外向负向旋转而进行后退行驶。

EV模式是不使用发动机20的动力而利用蓄电装置的电力进行行驶的模式,因此,车辆作为电动汽车(EV:Electric Car)而行驶。由于第二电动发电机32经由液力偶合器33或锁止离合器CL而与驱动轮37连结,所以在EV模式下,主要是第二电动发电机32作为驱动力源进行动作,在驱动力或制动力不足的情况下并用第一电动发电机23。即,能够实现仅使用第二电动发电机32的单驱动模式和使用双方的电动发电机23、32的双驱动模式。

在单驱动模式下,仅第二电动发电机32作为驱动力源进行动作,因此各离合器C1、CS及制动器B1释放,另外,第一电动发电机23不进行特别的控制而既不进行动力运行也不进行再生。并且,第二电动发电机32在驱动时作为马达(M)发挥功能,在制动时作为发电机(G)发挥功能。在与再生相伴的制动力不足的情况下,使第一离合器C1和制动器B1中的至少任一方卡合。另外,各电动发电机23、32作为发电机(G)发挥功能,与发电相伴的负转矩作为制动力发挥作用。

双驱动模式是第一离合器C1及制动器B1卡合且各电动发电机23、32都作为马达(M)进行动作的行驶模式。超速传动机构21中,第一离合器C1卡合而使得超速传动机构21整体一体化,通过在该状态下制动器B1卡合,超速传动机构21整体的旋转被阻止。因此,与其齿圈R21连结的动力分配机构22的齿轮架C22被固定,在该状态下,第一电动发电机23向负旋转方向作为马达进行动作。因此,第一电动发电机23的转矩从齿圈R22作为正旋转方向的转矩而输出。另外,第二电动发电机32向正旋转方向作为马达进行动作。因此,第二电动发电机32的转矩与从输出齿轮25输出的转矩叠加。在后退时,各电动发电机23、32的转矩的方向与前进时相反。

在以混合动力模式行驶的情况下,第一电动发电机23作为发电机发挥功能而向太阳轮S22赋予反力转矩,从发动机20向齿轮架C22输入的转矩与构成动力分配机构22的行星齿轮机构的齿数比(齿圈R22的齿数与太阳轮S22的齿数之比)相应地被放大并从输出齿轮25朝向驱动轮31输出。因此,在第一电动发电机23的反力转矩小的情况下,从输出齿轮25输出的发动机转矩减小。第一电动发电机23通过发电而产生反力转矩,因此当发电受到限制时,反力转矩减小。发电受到限制的一例是蓄电装置41的充电量(SOC)足够多而达到了预先确定的上限值的所谓充满电或接近于充满电的充电状态的情况。在这样的状态下,为了确保驱动转矩,本发明的控制装置执行以下说明的控制。

图5是用于说明该控制例的流程图。该控制例程由前述的HV-ECU45在发动机20正在输出动力的情况下每隔规定的短时间而反复执行。在例程开始后,首先判断向蓄电装置41的充电是否受到了限制(步骤S1)。该判断例如通过将向HV-ECU45输入的SOC与预先存储的基准值比较来进行即可。在由于蓄电装置41成为了所谓的充满电或接近于充满电的状态而在步骤S1中作出了肯定判断的情况下,算出第二电动发电机32的目标转矩Tm_tgt、发动机20的目标转矩Te_tgt、以及锁止离合器CL的滑移量(即液力偶合器33的差动量)(步骤S2)。以下对其算出例进行说明。

在图6中示出了驱动发动机20而从停车状态起步的情况下的功率及转矩的平衡的关系。发动机20的转速Ne及功率Pe_real为规定的值,且为比要求功率Pe_dem大的输出。在蓄电装置41的充电量具有余裕的情况下,该功率之差作为蓄电池功率Pbat而被用来充电。该蓄电池功率Pbat是向蓄电装置41充电的功率Win。另一方面,发动机20输出的转矩由超速传动机构21和动力分配机构22进行增减而朝向驱动轮31输出,该转矩是直接传达转矩Te’。另外,通过对第二电动发电机32供给由第一电动发电机23发电产生的电力,第二电动发电机32输出转矩Tm,因此由发动机20及第二电动发电机32实现的输出转矩Tout成为将所述直接传达转矩Te’与第二电动发电机32的转矩Tm相加而得到的转矩(Tm+Te’)。此外,在具有图1所示的结构的动力传动系中,第二电动发电机32的转矩Tm是涡轮36的转矩Tturbin。

发动机转速Ne随着车速V的增大而增大,由此,实际功率Pe_real与要求功率Pe_dem之差即剩余功率逐渐减少,最终成为零。在该过程中,只要能够向蓄电装置41充电,就能够得到期望的输出转矩Tout。此外,要求功率Pe_dem基于加速器开度等要求驱动量、车速以及预先准备的映射等,与以往已知的驱动力控制同样地求出。相对于此,在存在充电限制的情况下,会对剩余功率进行限制,因此发动机20的直接传达转矩Te’受到限制而输出转矩Tout产生不足。因此,本发明的实施例的控制装置通过将蓄电装置41无法收容(充入)的功率作为损失而消耗,来确保输出转矩Tout。

图7示出了用于说明由本发明的实施例的控制装置执行的运算的模型,发动机20输出的功率Pe是转速Ne与转矩Te之积(Ne×Te),基于该功率Pe的直接传达转矩Te’经由从动齿轮27向副轴26以及驱动轮31传递。另一方面,第一电动发电机23由发动机20驱动而发电,该电力向蓄电装置41和/或第二电动发电机32供给。第二电动发电机32利用被供给的电力而作为马达进行动作,输出转矩Tm。在锁止离合器CL释放的状态下,在泵轮35的转速Nfin与涡轮36的转速Nfout之间会产生转速差。此外,泵轮35的转矩Tpump是液力偶合器33的容量系数τ与转速Nfin的平方之积(τ×Nfin2),涡轮36的转矩Tturbin是容量系数τ与转速Nfout的平方之积(τ×Nfout2)。该涡轮36的转矩从所述驱动齿轮38向从动齿轮27或副轴26传递,与所述直接传达转矩Te’叠加而成为输出转矩Nout。此外,输出转速由Nout表示。并且,通过泵轮35和涡轮36的相对旋转,会产生与油的剪切、搅拌相伴的动力损失,并且会产生与该损失功率Ploss相应的热。即,将蓄电装置41无法收容的所谓剩余功率作为损失功率Ploss而消耗。

这种情况下,液力偶合器33处的所谓滑动或差动转速越大,则损失功率Ploss越大,但另一方面,从液力偶合器33输出的转矩即涡轮转矩Tturbin减小,从而成为输出转矩Tout的降低要因。因此,以使蓄电装置41无法收容的剩余功率与由液力偶合器33消耗的功率相等的方式,控制锁止离合器CL的滑移量、发动机20的转矩Te以及第二电动发电机32的转矩Tm。在图8中由流程图示出了该控制例。

图8所示的例程是在前述的图5中的步骤S2中执行的副例程,首先,求出第二电动发电机32的转矩Tm(步骤S21)。第二电动发电机32的转矩Tm通过使第二电动发电机32的转矩Tm从零开始逐渐增大,使初次值Tm(0)为零,将执行图8的例程的每一循环的预先确定的增大量ΔTm与上次值Tm(i)相加而算出。

Tm(i+1)=Tm(i)+ΔTm

另一方面,算出直接传达转矩Te’(步骤S22)。直接传达转矩Te’通过从要求的输出转矩Tout_dem减去第二电动发电机32的转矩Tm而求出。此外,要求输出转矩Tout_dem通过基于加速器开度等要求驱动量和车速求出要求功率,然后根据该要求功率和车速而求出。

Te’(i+1)=Tout_dem-Tm(i+1)

接下来,根据发动机转矩Te(i+1)和实际发动机转速Ne_real算出发动机功率Pe(i+1)(步骤S23)。在此,发动机转矩Te(i+1)基于上述的直接传达转矩Te’(i+1)和所述动力分配机构22及传动路径L中的齿数比而求出。另外,实际发动机转速Ne_real可以基于车速V、加速器开度以及预先准备的映射等求出。

Pe(i+1)=Te(i+1)×Ne_real

上述的发动机功率Pe(i+1)中,除去能够充入蓄电装置41的功率(电力量)Win之后的剩余功率是要求的损失功率Ploss,因此进行该运算而算出要求损失功率Ploss_dem(步骤S24)。

Ploss_dem(i+1)=Pe(i+1)+Win

此外,能够充入的功率Win在上述的式子中为负的值。

判断实际损失功率Ploss_real(i+1)与上述的要求损失功率Ploss_dem是否大致相等(步骤S25)。该判断可以是实际损失功率Ploss_real(i+1)与要求损失功率Ploss_dem之差是否小于预先确定的基准值的判断。另外,实际损失功率Ploss_real(i+1)可以通过以下的运算来求出。

Ploss=τNfin2·Nfin-τNfin2·Nfout=τNfin2(Nfin-e·Nin)=τNm3 (1-e)

此外,Nfin=Nm(第二电动发电机32的转速),另外,e是液力偶合器33中的速度比,e=Nfout/Nfin。因此,涡轮36的转速Nfout可根据车速而求出,另外,第二电动发电机32的转矩Tm是在图8的步骤S21中决定的值,因此可求出实际损失功率Ploss。

在由于损失功率Ploss的要求值与实际值之差还比较大而在上述的步骤S25中作出了否定判断的情况下,将计数值i加一(i+1)(步骤S26)。之后,返回步骤S21。与之相反,在步骤S25中作出了肯定判断的情况下,通过该时刻的第二电动发电机32的转矩Tm和液力偶合器33的速度比e,能够大致满足要求损失功率Ploss_dem。因此,将该时刻的第二电动发电机32的转矩Tm(i)设定为目标转矩Tm_tgt,另外,将该时刻的发动机转矩Te(i)设定为目标发动机转矩Te_tgt(步骤S27)。

在图5所示的例程中,以实现如上述那样求出的各目标转矩的方式控制第二电动发电机32及发动机20,另外,以实现上述的速度比e的方式控制锁止离合器CL的滑移量(步骤S23)。换言之,以使得成为实现所需的损失功率的速度比的方式对锁止离合器CL的液压进行反馈控制即可。此外,在图1所示的例程中,在由于没有进行充电限制而在步骤S1中作出了否定判断的情况下,将锁止离合器CL控制成卡合状态(步骤S4)。

如上述的步骤S22所示,若第二电动发电机32的转矩Tm增大而损失功率Ploss较多,则直接传达转矩Te’变小而输出转矩Tout不足,且能量的损失增大。另外,相反,若第二电动发电机32的转矩Tm减小而损失功率Ploss变少,则需要为了减少剩余功率而降低发动机功率,伴随于此,输出转矩Tout降低。相对于此,在上述的本发明的实施例的控制中,将无法充入蓄电装置41的剩余功率全部作为损失功率而由液力偶合器33消耗。在蓄电装置41的蓄电池功率Win为零的情况下,发动机功率中用于发电的功率(用于行驶的所谓直接传达功率以外的功率)全部由液力偶合器33消耗。

若对该关系进行图示,则如图9所示。直接传达转矩Te’随着第二电动发电机32的转矩Tm的增大而降低,另外,同样,与直接传达转矩Te’对应的发动机功率Pe也随着第二电动发电机32的转矩Tm的增大而降低。相对于此,损失功率Ploss随着第二电动发电机32的转矩Tm的增大而增大。此外,在能够向蓄电装置41充电的情况下,该充电功率(所述蓄电池功率)Win与该损失功率Ploss相加,该值也随着第二电动发电机32的增大而增大。

在前述的图8所示的控制例中,由于使第二电动发电机32的转矩Tm逐渐增大,所以最初损失功率Ploss(或者将其加上蓄电池功率Win所得到的功率)为小的值,因此,蓄电装置41无法收容而剩余的剩余功率如单点划线所示,为大的值。随着第二电动发电机32的转矩Tm增大,损失功率Ploss(或将其加上蓄电池功率Win所得到的功率)增大,并且剩余功率逐渐减少。其结果是,最终两者一致。这在图8所示的控制例中是在步骤S25中作出肯定判断的状态。因此,该损失功率Ploss(或者将其加上蓄电池功率Win所得到的功率)与剩余功率一致的动作点(图9中由○标记表示的点)的转矩被设为第二电动发电机32的目标转矩Tm_tgt。并且,在该动作点处,直接传达转矩Te’与第二电动发电机32的转矩Tm之和成为最大。

此外,在以上的实施例中,为了简化说明,通过第一电动发电机23的发电能量和由液力偶合器33损失(消耗)的能量来计算能量收支。在本发明中,并不局限于此,实际上,由第一电动发电机23发电的电力不仅由液力偶合器33消耗,也因第一电动发电机23的动作所引起的损失而消耗,另外还因控制各电动发电机23、32的逆变器等的电路中的损失而消耗,因此,在本发明中,可以考虑这些能量消耗而算出最终应由液力偶合器33消耗的能量。

另外,上述的图8所示的控制例是通过使第二电动发电机32的转矩逐渐增大而求出上述的D点的例子,但是在本发明的实施例的控制装置中,也可以与之相反而使第二电动发电机32的转矩Tm最初足够大,并从该状态起逐渐减小转矩Tm而求出上述的D点的转矩。

在图10中作为时间图而示出了进行了上述的图1所示的控制的情况下的发动机转速、发动机转矩、各电动发电机23、32的转速和转矩、锁止离合器CL的液压等的变化。在发动机20以怠速转速等规定的转速旋转且车辆停止的状态下,第一电动发电机23作为发电机发挥功能。由于车辆停止,所以第二电动发电机32处于停止,其转矩被设定为规定的小转矩。因此,由第一电动发电机23产生的电力的一部分被第二电动发电机32消耗,大部分被充入蓄电装置41,为此,SOC逐渐增加。当SOC达到了作为比表示充满电状态的值小的值而预先设定的规定的阈值时(t1时刻),第二电动发电机32的转矩增大,电力的消耗量逐渐增大。而且,由于车辆停止,因此超速传动机构21为直接连结级(低)。即,第一离合器C1的液压被控制成规定的压力而第一离合器C1卡合,且制动器B1的液压被控制为零而制动器B1释放。

在该期间也进行蓄电装置41的充电从而SOC增大,当该SOC达到了接近于充满电的预先确定的值α时(t2时刻),开始液力偶合器33的滑移控制。具体而言,使锁止离合器CL的液压逐渐降低而锁止离合器CL开始滑移,第二电动发电机32开始旋转。此外,第二电动发电机32的转矩维持为该时刻的转矩。另外,能量的消耗量因第二电动发电机32旋转而增大,因此使第一电动发电机23的转速增大,另外也使其转矩(阻止旋转的方向的负转矩)增大。而且,以满足驱动要求量的方式控制发动机20的转速及转矩(即功率)。

然后,当SOC更接近充满电状态时(例如SOC的当前值与充满电值之差成为规定值以下时)(t3时刻),锁止离合器CL的液压被设定为预先确定的最低压而液力偶合器33的滑移量被设定为规定的最大值。另外,发动机20的转速和转矩以及第一电动发电机23的转速和转矩维持为该时刻的转速和转矩。SOC在该时刻也继续增大,因此第二电动发电机32一边维持转速一边使转矩增大,消耗由第一电动发电机23发电产生的电力。然后,当成为了第一电动发电机23发电产生的电力全部由第二电动发电机32消耗的状态时(t4时刻),第二电动发电机32的转矩维持为该时刻的转矩。

根据本发明的实施例的控制装置,通过进行上述的控制,能够实现第一电动发电机23的发电及与之相伴的反力转矩的产生,伴随于此,能够充分增大所谓直接传达转矩Te’。即,第一电动发电机23产生的电力通过使液力偶合器33产生差动旋转并使第二电动发电机32旋转而消耗,因此能够利用第二电动发电机32输出的转矩作为驱动转矩。尤其是,由于以使直接传达转矩Te’与第二电动发电机32的转矩Tm之和成为最大的方式进行控制,因此能够得到与驱动要求量相应的必要充分的驱动力。另外,通过在从将直接传达转矩Te’向驱动轮31传递的传动路径偏离的位置设置第二电动发电机32及液力偶合器33,来自发动机20的直接传达转矩Te’不会作用于液力偶合器33,因此能够使液力偶合器33为容量小的小型偶合器。而且,即使将剩余的能量作为损失能量Ploss消耗而产生热,也是液力偶合器33的油自身进行发热,而且,由于该油在液力偶合器33与未图示的油冷却器等之间循环而将热向外部输送,因此能够避免或抑制由热引起的耐久性的降低。

此外,在本发明中作为对象的混合动力车概括而言是具备发动机、发电机、与上述发动机和发电机连结的动力分配机构、电动机、设置在电动机与驱动轮之间的偶合器的混合动力车,并不局限于具备图1所示的结构的齿轮系的混合动力车。例如,也可以不具备前述的超速传动机构。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1