一种用于船体分段外板的自动划线方法

文档序号:4122009阅读:128来源:国知局
一种用于船体分段外板的自动划线方法
【专利摘要】本发明公开了一种用于船体分段外板的自动划线方法,包括:对待划线船体分段外板和固定设备执行数字化静态扫描测量;为船舶制造车间建立三轴空间定位坐标系,并获得划线机器人的实时三维坐标信息;利用虚拟装配技术获得船体分段外板的设计模型,并将该设计模型与实体数字化模型执行对齐处理;结合对齐处理后形成的映射关系,获得划线机器人与待划线目标在设计模型中的相互位置,相应生成运动信号并驱动划线机器人执行实际划线操作。通过本发明,能够顺利实现虚拟装配过程对实际建造过程之间的指导,同时实现建造装配信息向虚拟装配的反馈,并具备划线精度和自动化程度高、快速高效、便于操控和适用性强等特点。
【专利说明】一种用于船体分段外板的自动划线方法
【技术领域】
[0001]本发明属于船舶建造【技术领域】,更具体地,涉及一种用于船体分段外板的自动划线方法。
【背景技术】
[0002]船体分段是由不同规格的型材和板材焊接而成,划线的操作就是精确确定它们之间相互位置关系的过程。分段制造及装配工艺具备工作区域广、现场设备布置复杂、定位精度要求高、装配工作量大等特点。在传统的船体装配过程中,往往采用大量装配型架、安装样板等辅助工作来定位和支撑船体部件,并通过人工操作进行对接装配,其实现简单、易于操作,对工作人员的技能要求较低,但是这种工作模式存在着装配精度低、调整复杂、质量不稳定、劳动强度大以及工作时间长等缺点。
[0003]船舶虚拟装配是将虚拟实现技术与船舶制造相结合的技术。虚拟装配利用计算机辅助技术,模拟一个与实际装配生产环境一致的虚拟装配环境,装配人员通过虚拟现实的交互手段对产品进行装配和拆卸,用户的操作被计算机记录下来,并根据推理以确定产品的装配和拆卸顺序及路径。采用数字化虚拟装配进行辅助装配工作,可以解决目前船体分段装配中因人工操作而造成的装配精度低、装配质量不稳定和劳动强度大等问题。
[0004]目前国内的部分造船企业已经研究并采用了数字化虚拟装配系统,实现了实体造型、装配检测、干涉分析等功能。然而,由于缺少在建造现场对中间产品进行准确测量和定位的手段,无法将虚拟装配系统产生的安装与定位信息有效地应用于实际建造施工过程中,使得虚拟装配在船体总段装配中的应用效果受到了极大的制约,这主要体现在以下几个方面:第一,船舶建造现场的安装定位工作与虚拟装配数据系统之间缺乏相互映射的机制,既无法将虚拟装配系统中的关键定位点的位置映射到建造车间内用以指导生产,也无法将建造车间内的装配位置信息反馈到虚拟装配系统中进行质量检测与公差分析;第二,车间装配作业主要依靠制作样板人工定位仍然采用传统的依靠样板等辅助工装进行安装坐标定位的方式,其定位不精确,而且定位时间长、步骤繁琐,出现问题时响应速度慢;第三,在船舶的装配作业中存在着大量的需要定位的关键点,使用样板进行定位时需要针对不同的关键点制作不同的样板,因而柔性低,并造成很大的资源浪费。

【发明内容】

[0005]针对现有技术的以上缺陷或改进需求,本发明提供了一种用于船体分段外板的自动划线方法,其中通过在虚拟装配与实船建造过程中建立信息映射和信息反馈,并基于该信息机制采用划线机器人来执行操作,相应能够顺利实现虚拟装配过程和实际建造过程之间的指导和反馈,在显著提高制造效率的同时保证船舶建造定位划线精度,并具备自动化和智能程度高、便于操控和适用性强等特点。
[0006]为实现上述目的,按照本发明,提供了一种用于船体分段外板的自动划线方法,其特征在于,该方法包括下列步骤:[0007](a)对处于船舶制造车间内的待划线船体分段外板以及固定设备执行数字化静态扫描测量,由此生成船体分段外板的实体数字化模型,同时测得所述固定设备的位置信息;
[0008](b)为整个船舶制造车间建立X-Y-Z三轴空间定位坐标系,并将所述固定设备的位置信息作为定位基准,相应获得该制造车间内作为移动设备的划线机器人的实时三维坐标信息;
[0009](C)利用虚拟装配技术获得该船体分段外板的设计模型,将步骤(a)所获得的实体数字化模型与该设计模型执行对齐处理,由此确立两者之间几何信息的相互映射关系;
[0010](d)根据虚拟装配系统所提供的定位指令,结合上述映射关系得到划线机器人与待划线目标在所述设计模型中的相互位置,并为划线机器人生成用于执行划线操作的运动信号;根据所生成的运动信号相应驱动划线机器人至目标处执行实际划线操作,由此实现船体分段外板的自动划线及定位过程。
[0011 ] 作为进一步优选地,在步骤(a)中,优选利用激光雷达方式来执行所述数字化静态扫描测量过程。
[0012]作为进一步优选地,在步骤(b)中,在所述固定设备上布置应答器并在移动设备上布置测距器,以此方式根据移动设备相对于固定设备的距离信息,从而计算得到移动单元的实时三维坐标。
[0013]作为进一步优选地,在步骤(C)中,优选利用基于最小二乘法的最佳化拟合或者基于关键位置对齐的拟合方式来执行所述对齐操作。
[0014]作为进一步优选地,在步骤(d)中,优选利用遗传算法或神经网络算法来为划线机器人生成用于执行划线操作的运动信号。
[0015]总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:
[0016]1、通过在虚拟装配与实船建造过程中建立信息映射关系,一方面能够顺利实现虚拟装配系统对实际建造过程的指导,另一方面还可将建造车间内的装配位置信息实时反馈到虚拟装配系统中进行质量检测与公差分析,以此方式方便快捷地得出船舶装配的超差情况,提高船舶建造过程的装配效率;
[0017]2、通过采用划线机器人和虚拟装配系统来执行划线操作,与现有技术中的样板辅助工装方式相比,可以大幅度提高船舶建造过程的精确定位,自动化和智能程度高,并可获得更好的经济效益;
[0018]3、按照本发明的自动划线方法通用性强,可针对不同类型的船舶及不同的船体分段均可使用,其柔性高、效率高,有利于缩短划线时间和装配周期、减少资源浪费,因而尤其适用于现代化船舶工业的装配用途。
【专利附图】

【附图说明】
[0019]图1是按照本发明的用于船体分段外板的自动划线方法的工艺流程图。
【具体实施方式】
[0020]为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
[0021]图1是按照本发明的用于船体分段外板的自动划线方法的工艺流程图。如图1中所示,该划线方法主要包括以下的工艺步骤:
[0022]首先,对处于船舶制造车间内的待划线船体分段外板以及固定设备执行数字化静态扫描测量,由此生成船体分段外板的实体数字化模型,同时测得所述固定设备的位置信肩
[0023]按照本发明的一个优选实施方式,优选采用激光雷达方式来执行所述数字化静态扫描测量过程。激光雷达可以对船舶分段外板的外表面等大型工件提供快速、高精度的精确三维测量,并直接对其表面进行高速扫描,从而测量得到在车间坐标系下被测对象表面的密集点云数据,对点云数据进行处理,即可得到处于船舶制造车间内的船体分段外板的实体数字化模型。除此之外,它还可以对船舶制造车间内的一些固定设备(固定点)进行三维测量得到被测点的三维坐标,利用该功能可以测量得到船舶制造车间内部固定设备的位置信息,并在后续步骤中作为定位基准以便使用。例如,可以选用METRIS激光雷达,其拥有频率雷达测距技术和红外线高精度瞄准镜,并通过得到角度和距离信息来计算被测曲面的正确三维位置,在5米远的距离单点不确定度小于0.05毫米,分辨率不低于0.01。
[0024]接着,为整个船舶制造车间建立X-Y-Z三轴空间定位坐标系,并将所述固定设备的位置信息作为定位基准,相应获得该制造车间内作为移动设备的划线机器人的实时三维坐标信息。
[0025]按照本发明的一个优选实施方式,其具体过程可描述如下:由于将船舶制造车间内一些位置保持相对不变的固定单元选择作为基准点,这样通过在这些基准点处布置应答器并在各个移动单元(譬如,划线机器人)上布置测距器,以此方式当移动单元发生运动时,测距器可以向位置固定的应答器发射无线电信号或光信号,应当器在收到信号后向测距器反馈信号,由此可以结合其相对于各个基准点之间的距离信息,利用空间定位算法得到各个移动单元的实时动态三维坐标。
[0026]假设各个基准点的三维坐标信息分部为(xl,yl, zl)、(x2, y2, z2)和(x3,y3, z3),而某个移动单元上布置的测距器所感应的与三个应答器之间的距离分部为dl、d2和d3,则该移动单元在χ-gamma-ζ三轴空间定位坐标系中的三维坐标信息(X,Y, Z)可依照以下公式计算:
【权利要求】
1.一种用于船体分段外板的自动划线方法,其特征在于,该方法包括下列步骤: (a)对处于船舶制造车间内的待划线船体分段外板以及固定设备执行数字化静态扫描测量,由此生成船体分段外板的实体数字化模型,同时测得所述固定设备的位置信息; (b)为整个船舶制造车间建立X-Y-Z三轴空间定位坐标系,并将所述固定设备的位置信息作为定位基准,相应获得该制造车间内作为移动设备的划线机器人的实时三维坐标信息; (C)利用虚拟装配技术获得该船体分段外板的设计模型,将步骤(a)所获得的实体数字化模型与该设计模型执行对齐处理,由此确立两者之间几何信息的相互映射关系; Cd)根据虚拟装配系统所提供的定位指令,结合上述映射关系得到划线机器人与待划线目标在所述设计模型中的相互位置,并为划线机器人生成用于执行划线操作的运动信号;根据所生成的运动信号相应驱动划线机器人至目标处执行实际划线操作,由此实现船体分段外板的自动划线及定位过程。
2.如权利要求1所述的自动划线方法,其特征在于,在步骤(a)中,优选利用激光雷达方式来执行所述数字化静态扫描测量过程。
3.如权利要求1或2所述的自动划线方法,其特征在于,在步骤(b)中,在所述固定设备上布置应答器并在移动设备上布置测距器,以此方式根据移动设备相对于固定设备的距离信息,从而计算得到移动单元的实时三维坐标。
4.如权利要求1-3任意一项所述的自动划线方法,其特征在于,在步骤(c)中,优选利用基于最小二乘法的最佳化拟合或者基于关键位置对齐的拟合方式来执行所述对齐操作。
5.如权利要求4所述的自动划线方法,其特征在于,在步骤(d)中,优选利用遗传算法或神经网络算法来为划线机器人生成用于执行划线操作的运动信号。
【文档编号】B63B9/00GK103434609SQ201310313612
【公开日】2013年12月11日 申请日期:2013年7月24日 优先权日:2013年7月24日
【发明者】赵耀, 袁华, 胡昌成, 严俊 申请人:华中科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1