一种基于磁流变液的主动转向路感控制系统的制作方法

文档序号:16614827发布日期:2019-01-15 22:43阅读:267来源:国知局
一种基于磁流变液的主动转向路感控制系统的制作方法

本实用新型属于汽车转向系统技术领域,具体指代一种基于磁流变液的主动转向路感控制系统。



背景技术:

转向路感是驾驶员在车辆行驶过程中通过方向盘感受到的路面反馈信息,影响驾驶员操作手感和驾驶安全性。汽车主动转向系统与电动助力转向系统和液压助力转向系统相比,由于同时改变了力矩传递特性和位移传递特性,转向路感特性也发生了变化。为了使驾驶员得到较好的路感,现有主动转向路感控制系统多采用电机和减速机构作为执行机构,能够在主动转向干预时给驾驶员提供合适的路感,但是也产生了能耗较高、冲击较大、增加系统质量等问题。

磁流变液是一种新型智能材料,当施加的外加磁场发生变化时,磁流变液可以在流体和固体之间可逆地转化,同时还具有可控性好、无污染、低能耗等优点。由于磁流变液能在短时间内产生强大的阻尼力,也能够在机械零件之间完成力矩的传递,在汽车悬架系统、制动系统都得到了广泛应用。在汽车转向系统领域,磁流变液也有较大的应用价值,例如中国专利申请号为CN201110185746.0,名称“线控转向汽车路感模拟执行装置” 中公开采用磁流变阻尼器作为线控转向路感模拟执行装置,同时控制方向盘回正速度和稳定性;中国专利申请号为CN201310461150.8,名称“磁流变自回正线控转向力反馈装置”中公开将磁流变力反馈装置用于线控转向,实现大角度转向和可调刚度的方向盘回正。以上专利提出的线控转向模拟路感装置,仅用于无机械连接的线控转向系统,是一种从无到有的模拟路感,而不能够对现有转向系统的路感进行改善。同时在目前法规限制下,线控转向还无法产品化并进入实车装配阶段,现有转向系统在较长的时间内仍是主流,目前还没有在其上应用磁流变液控制转向路感的实例提出。

因此,将磁流变液应用于主动转向系统中,融合主动转向变传动比和磁流变液控制敏捷、响应速度快、质量轻等优点,改善综合转向性能,有助于汽车主动转向系统的开发设计,具有一定的市场价值和经济效益。



技术实现要素:

针对于上述现有技术的不足,本实用新型的目的在于提供一种基于磁流变液的主动转向路感控制系统,以克服现有技术中存在的问题。本实用新型通过励磁线圈调节磁场强度,可以改变磁流变液力学特性从而调节路感,同时降低系统能量损耗,得到良好的综合转向性能;本实用新型还增强了驾驶员对路面信息的感知程度,消除主动转向干预时造成路感变化的不利影响,在一定程度上避免了驾驶员因路感不准确而误操作导致的安全隐患。

为达到上述目的,本实用新型采用的技术方案如下:

本实用新型的一种基于磁流变液的主动转向路感控制系统,包括:机械传动模块、主动转向模块、路感调节模块和控制模块;

所述的机械传动模块包括方向盘、转向轴、循环球转向器、转向摇臂、球头销、转向梯形及车轮;

转向轴上端与方向盘相连,下端与循环球转向器输入端连接;循环球转向器输出端与转向摇臂一端连接,转向摇臂另一端通过球头销与所述主动转向模块输入端相连,主动转向模块输出端连接转向梯形及车轮;

所述的路感调节模块包括磁流变液阻尼器、励磁线圈、扭转弹簧、联结弹簧座、供电回路、导线、磁流变液外壳;

路感调节模块将转向轴截成两段,分别通过联结弹簧座与扭转弹簧的上下两端连接;扭转弹簧和转向轴同轴安装并穿过磁流变阻尼器;磁流变阻尼器内腔填充有磁流变液材料,励磁线圈包围在磁流变阻尼器外侧;磁流变液外壳嵌套在励磁线圈外部并与联结弹簧座连接,磁流变液外壳上开有小孔,导线接头一端连接励磁线圈,另一端通过小孔与供电回路相连,供电回路与控制模块电气连接;

所述的主动转向模块包括油箱、直流电机、液压泵、比例换向阀、液压缸、液压缸活塞、转向直拉杆;

液压缸外壳作为主动转向模块输入端,与所述转向摇臂固定连接,液压缸内部装配液压缸活塞;转向直拉杆作为主动转向模块输出端,一端与液压缸活塞固定连接,另一端连接转向梯形;直流电机输入端连接所述控制模块,输出端与液压泵相连;液压泵进油口连接油箱,出油口产生的高压油传递至比例换向阀的进油口;比例换向阀与控制模块电气连接,在控制信号作用下改变工作位置,调节出油口液压油流量大小和方向,并控制液压油进出液压缸;

所述的控制模块包括传感器组、路感控制单元、主动转向控制单元;

传感器组包括位移传感器、转角传感器、转矩传感器A、转矩传感器B、侧向加速度传感器、车速传感器及横摆角速度传感器;转角传感器安装在方向盘上,接收驾驶员输入的转角信号;转矩传感器A安装在方向盘和路感调节模块之间的转向轴上,接收驾驶员输入的转矩信号;转矩传感器B安装在路感调节模块和循环球转向器之间的转向轴上,接收路感调节模块输出的阻尼转矩信号;位移传感器安装在转向直拉杆上,接收转向直拉杆实际输出位移信号;车速传感器、侧向加速度传感器和横摆角速度传感器安装在整车其他部分;

路感控制单元、主动转向控制单元与分别传感器组电气相连,接收各传感器信号后进行计算,输出控制信号。

本实用新型的有益效果:

本实用新型与现有的电机执行装置相比,不需要安装减速机构,结构简单并减轻了系统质量,同时磁流变液材料的粘度变化是连续、可逆的,缓冲吸能效果更好,与扭转弹簧装配在一起,回正性能好,避免方向盘打手现象发生。

本实用新型利用磁流变液阻尼器代替电机,融合了主动转向功能和路感控制功能,通过实时调节结构刚度和阻尼,不仅能够在不同车速和方向盘转角下发挥主动转向的变传动功能,同时能够方便地自动调节驾驶员操作手感,提高了驾驶乐趣和汽车安全性。

附图说明

图1为本实用新型系统的原理结构框图;

图2为本实用新型系统的工作原理图;

图中,1-方向盘,2-转角传感器,3-转向轴,4-转矩传感器A,5-联结弹簧座,6-磁流变液阻尼器,7-扭转弹簧,8-励磁线圈,9-循环球转向器,10-转向摇臂,11-球头销,12-转向梯形,13-车轮,14-直流电机,15-油箱,16-液压泵,17-比例换向阀,18-液压缸活塞,19-液压缸,20-转向直拉杆,21-位移传感器,22-位移信号,23-路感控制信号,24-转矩信号,25-转角信号,26-车速信号,27-横摆角速度信号,28-侧向加速度信号,29-直流电机控制信号,30-比例换向阀控制信号,31-磁流变液外壳,32-导线,33-转矩传感器B,34-供电回路,35-驾驶员单元,36-主动转向控制单元,37-路感控制单元,38-主动转向执行单元,39-转矩传动单元,40-励磁电流,41-控制磁场,42-阻尼转矩信号,43-液压缸流量,44-回正转矩,45-前轮转角,46-车辆状态信息,47-驾驶员状态信息,48-阻尼转矩。

具体实施方式

为了便于本领域技术人员的理解,下面结合实施例与附图对本实用新型作进一步的说明,实施方式提及的内容并非对本实用新型的限定。

参照图1所示,本实用新型的一种基于磁流变液的主动转向路感控制系统,包括:机械传动模块、主动转向模块、路感调节模块和控制模块;

所述的机械传动模块包括方向盘1、转向轴3、循环球转向器9、转向摇臂10、球头销11、转向梯形12及车轮13;

转向轴3上端与方向盘1相连,下端与循环球转向器9输入端连接;循环球转向器9输出端与转向摇臂10一端连接,转向摇臂10另一端通过球头销11与所述主动转向模块输入端相连,主动转向模块输出端连接转向梯形12及车轮13;

所述的路感调节模块包括磁流变液阻尼器6、励磁线圈8、扭转弹簧7、联结弹簧座5、供电回路34、导线32、磁流变液外壳31;

路感调节模块将转向轴3截成两段,分别通过联结弹簧座5与扭转弹簧7的上下两端连接;扭转弹簧7和转向轴3同轴安装并穿过磁流变阻尼器6;磁流变阻尼器内腔填充有磁流变液材料,励磁线圈8包围在磁流变阻尼器6外侧;磁流变液外壳31嵌套在励磁线圈8外部并与联结弹簧座5连接,磁流变液外壳上开有小孔,导线接头一端连接励磁线圈8,另一端通过小孔与供电回路34相连,供电回路34与控制模块电气连接;

所述的主动转向模块包括油箱15、直流电机14、液压泵16、比例换向阀17、液压缸19、液压缸活塞18、转向直拉杆20;

液压缸外壳作为主动转向模块输入端,与所述转向摇臂10固定连接,液压缸内部装配液压缸活塞18;转向直拉杆20作为主动转向模块输出端,一端与液压缸活塞18固定连接,另一端连接转向梯形12;直流电机14输入端连接所述控制模块,输出端与液压泵16相连;液压泵16进油口连接油箱15,出油口产生的高压油传递至比例换向阀17的进油口;比例换向阀17与控制模块电气连接,在控制信号作用下改变工作位置,调节出油口液压油流量大小和方向,并控制液压油进出液压缸19;

所述的控制模块包括传感器组、路感控制单元37、主动转向控制单元36;

传感器组包括位移传感器21、转角传感器2、转矩传感器A4、转矩传感器B33、侧向加速度传感器28、车速传感器及横摆角速度传感器;转角传感器安装在方向盘上,接收驾驶员输入的转角信号25;转矩传感器A安装在方向盘和路感调节模块之间的转向轴上,接收驾驶员输入的转矩信号24;转矩传感器B安装在路感调节模块和循环球转向器9之间的转向轴上,接收路感调节模块输出的阻尼转矩信号42;位移传感器安装在转向直拉杆20上,接收转向直拉杆20实际输出位移信号22;车速传感器、侧向加速度传感器和横摆角速度传感器安装在整车其他部分;

路感控制单元、主动转向控制单元与分别传感器组电气相连,接收各传感器信号后进行计算,输出控制信号。

参照图2所示,本实用新型系统的工作原理如下:

1)驾驶员单元35通过方向盘输入转向操作,车轮13产生一个前轮转角使车辆行驶方向改变,此时车轮受到地面回正转矩44作用,并依次通过转向梯形、主动转向执行单元38和转矩传动单元39,反作用在磁流变阻尼器6内部的扭转弹簧上,改变阻尼转矩48大小,并通过转向轴和方向盘传递给驾驶员单元35,从而影响驾驶员转向路感;

转向过程中,传感器组分别接收车辆状态信息46和驾驶员状态信息47;路感控制单元37接收传感器组输出的驾驶员转矩信号24、阻尼转矩信号42、车速信号26、侧向加速度信号28;主动转向控制单元36接收位移信号22、转角信号25、车速信号26、横摆角速度信号27;

2)路感控制单元37经过计算,设定一个阻尼转矩预设值并输出对应的路感控制信号23进行路感控制;此时磁流变阻尼器中磁流变液材料性质变化,使得扭转弹簧输出的阻尼转矩发生变化,阻尼转矩通过转矩传动单元39作用于主动转向执行单元38的液压缸上,及通过转向轴和方向盘反馈给驾驶员单元35;

3)当车速处于20-80km/h或横摆角速度小于5.5rad/s时,主动转向控制单元36判断不需要执行主动转向干预;此时液压缸和液压缸活塞仅在转矩传动单元39的驱动下同步运动,并通过转向直拉杆输出对应的前轮转角45;路感控制单元37根据上述步骤2)实时调节阻尼转矩48大小;

4)当车速小于20km/h或大于80km/h,且横摆角速度大于5.5rad/s时,主动转向控制单元36判断需要执行主动转向干预,计算并输出直流电机控制信号29和比例换向阀控制信号30,分别控制直流电机14和比例换向阀17工作;直流电机和比例换向阀相互配合,改变输出的液压缸流量43;在转矩传动单元输出的阻尼转矩作用下,液压缸和液压缸活塞同步运动,此时液压缸流量43作用在液压缸活塞两侧并产生压力差,从而调节液压缸活塞相对液压缸产生叠加运动并改变转向直拉杆输出位移;转向直拉杆输出位移作用在车轮13上,且输出位移大小与前轮转角成定比关系,使得前轮转角得到调节;

5)执行主动转向干预时,液压缸和液压缸活塞的相对运动改变了原有转矩传递特性,产生的附加转矩反作用于扭转弹簧上;此时路感控制单元37根据转矩传感器B信号的变化,计算出当前状态下阻尼转矩与阻尼转矩预设值的偏差,并根据模糊PI自整定控制策略输出调节后的路感控制信号23,通过励磁线圈电流改变使得的控制磁场强度变化,从而调节磁流变液粘度大小,使阻尼转矩稳定在预设值±10%的范围内,驾驶员获得较好的路感。

其中,所述车辆状态信息46包括位移信号22、车速信号26、横摆角速度27、侧向加速度信号28和阻尼转矩信号42。

其中,所述驾驶员状态信息47包括驾驶员单元35输入的驾驶员转矩信号24及转角信号25。

其中,所述主动转向执行单元38包括液压缸、液压缸活塞和转向直拉杆。

其中,所述转矩传动单元39包括依次连接的扭转弹簧、转向轴、循环球转向器和转向摇臂。

其中,所述步骤2)中路感控制单元改变磁流变液材料性质具体为:路感控制信号23通过对供电回路33电流大小进行调节,输出励磁电流40作用在励磁线圈8上;励磁线圈8中通过变化的励磁电流40时,沿线圈中心有磁力线通过并产生控制磁场41;磁流变阻尼器6在控制磁场41的作用下,内部的磁流变液材料粘度发生改变,作用在扭转弹簧上的阻尼力矩也随之变化;当控制磁场强度41增大时,磁流变液粘度增大、流动性减小,由液态向类固态方向转变,阻尼转矩增大,驾驶员感受到的路感减小;当控制磁场强度41减小时,磁流变液发生可逆转变,粘度减小流动性增大,朝液态方向转变,阻尼转矩减小,驾驶员感受到的路感增大。

本实用新型具体应用途径很多,以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以作出若干改进,这些改进也应视为本实用新型的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1