用于电动车辆的充电装置的制作方法

文档序号:18835665发布日期:2019-10-09 05:15阅读:195来源:国知局
用于电动车辆的充电装置的制作方法

本公开涉及车辆,并且更具体地涉及用于使用电动机的电力驱动的电动车辆的充电装置。



背景技术:

与设计成通过燃烧化石燃料获取初级能源的内燃机车辆不同,电动车辆被设计成使用电能作为初级能源。因此,电动车辆包括在其中存储电能的高压电池、用作电源的电动机和驱动电动机的逆变器。用于对电动车辆的电池充电的充电器可以分为慢速充电器和高速充电器。慢速充电器可以向车辆传输商用交流(ac)电力而无需任何转换。高速充电器可以将商用ac电力转换成直流(dc)电力,并且可以将dc电力传输到车辆。慢速充电器具有简化的结构和低廉的价格,使得可以容易地开发慢速充电器。

然而,为了使用慢速充电器,需要将车载充电器(obc)安装在电动车辆内。通过慢速充电器提供的ac电力的类型根据安装慢速充电器的国家而有所不同。为了使用各种类型的ac电力对电动车辆的电池充电,需要车载充电器(obc)响应于各种类型的ac电力。

随着电动车辆的电池具有更高的容量,设置有充电一次的电池的电动车辆的行驶距离也在增加。因此,许多开发商和汽车制造商正在研究用于增加电动车辆的电池容量的技术。安装在电动车辆内的大容量电池不可避免地导致电动车辆的总充电时间的增加。为了减少大容量电池的充电时间,需要增加obc容量。增加的obc容量可能不可避免地增加电动车辆的组成元件的尺寸和电动车辆的生产成本。



技术实现要素:

因此,本公开的一方面提供用于电动车辆的充电装置,该充电装置具有尺寸减小且简化的结构,并且在从各种类型的电源接收电力时对电动车辆的电池充电。本公开的其他方面将部分地在以下描述中阐述,并且部分地将从描述中显而易见,或者可以通过本公开的实践来了解。

根据本公开的方面,用于电动车辆的充电装置可以包括:电动机,配置为产生驱动电动车辆所需的动力;逆变器,配置为向电动机供电;交流(ac)电力输入端子,配置为接收单相ac电力和多相ac电力中的至少一个;功率因数校正器,具有单个三支路半桥电路,配置为通过ac电力输入端子接收ac输入电力;连接电容器(linkcapacitor),配置为通过功率因数校正器、电动机、逆变器或其组合中的至少一个而被充电;开关网络,具有至少一个开关,以用于将ac电力输入端子选择性地连接到功率因数校正器、连接电容器、电动机或逆变器;以及控制器,配置为根据通过ac电力输入端子接收的ac输入电力的状况,操作功率因数校正器、开关网络和逆变器。

开关网络还可以包括设置在连接电容器与逆变器之间的第一开关。开关网络还可以包括设置在逆变器与电池之间的第二开关。开关网络还可以包括设置在功率因数校正器的三个支路中的任一个与逆变器之间的第三开关。开关网络还可以包括设置在电动机的中性点与高速充电端子之间的第四开关。开关网络还可以包括分别设置在高速充电端子与电池的两端之间的第五开关和第六开关。

控制器可以配置为执行电流模式占空比控制(currentmodedutycontrol),以减少功率因数校正器的切换控制中的泄漏电流。通过控制功率因数校正器、开关网络和逆变器,控制器可以配置为将功率因数校正器转换成多个不同类型的转换器,以响应ac输入电力的状况。ac输入电力的状况可以包括ac输入电力的多相状况和单相状况。ac输入电力的状况可以包括ac输入电力的对称电力状况和不对称电力状况。

根据本公开的另一方面,用于电动车辆的充电装置可以包括:电动机,配置为产生驱动电动车辆所需的动力;逆变器,配置为向电动机供电;交流(ac)电力输入端子,配置为接收单相ac电力和多相ac电力中的至少一个;功率因数校正器,具有单个三支路半桥电路,配置为通过ac电力输入端子接收ac输入电力;连接电容器,配置为通过功率因数校正器、电动机和逆变器的组合中的至少一个而被充电;开关网络,具有至少一个开关,以用于将ac电力输入端子选择性地连接到功率因数校正器、连接电容器、电动机或逆变器;以及控制器,配置为根据通过ac电力输入端子接收的ac输入电力的状况,操作功率因数校正器、开关网络和逆变器。开关网络还可以包括:第一开关,设置在连接电容器与逆变器之间;第二开关,设置在逆变器与电池之间;以及第三开关,设置在功率因数校正器的三个支路中的任一个与逆变器之间。

开关网络还可以包括设置在电动机的中性点与高速充电端子之间的第四开关。开关网络还可以包括分别设置在高速充电端子与电池的两端之间的第五开关和第六开关。控制器可以配置为执行电流模式占空比控制,以减少功率因数校正器的切换控制中的泄漏电流。通过控制功率因数校正器、开关网络和逆变器,控制器可以配置为将功率因数校正器转换成多个不同类型的转换器,以响应ac输入电力的状况。ac输入电力的状况可以包括ac输入电力的多相状况和单相状况。ac输入电力的状况可以包括ac输入电力的对称电力状况和不对称电力状况。

根据本公开的另一方面,用于电动车辆的充电装置可以包括:电动机,配置为产生驱动电动车辆所需的动力;逆变器,配置为向电动机供电;交流(ac)电力输入端子,配置为接收单相ac电力和多相ac电力中的至少一个;功率因数校正器,具有单个三支路半桥电路,配置为通过ac电力输入端子接收ac输入电力;连接电容器,配置为通过功率因数校正器、电动机和逆变器的组合中的至少一个而被充电;开关网络,具有至少一个开关,以用于将ac电力输入端子选择性地连接到功率因数校正器、连接电容器、电动机或逆变器;以及控制器,配置为根据通过ac电力输入端子接收的ac输入电力的状况,操作功率因数校正器、开关网络和逆变器,并且执行电流模式占空比控制。

执行电流模式占空比控制,以减少功率因数校正器的切换控制中的泄漏电流。通过控制功率因数校正器、开关网络和逆变器,控制器可以配置为将功率因数校正器转换成多个不同类型的转换器,以响应ac输入电力的状况。

附图说明

从以下结合附图对示例性实施例的描述中,本公开的这些和/或其他方面将变得显而易见和更容易理解,其中:

图1是示出根据示例性实施例的电动车辆的外观的视图;

图2是示出根据示例性实施例的用于电动车辆的充电装置的框图;

图3是示出根据示例性实施例的充电装置的电路配置的视图;

图4a-图4c是示出根据示例性实施例的嵌入充电装置中的各种类型的电源的视图;

图5是示出在根据示例性实施例的充电装置中开关断开和开关接通的状态的视图;

图6是示出根据示例性实施例的充电装置通过开关的断开和开关的接通而改变结构的视图;

图7是示出当系统电力是三相交流(ac)电力时根据示例性实施例的充电装置的操作的视图;

图8是示出当系统电力是单相交流(ac)电力时根据示例性实施例的充电装置的操作的视图;以及

图9是示出根据示例性实施例的充电装置的仿真结果的视图。

具体实施方式

应该理解,术语“交通工具”或“交通工具的”或如在本文中使用的其他类似术语一般包括机动交通工具,诸如包括运动型多用途交通工具(suv)的乘用车、公共汽车、卡车、各种商用交通工具、包括各种船只和船舶的水运工具船、飞行器等等,并且包括混合动力交通工具、电动交通工具、插入式混合动力电动交通工具、氢动力交通工具、以及其他代用燃料交通工具(例如,得自除石油之外的资源的燃料)。如本文所提到的,混合动力交通工具是具有两个或更多个动力源的交通工具,例如汽油动力和电动力的交通工具。

尽管示例性实施例被描述为使用多个单元来执行示例性过程,但是应当理解,也可以由一个或多个模块来执行示例性过程。另外,应当理解,术语控制器/控制单元指的是包括存储器和处理器的硬件设备。存储器配置为存储模块,并且处理器具体地配置为执行所述模块以执行下面进一步描述的一个或多个过程。

在本文中使用的术语仅用于描述特别实施例并且不旨在限制本发明。如在本文中所使用的,单数形式“一”和“该”旨在同样包括复数形式,除上下文以其他方式明确表明之外。应当进一步理解,当在本说明书中使用时,术语“包括”和/或“包含”指定所述特征、整数、步骤、操作、要素和/或部件的存在,但不排除一个或多个其他特征、整数、步骤、操作、要素、部件和/或其集合的存在或添加。如在本文中所使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任何和全部组合。

除非特别说明或从上下文显而易见,否则如本文所使用的,术语“大约”理解为在本领域中的正常公差范围内,例如,在平均值的2个标准偏差内。“大约”可以理解为在设定值的10%、9%、8%、7%、6%、5%、4%、3%、2%、1%、0.5%、0.1%、0.05%或0.01%之内。除非另外从上下文中清楚得知,否则本文中提供的所有数值均由术语“大约”来修饰。

现在将详细参考本公开的示例性实施例,其示例在附图中示出,其中相同的附图标记始终指代相同的元件。

图1是示出根据示例性实施例的电动车辆的外观的视图。参考图1,电动车辆100可以包括电动机212(参见图2)。因此,电动车辆100还可以包括高压电池102,该高压电池102配置为存储用于驱动电动机212的电力。辅助电池208(参见图2)也可以设置在普通内燃机车辆中的发动机室的一侧上。然而,电动车辆100需要大容量高电压电池212,尽管辅助电池208(参见图2)设置在普通内燃机车辆的发动机舱的一侧。在根据示例性实施例的电动车辆100中,高压电池102可以安装在后排乘客座椅的下部空间。存储在高压电池102中的电力可用于驱动电动机212来产生电力(参见图2)。根据示例性实施例的高压电池102可以是锂电池。

电动车辆100可以包括充电插座104。外部慢速充电器150的充电连接器152可以连接到充电插座104,以用电或电力对高压电池102充电。换言之,当慢速充电器150的充电连接器152可以连接到电动车辆100的充电插座104时,电动车辆100的高压电池102可以用电或电力进行充电。

图2是示出根据示例性实施例的用于电动车辆的充电装置的框图。参考图2,慢速充电器150可用于对高压电池102充电。高压电池102可以具有约400v-800v的充电电压。慢速充电器150可以配置为在无改变的情况下向电动车辆100供应ac电力。通过慢速充电器150供应的ac电力可以在电动车辆100中转换成预定的dc电压。

安装在电动车辆100内的车载充电器(obc)202可用于对高压电池102充电。obc202可以配置为将从慢速充电器150供应的ac电力转换成约800v的dc电压,并且用约800v的dc电压对高压电池102充电。慢速充电器150可以配置为在无改变的情况下(例如,无需任何转换)向电动车辆100供应ac电力。通过慢速充电器150提供应的ac电压可以由obc202转换成dc电压,并且可以用于对高压电池102充电。

再次参考图2,逆变器206可以配置为转换高压电池102的电力以具有电动机212所需的电特性,并将电力传输到电动机212。电动机212可以配置为通过由通过逆变器206传输的电力旋转来产生电力。在图2所示的充电装置中,电动机212和逆变器206可以根据需要与obc202一起对高压电池102充电。控制器210可以配置为操作obc202、逆变器206和电动机212以对高压电池102充电。当控制器210操作obc202、逆变器206和电动机212以对高压电池102充电时,控制器210可以配置为执行电流模式占空比控制,以减少可能由于输入ac电力的不对称而出现的泄漏电流。

图3是示出根据示例性实施例的充电装置的电路配置的视图。图3示出其中根据示例性实施例的obc202与逆变器206和电动机212协作以对高压电池102充电的结构。通过利用电动机212和逆变器206控制根据高压电池102的充电请求电压的充电请求电压,与使用传统的dc/dc转换器相比,该结构能够简化、尺寸减小并且制造成本降低。

此外,传统的dc/dc转换器包括变压器,因此绝缘措施是必不可少的。相反地,由于根据示例性实施例的充电装置省略了变压器并利用电动机212和逆变器206,因此可以实现不需要绝缘措施的非绝缘充电装置。然而,可以在升压功率因数校正器414的切换控制期间执行电流模式占空比控制,以减少可能在非绝缘充电装置中出现的低频泄漏电流。

obc202可以包括电磁干扰(emi)滤波器422、升压功率因数校正器414和功率继电器组件416。功率继电器组件416可以包括图3所示的开关s1、s2、s3、s4、s5和s6。ac电力可以从外部ac电源通过emi滤波器422接收到升压功率因数校正器314。emi滤波器422可以去除包含在接收的ac电力中的噪声。

升压功率因数校正器414可以包括由开关元件q1、q2、q3、q4、q5和q6组成的三支路半桥电路。设置在开关元件q1与q4之间的第一支路442、设置在开关元件q2与q5之间的第二支路444以及设置在开关元件q3与q6之间的第三支路446可以连接到emi滤波器422。第一至第三支路442、444和446中的每个可以包括电感器部件。

作为功率因数校正(pfc)连接电容器进行操作的电容器c1可以设置在升压功率因数校正器414中。电容器c1可以设置在半桥电路的两端之间。逆变器206可以包括六个开关元件qa、qb、qc、qd、qe和qf。由开关元件qc和qf产生的电流、由开关元件qb和qe产生的电流以及由开关元件qa和qd产生的电流可以分别传输到电动机212的三相线圈。

高速充电器490可以通过电容器c2连接到升压功率因数校正器414的下端与逆变器206的下端之间的节点。高速充电器490可以配置为以约400v或800v的高速对高压电池102充电。因此,高速充电器490的正(+)端子可以经由开关s1连接到高压电池102的正(+)端子,并且还可以通过电感器l1和开关s2连接到电动机212的中性点。换言之,高速充电器490可以通过开关s1连接到高压电池102的正(+)端子,并且通过开关s2连接到电动机212的中性点。高速充电器490的负(-)端子可以经由开关s3连接到高压电池102的负(-)端子,并且连接到逆变器206的下端。

开关s4可以连接在逆变器206的上端与高压电池102的正(+)端子之间。开关s3可以连接在开关s4和高压电池102所连接的节点与高速充电器290的正(+)端子之间。可以切换开关s4,以允许逆变器206驱动电动机212或者对高压电池102充电。换言之,当开关s4接通时,逆变器206可以配置为驱动电动机212以产生电力。相反,当开关s4断开时,逆变器206可用于用电动机212对高压电池102充电。

开关s5可以连接在升压功率因数校正器414的上端与逆变器206的上端之间。开关s6可以连接到以下路径:从开关s5和逆变器206的上端连接的节点到三支路半桥电路的支路446。换言之,可以通过接通/断开开关s6,连接或断开升压功率因数校正器414的三支路半桥电路的支路446和逆变器206的上端。可以为升压功率因数校正器414的电流模式(cm)占空比控制提供两个开关s5和s6。当开关s5断开且开关s6接通时,可以执行升压功率因数校正器414的cm占空比控制。

设置在充电装置中的开关网络所包括的多个开关s1、s2、s3、s4、s5和s6以及多个开关元件q1、q2、q3、q4、q5、q6、qa、qb、qc、qd、qe、qf可以由图2所示的控制器210接通或断开。根据示例性实施例,可以通过包括在开关网络中的多个开关s1、s2、s3、s4、s5和s6的各种开/关组合,用各种类型的ac电力对高压电池102充电。以下可以参考图4描述各种类型的ac电力。

图4a-图4c是示出根据示例性实施例的嵌入充电装置中的各种类型的电源的视图。图4a是示出双相对称电源的视图。参考图4a,双相对称电源可以允许将电源电压分成两个电压1/2vac和-1/2vac。因为两个电压1/2vac和-1/2vac可以具有相反的相位,所以这两个电压可以被称为双相对称电源。图4a所示的双相对称电源主要用于北美。

图4b是示出单相不对称电源的视图。参考图4b,单相不对称电源可以提供在具有单相的单电压(vac)中形成的电源电压。因为单电压(vac)具有单相,所以单电压(vac)可以被称为单相不对称电源。图4b所示的单相不对称电源主要用于韩国、北美和欧洲。

图4c是示出三相对称电源的视图。参考图4c,三相不对称电源可以允许将电源电压分成三个电压va、vb和vc。因为三个电压va、vb和vc可以具有不同的相位,所以这三个电压可以被称为三相不对称电源。图4c所示的三相不对称电源主要用于欧洲。如上所述,在各个国家中使用各种类型的ac电源,使得根据示例性实施例的充电装置旨在通过开关网络的开/关组合来应对各个国家的各种类型的ac电力。

系统电力可以分为对称结构和不对称结构,并且泄漏电流的大小可以根据对称/不对称结构而变化。在对称结构的系统电力的情况下,泄漏电流可以相对最小,而在不对称结构的系统电力的情况下,泄漏电流可以相对较大。如图3中所提到的,当开关s5断开且开关s6接通时,可以执行升压功率因数校正器414的cm占空比控制,以最小化可能在非绝缘充电装置中出现的泄漏电流。

图5是示出在根据示例性实施例的充电装置中开关s5断开且开关s6接通的状态的视图。如图5所示,开关s5可以断开,以将升压功率因数校正器414和电容器c1与电动机212和逆变器206电隔离。开关s6也可以接通,以将逆变器206的上端电连接到升压功率因数校正器414的支路446,并且可以将升压功率因数校正器414的支路446和emi滤波器422电隔离。如图5所示的慢速充电器150和emi滤波器422之间的连接关系所示,通过电隔离升压功率因数校正器414的支路446,通过emi滤波器422从外部慢速充电器150接收的三相ac电力中的一相可以不输入到升压功率因数校正器414。通过断开开关s5并接通开关s6,可以由如图6所示的等效电路表示根据本公开示例性实施例的充电装置的结构。

图6是示出根据示例性实施例的充电装置通过开关s5的断开和开关s6的接通而改变结构的视图。如图6所示,开关s5可以断开,开关s6可以接通,使得升压功率因数校正器414的包括支路442和444的部分可以作为无桥升压功率因数校正器进行操作,升压功率因数校正器414的包括支路446的剩余部分可以作为降压转换器进行操作。电动机212/逆变器212可以配置为作为降压dc/dc转换器进行操作。在图6所示的结构中,例如,当电容器c1两端之间的电压为约850v-900v时,电容器c1两端之间的约850v-900v的电压可以用于在被作为降压dc/dc转换器进行操作的电动机212/逆变器212降低到约480v-841v的状态下对高压电池102充电。当通过如图5所示开关s5的断开和开关s6的接通将结构改变为如图6所示的三级时,可以执行升压功率因数校正器414的cm占空比控制(切换控制),以减少由于系统电力的对称/不对称而导致的低频泄漏电流。

图7是示出当系统电力是三相交流(ac)电力时根据示例性实施例的充电装置的操作的视图。如图7所示,当系统电力是三相ac电力时,根据示例性实施例的充电装置的开关s1、s2和s5可以接通,开关s3、s4和s6可以断开。升压功率因数校正器414的支路446和逆变器206可以根据开关网络的开/关而电隔离。此外,逆变器206可以不直接地电连接到高压电池102,而是可以通过电动机212电连接到高压电池102。在该结构中,从慢速充电器150供应的三相ac电力可以通过依次经过升压功率因数校正器414、开关s5、逆变器206和电动机212而通过开关s1传输到高压电池102,从而对高压电池102充电。

图8是示出当系统电力是单相交流(ac)电力时根据示例性实施例的充电装置的操作的视图。如图8所示,当系统电力是单相ac电力时,根据示例性实施例的充电装置的开关s1、s2和s6可以接通,并且根据示例性实施例的充电装置的开关s3、s4和s5可以断开。根据开关网络的开/关,三相ac电力的一相可以与升压功率因数校正器414的支路446电隔离,但是升压功率因数校正器414的支路446和逆变器206可以电连接。此外,逆变器206和高压电池102可以不直接地电连接,而是可以经由电动机212电连接到高压电池102。在该结构中,从慢速充电器150供应的单相ac电力可以通过经过升压功率因数校正器414的支路446、开关s5、逆变器206和电动机212而通过开关s1传输到高压电池102,从而对高压电池102充电。

如图7和图8所示,可以基于从慢速充电器150供应的输入ac电力(系统电力)是三相还是单相,通过开关网络的开/关组合来不同地调节电力传输路径,并且通过将升压功率因数校正器414的控制切换为cm占空比控制方式,可以显著地减少在高压电池102的充电过程中由于输入ac电力(系统电力)的不对称特性而产生的泄漏电流。

图9是示出根据本公开的示例性实施例的充电装置的仿真结果的视图。参考图9所示的仿真结果,基于是否执行cm占空比控制,各个泄漏电流ig的大小基本上不同。当不执行cm占空比控制时,泄漏电流ig为105.3marms,而当执行cm占空比控制时,泄漏电流ig基本上降低至10.3marms。安全标准要求的泄漏电流ig应为约15marms或更小。在不对称电力的情况下,泄漏电流ig为105.3marms,其超过了安全标准要求的值。然而,通过在根据示例性实施例的充电装置中执行cm占空比控制,泄漏电流ig可以从约103marms基本上降低至约10.3marms,满足安全标准中要求的约15marms或更小的条件。

从以上描述中显而易见的是,根据本公开的示例性实施例的用于电动车辆的充电装置具有减小的尺寸和简化的结构,并且在从各种类型的电源接收电力时对电动车辆的电池充电。

应当理解,以上描述仅仅是技术思想的说明,在不脱离本公开的基本特征的情况下,可以进行各种修改、变更和替换。因此,上述示例性实施例和附图旨在说明而不是限制技术思想,并且技术思想的范围不受这些示例性实施例和附图的限制。其范围将根据以下权利要求书来解释,并且在其范围内的所有技术思想应被解释为包括在权利范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1