用于运行混动车辆的驱动系的方法以及混动车辆的驱动系与流程

文档序号:16509250发布日期:2019-01-05 09:13阅读:145来源:国知局
用于运行混动车辆的驱动系的方法以及混动车辆的驱动系与流程

本发明涉及一种用于运行混动车辆的驱动系的方法。此外,本发明还涉及一种根据权利要求11前序部分所述的驱动系以及根据权利要求12的前序部分所述的驱动系。



背景技术:

混动车辆的这种驱动系也被称为p3驱动系,其中,型号p3表示电动机的位置,即该电动机通过离合器能够与内燃机分离,并且与输入轴或者输出轴或者与变速器必要时会设置的中间轴抗扭连接。

为了在电动行驶模式下启动静止的内燃机,必须首先将内燃机加速到最低启动转速,以便随后能够借助燃料供给和燃料点火启动内燃机。为了启动内燃机,用于内燃机启动而设置的电机必须提供必要的启动力矩。如果混动车辆的内燃机在电动行驶模式下被启动,内燃机的启动会这样损害电动行驶运行,即可使用的电能的一部分被用来启动内燃机并且由此能够用于驱动的能量会遭受损失。

在启动内燃机时通常不能准确地确定作用在车轮上的内燃机扭矩。原因是,在内燃机中实际扭矩不是总以恒定的延迟跟随预设的额定扭矩。在动态的状况下,例如当驾驶员要求的希望力矩强烈变化时,确定内燃机扭矩会比较困难。在通常的启动策略中存在下述缺点,从电动行驶模式到混动行驶模式的过渡,即在行驶时启动内燃机,会被驾驶员很清楚地感觉到,或者在驾驶员希望力矩和作用在驱动轮上的实际力矩之间会存在较强烈的差异。



技术实现要素:

本发明所要解决的技术问题是,在从电动行驶模式切换到混动行驶模式时保持车辆的驱动轮上的驾驶员所要求的希望力矩,而没有能被驾驶员感知的非希望的加速或减速。

本发明所要解决的技术问题通过用于运行混动车辆的驱动系的方法所解决,该驱动系包括:

-内燃机,

-电动机,

-用于选择性连接内燃机和电动机的离合器,和

-具有能选择性调整的速比的变速器,该变速器具有与离合器相连接的输入轴和输出轴和可选的中间轴,其中,输入轴或输出轴或中间轴抗扭地与电动机连接,

其中,从电动行驶模式切换到混动行驶模式,在电动行驶模式下只有电动机驱动输出轴并且内燃机保持静止,在混动行驶模式下,电动机和内燃机共同驱动输出轴,

所述方法具有如下方法步骤:

s2a:在电动行驶模式下,提高电动机的扭矩并且至少部分闭合离合器,以便牵引内燃机;

s2b:在达到内燃机的预定最低转速时,启动内燃机并且完全断开离合器,以便将内燃机与电动机解耦;

s3:在达到内燃机的预定目标转速时,部分闭合离合器并且降低电动机的扭矩;

s5:在内燃机和电动机实现基本同步转速时,至少部分闭合离合器,以便切换到混动行驶模式;

其中,在方法步骤s2a和s2b中预定恒定的额定扭矩。

此外,为了解决上述技术问题,还建议一种用于混动车辆的驱动系,该驱动系包括:

-内燃机,

-电动机,

-用于选择性连接内燃机和电动机的离合器,和

-具有能选择性调整的速比的变速器,该变速器具有与离合器相连接的输入轴和输出轴和可选的中间轴,其中,输入轴或输出轴或中间轴抗扭地与电动机连接,

其中,驱动系从电动行驶模式切换到混动行驶模式,在电动行驶模式下只有电动机驱动输出轴并且内燃机保持静止,在混动行驶模式下,电动机和内燃机共同驱动输出轴,并且其中,驱动系具有控制装置,它被配置用于运行上述方法。

所述技术问题还通过用于运行混动车辆的驱动系的方法所解决,该驱动系包括:

-内燃机,

-电动机,

-用于选择性连接内燃机和电动机的第一分离合器以及与第一分离合器并联的第二分离合器,和

-能选择性调整速比的第一分变速器,该变速器具有与第一分离合器相连接的输入轴和输出轴和可选的中间轴,其中,输入轴或输出轴或中间轴抗扭地与电动机连接,

其中,从电动行驶模式切换到混动行驶模式,在电动行驶模式下只有电动机驱动输出轴并且内燃机保持静止,在混动行驶模式下,电动机和内燃机共同驱动输出轴,

所述方法具有如下方法步骤,其中,作为离合器不是只使用第一分离合器就是只使用第二分离合器:

s2a:在电动行驶模式下,提高电动机的扭矩并且至少部分闭合离合器,以便牵引内燃机;

s2b:在达到内燃机的预定最低转速时,启动内燃机并且完全断开离合器,以便将内燃机与电动机解耦;

s3:在达到内燃机的预定目标转速时,部分闭合离合器并且降低电动机的扭矩;

s5:在内燃机和电动机实现基本同步转速时,至少部分闭合离合器,以便切换到混动行驶模式;

其中,在方法步骤s2a和s2b中预定恒定的额定扭矩。

此外,为了解决上述技术问题,还建议一种用于混动车辆的驱动系,该驱动系包括:

-内燃机,

-电动机,

-用于选择性连接内燃机和电动机的第一分离合器以及与第一分离合器并联的第二分离合器,和

-能选择性调整速比的第一分变速器,该变速器具有与第一分离合器相连接的输入轴和输出轴和可选的中间轴,其中,输入轴或输出轴或中间轴抗扭地与电动机连接,

其中,从电动行驶模式切换到混动行驶模式,在电动行驶模式下只有电动机驱动输出轴并且内燃机保持静止,在混动行驶模式下,电动机和内燃机共同驱动输出轴,并且其中,驱动系具有控制装置,该控制装置被配置用于运行上述方法。

在根据本发明的方法中,从电动行驶模式开始,在方法步骤s2a中,提高电动机的扭矩,并且至少部分闭合离合器,以便牵引内燃机。通过这些措施能够实现,提供用于牵引内燃机的附加的扭矩,而无需改变作用在输出轴上的扭矩和由此也作用在驱动轮上的扭矩。因此,对内燃机的牵引能够在不被驾驶员感受到不希望的加速或减速的情况下进行。

由于这种牵引提高了内燃机的转速。根据方法步骤s2b,在达到内燃机的预定最低转速时启动内燃机,并且完全断开离合器,以便将内燃机与电动机解耦。在方法步骤s2a和方法步骤s2b中,为内燃机预定恒定的额定扭矩。优选的是,预定内燃机能够可靠地且快速地达到的额定扭矩,从而能够单独地通过调整电动机的扭矩和/或离合器力矩影响驱动系的特性。通常相对于内燃机的扭矩,能够更精确地调整这种扭矩。根据方法步骤s3,在达到内燃机的预定的目标转速的情况下部分地闭合离合器,并且降低电动机的扭矩。内燃机的目标转速优选大于变速器的输入轴的转速。有利地是,根据电动机的实际转速预定所述目标转速,例如作为电动机的转速和预定的补偿值的和。在方法步骤s3中,提高离合器力矩,并且相应地降低电动机的扭矩。由此实现内燃机和电动机的同步。在基本上实现内燃机和电动机的转速同步时,根据方法步骤s5至少部分地闭合离合器,以便切换到混动行驶模式。

根据本发明不再需要用于启动内燃机的传统的启动器,从而与具有启动器的驱动系相比能够降低构件成本。此外,能够以较短的启动时间启动内燃机。

本发明的有利的设计方案是从属权利要求的主题并且在下面进行详细阐述。

优选的是,在方法步骤s2a中同步地提高电动机的扭矩和至少部分地闭合离合器,即在电动机上的扭矩提高基本上等于在部分闭合离合器时离合器力矩的提高。

根据有利的设计方案,内燃机具有吸气运行和增压运行,其中,内燃机的涡轮增压器在吸气运行中不被激活,并且在增压运行中被激活,并且其中在方法步骤s2a和s2b中,为内燃机预定恒定的额定扭矩,这时内燃机处于吸气运行中。在吸气运行中,内燃机的扭矩能够相对快速地被使用,并且能够比在增压运行中的扭矩明显更可靠地确定。优选的是,这样选择额定扭矩,让其等于在吸气运行时内燃机的最大扭矩,即等于涡轮增压器未被激活下的最大扭矩。但是,本发明并不局限于配备具有涡轮增压器的内燃机的驱动系,而是还包括具有吸气发动机的驱动系的实施例。尤其还能够考虑布置柴油发动机或汽油发动机来实现根据本发明的方法。

已经证明有利的是,在方法步骤s2a、s2b和s3中为内燃机预定恒定的额定扭矩。因此,在闭合离合器时为内燃机预定恒定的额定扭矩。还能够在方法步骤s3中单独地通过调整电动机的扭矩和/或离合器力矩来影响驱动系的特性。通常可以比内燃机的扭矩更精确地调整所述力矩,由此降低了用于保持作用在驱动轮上的通过驾驶员要求的希望力矩的技术成本。

根据可替换的优选实施例,能够为内燃机在方法步骤s3中预定额定扭矩,该额定扭矩小于在方法步骤s2a和s2b中预定的恒定的额定扭矩。例如,能够在方法步骤s3中,在达到内燃机的预定的目标转速时能够降低、优选阶跃式地降低内燃机的额定扭矩。特别优选的是,在进一步运行时,尤其线性地,提高内燃机的额定扭矩。

已经证明有利的是,为了牵引内燃机,即在方法步骤s2a中,调整变速器或第一分变速器或第二分变速器具有较低的速比。在选择较低的速比,即较高的挡位时,会比在具有较高速比的情况下通过相应的变速器或分变速器传递更小的振动。因此,能够通过在牵引内燃机时选择较低的速比降低车辆的不希望窜动。

在这种关系下特别有利的是,在部分闭合离合器的情况下在方法步骤s3中,将变速器或第一分变速器或第二分变速器调整到比用于牵引内燃机更高的速比。在牵引之后同步内燃机和电动机,能够以这种方式实现具有较高速比的较低挡位。相同地,在牵引内燃机时降低了受干扰的振动传递。

根据有利的设计方案,第一分离合器、第二分离合器和第一分变速器是双离合变速器的一部分,该双离合变速器具有配备能选择性地调整的速比的第二分变速器,该第二分变速器具有与第二分离合器连接的第二输入轴以及与第一输出轴抗扭连接的第二输出轴。在只有内燃机被激活的内燃机行驶模式下,能够通过双离合变速器在不中断牵引力的情况下实现挡位切换。优选的是,在第一分变速器的第一输入轴上设置电动机。这种实施例带来的优点是,在从电动行驶模式切换到混动行驶模式下时,在方法步骤s2a中可选地通过第一分离合器或第二分离合器牵引内燃机。因此可能的是,在通过第一分离合器和第一分变速器这时挂入的挡位进行的快速启动与通过第二分离合器和第二分变速器与发动机启动相匹配的挡位进行的舒适启动之间进行选择。能够在这种情况下选择快速启动,其中,例如由于驾驶员(“踩下加速踏板”)的加速要求需要的是尽快启动发动机。例如能够在这种情况下选择舒适启动,由于向电动机只能供给较低的电池容量需要启动内燃机。

设置有利的实施例,离合器和变速器是自动换挡变速器的一部分。自动换挡变速器优选具有一个离合器和一个具有能选择调整的速比的变速器,从而能够以尽量少的部件实现驱动系。

在上述驱动系中,也能够单独地或共同地使用结合所述方法阐述的有利的技术特征。

附图说明

下面结合在附图中所述的实施例阐述本发明的另外的细节和优点。附图为:

图1示出根据本发明的第一实施例的驱动系。

图2示出根据本发明的第二实施例的驱动系。

图3示出根据本发明的第三实施例的驱动系。

图4示出根据本发明的第四实施例的驱动系。

图5示出用于进行根据本发明的方法的第一实施例的转速/扭矩-曲线图。

图6示出用于进行根据本发明的方法的第二实施例的转速/扭矩-曲线图。

具体实施方式

在图1至4中示出四种不同驱动系实施例的示意性方框图,其中能够应用根据本发明的方法。

这些驱动系1分别包括:内燃机1、电动机5、用于选择性连接内燃机1和电动机5的离合器3,3.1以及能选择调整速比的变速器4,4.1。变速器4,4.1具有与离合器5连接的输入轴7和输出轴8,其中,输入轴7或者输出轴8与电动机5抗扭连接。此外,这些驱动系1还分别包括控制装置6,这样配置该控制装置6,使得它能够控制内燃机1、电动机5、离合器3,3.1和变速器4,4.1以用于执行根据本发明的方法。

所述方法至少包括下述方法步骤:

s2a:在电动行驶模式下,提高电动机5的扭矩并且至少部分接合离合器3,以便牵引内燃机2;

s2b:在达到内燃机2的预定最低转速时,启动内燃机2并且完全断开离合器3,以便将内燃机2与电动机5解耦;

s3:在达到内燃机2的预定目标转速时,部分闭合离合器3并且降低电动机5的扭矩;

s5:在内燃机2和电动机5实现基本同步转速时,至少部分闭合离合器3,以便切换到混动行驶模式;

其中,在方法步骤s2a和s2b中,为内燃机2预设恒定的额定扭矩。

在根据图1所示的驱动系中,离合器3和变速器4被设计为自动换挡变速器的组件。电动机5与变速器4的输出轴8抗扭连接。

在根据图2所示的驱动系中,离合器3和变速器4同样被设计为自动换挡变速器的组件。不同的是,电动机5与变速器4的输入轴7抗扭连接。

根据图3所示的驱动系1具有双离合变速器9,该双离合变速器包括设计为第一分离合器3.1的离合器。此外,双离合变速器9还包括第二分离合器3.2,它与第一分离合器3.1并联。变速器设计为双离合变速器9的第一分变速器4.1。双离合变速器9具有能选择性调整变速比的第二分变速器4.2,该第二分变速器包括与第二分离合器3.2相连接的第二输入轴10以及与第一输出轴8抗扭连接的第二输出轴11。电动机在该驱动系1中与第一分变速器4.1的第一输入轴8相连接。因此,电动机被安置在“双离合器变速器9”中。

最后,图4示出具有双离合变速器9的驱动系1,该双离合变速器9具有与在图3中所示的双离合变速器9相同的结构。在该驱动系1中,电动机5与第一分变速器4.1的输出轴8抗扭连接,并且与第二分变速器的输出轴11抗扭连接。

下面,结合图5和6进一步详细阐述根据本发明的方法。在此假定,根据图3来设计驱动系1。

图5示出在从电动行驶模式切换到混动行驶模式的过程中驱动系1的转速/扭矩-曲线图,其中,选择快速启动运行。在所述方法的这种设计中,借助分离合器3.1和分变速器4.1启动内燃机2,在电动行驶模式期间分离合器3.1和分变速器4.1是激活的。在上曲线图中示出了内燃机2的转速nv,电动机5的转速ne和第二分离合器4.2的第二输入轴11的转速no。下侧的曲线图中示出内燃机2的扭矩mv,电动机5的扭矩me以及第一分离合器3.1的离合器扭矩mk1。

所述方法被分为下列方法步骤:

s1:电动行驶模式;在电动行驶模式中,只有电动机5驱动输出轴8,并且内燃机2保持关闭(nv=0)。从行驶状态开始,根据方法步骤s1将会转换为混动行驶模式,例如因为由于驾驶者的加速需求(“kick-down”踩下加速踏板)而需要更大的功率。

s2a:在电动行驶模式下牵引内燃机2;在方法步骤s2a下,优选阶跃式地,提高电动机5的扭矩me,并且至少部分闭合离合器3.1,以便牵引内燃机2。因此将扭矩从电动机5向内燃机2传递。相应地,优选阶跃式地提高离合器力矩mk1,同时内燃机2的转速nv小于电动机的转速ne或第一输入轴7的转速。为了实现牵引,在电动行驶模式下,我们使用相同的挡位和因此应用相同的速比。电动机5的扭矩me的提高能够具有斜坡式的曲线。备选地,这种提高能够具有指数曲线,或者根据一阶微分环节(pt1-glied)的阶跃响应进行这种提高。离合器3.1的部分闭合尽量与电动机5的扭矩me的提高同步进行,从而尽量少地改变在驱动轮上的扭矩。为内燃机2预设恒定的额定扭矩mvsoll。如果内燃机2被设计为配备涡轮增压器的涡轮发动机,则这样选定额定扭矩mvsoll,使得在吸气运行时,驱动内燃机2。例如,额定扭矩等于在吸气运行时能够达到的最大扭矩mv。

s2b:提高内燃机2的转速nv;在达到内燃机2的预设的最小转速nvmin的情况下,启动内燃机2并且完全断开离合器3.1,以便将内燃机2和电动机5解耦。与断开离合器同步,即随着离合器力矩mk的降低而降低电动机5的扭矩me。通过释放燃料喷射实现内燃机2的启动。在方法步骤s2b中,将内燃机2预设与在步骤s2a中一样的额定扭矩mvsoll。例如,通过控制点火角度能够实现对内燃机2的扭矩mv的调整。因此,优选控制技术上的内燃机2以恒定的扭矩mv运行,并且分离合器3.1和电动机5的具有较低延迟和较高精确度的能调整的扭矩nk1和ne能够通过控制装置6被调整。提高内燃机2的转速nv,并且随后超过电动机5的转速ne。

s3:连接内燃机2;在内燃机达到预设的目标转速nvziel时,部分闭合分离合器3.1,并且降低电动机5的扭矩,以便将已启动的内燃机2与电动机5连接。根据第一变形方案,如在图5中虚线所示,还会在方法步骤s3中为内燃机2预设额定扭矩mvsoll,它等于在方法步骤s2a和s2b中的额定扭矩mvsoll。就此而言,在方法步骤3中,电动机5和分离合器3.1还要解决这样的技术问题,尽量保持驱动轮的扭矩恒定。根据第二变形方案,如在图5中实线所示,内燃机2的扭矩mv跳跃式地降低到这个数值,其小于在方法步骤s2a和s2b中预设的恒定的额定扭矩mvsoll。

s4:内燃机2和电动机5的转速同步;在方法步骤s4中,内燃机的转速nv随后被降低,并且因此能接近电动机5的转速ne。

s5:闭合离合器;一旦内燃机2和电动机5基本上实现转速nv,ne的同步,则离合器3.1再次被闭合,以便切换到混动行驶模式。此外,在第二分变速器3.2中预选择下一高挡位。第二输入轴11的转速no被相应地提高。

s6:混动行驶模式;在方法步骤s6中,电动机5和内燃机2共同驱动输出轴8。电动机5的转速ne和内燃机2的转速nv同步。

图6示出在从电动行驶模式切换到混动行驶模式时驱动系1的转速/扭矩-曲线图,其中,选择舒适启动运行。在本发明的这种实施例中,内燃机2不随着在电动行驶模式下就已激活的第一分离合器3.1和第一分变速器4.1而启动,而是随着并联设置的第二分离合器3.1和第二分变速器4.2而启动。在上曲线图中示出,内燃机2的转速nv、电动机5的转速ne和第二分变速器的第二输入轴11的转速no。在下侧的曲线图中示出,内燃机2的扭矩mv,电动机5的扭矩me和第二分离合器3.2的离合器力矩mk2。

该方法步骤相应地基本上与之前结合图5所示的方法步骤相一致,其中,离合器的功能被第二分离合器3.2承担。但是,根据图6所示的方法与之前结合图5所示的方法的区别在于:

s1:在电动行驶模式下,在第二分变速器4.2中预选这样的挡位,该挡位具有尽量低的速比,从而在随后进行牵引的情况下能够降低振动的传递。

s2a:在电动模式下牵引内燃机1;为了进行牵引,在第二分变速器4.2中调整到尽量低的速比,尤其是小于在之前的电动行驶模式下第一分变速器4.1的速比。扭矩的传递从电动机5开始,通过第一分变速器4.1,第二分变速器4.2和第二分离合器3.2。离合器力矩mk2相应地阶跃式提升,同时内燃机2的转速nv小于电动机的转速ne或第一输入轴7的转速。

s2b:提高内燃机2的转速nv;在方法步骤s2b中,在第二分变速器4.2中预选这样的挡位,它的速比大于在方法步骤s2a中用于牵引内燃机所调整到的速比。

s3:连接内燃机2;在方法步骤s3中部分闭合第二分离合器3.2,第二分离合器的离合器力矩mk2因此被提高,其中,在第二分变速器中设置具有较高速比的挡位。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1