基于无人机的自动精准调控喷洒农作物化控剂的设备的制造方法_2

文档序号:10309967阅读:来源:国知局
高度自控调节装置及化控剂流量自空调调节仪电连接。
[0031]无人机作业过程中,机载前端的压电式雷达距离监测仪不断地监测无人机与植株顶端的距离,压电式雷达距离监测仪将检测信号经第四信号转换电路转换为电压信号,转换后的电压信号通过中央控制器ECU与预设定的最佳飞行高度电压信号形成第一电压差信号,由该第一电压差信号来自动调控飞行高度,以达到最佳飞行高度。
[0032]将可见-近红外作物氮素光电测量仪检测到的信号通过第一信号转换电路转换成电压信号,转换后的电压信号通过中央控制器ECU与预期设定的最佳喷洒量电压信号形成第二电压差信号,将该第二电压差信号输送给化控剂流量自空调调节仪,由化控剂流量自空调调节仪来控制化控剂流量以完成精准喷洒作业。
[0033]本设备利用可见-近红外作物氮素光电测量仪来实时检测和反馈作物氮素含量,连续的将检测到的某一区域内作物氮素含量信号通过信号转化电路转化为电压信号,再通过中央控制器ECU来与标准氮素含量对应植株长势及疏密程度电压信号形成一个电压差信号,此电压差信号对应的化控剂的量则为本区域内作物长势及疏密程度,通过这一电压差信号的强弱来改变化控剂流量自动调控仪流量输出大小,从而来实现化控剂的精准变量快速喷洒。
[0034]设备利用电压差原理,通过可见-近红外作物氮素光电测量仪采集到的氮素信息,将这一信息转化成电压信号,再由中央处理器ECU对比处理输出的电压差信号,此电压差信号实时精准的的对区域内化控剂的需求完成监测和反馈。
[0035]本技术方案利用中央处理器ECU所反馈的电压差信号,通过电压集成放大电路对这一电压差信号实现集成放大来控制化控剂流量自动调控仪所需要的工作电压,由这一工作电压的强弱确定自动调控仪变频电机的转速来实现实时、定量、精准完成化控剂喷洒。
[0036]本技术方案所涉及的压电式雷达距离监测仪通过实时的、不间断的检测和反馈无人机作业高度与植株顶部的距离,将这一距离信号转化电压信号,再通过中央控制器ECU将起飞前设置好的作业高度于此电压信号形成一个电压差信号,通过这一电压差信号传输最终实现自动化调控作业高度完成化控剂精准喷洒。
[0037]无人机载设备布局如图1所示,太阳能转换器1(将太阳能转化为电能,输送储存在蓄电池内);附着在机载表面的太阳能电池板2(150W、单晶硅125X125、32mm聚光玻璃);化控剂喷洒器3(主要目的是将化控剂流量自动调控仪输送的化控剂均匀喷洒);可见-近红外作物氮素光电测量仪4(两侧机翼各加载一个,增大监测面域,以提高氮素含量反馈精度);化控剂流量自空调调节仪5(控制流量,完成精准喷洒)化控剂储存箱(6箱体内装有若干小孔隔板);机载计算机信号接收器储存箱7;压电式雷达距离监测仪8(监测无人机与植株顶端距离,监测距离精准到Icm)自控系统储存箱9;机载螺旋桨10;无人机动力储存蓄电池11;无人机操控信号接收器12;机载机翼13;信号转换输出中央控制器ECUl 4;机载支架轮15。
[0038]图2中的喷洒化控剂输入端口,具有错误报警功能。作业操控报警信号灯,提供错误报警。
[0039]本设备在使用过程中,
[0040]首先,根据农作物在喷洒区域内的长势情况,确定这一区域的最佳飞行高度及最佳喷洒量,将最佳飞行高度及最佳喷洒量通过第二信号转换电路和第三信号转换电路转化为电压信号,传送到中央处理器ECU,为调整实际飞行高度和最佳喷洒量作为参考。
[0041]在确定了最佳飞行高度及最佳喷洒量以后,通过无线操控器(装有无线电发射装置)向无人机发射信号,无人机上装有负责接收此频率信号的接收装置即无人机操控信号接收器,无人机接收到此信号后通过工作人员来确定飞航路线以后开始启动准备飞行作业。
[0042]在飞航作业启动以后,由机载前端的压电式雷达距离监测仪不断地监测飞机与植株顶端的距离,将在检测到的这一距离信号通过第四信号转换电路转换成电压信号,转换后的这一电压信号通过ECU与预期设定的最佳飞行高度电压信号形成一个电压差信号(电压差反应实际飞行高度),由这一电压差信号来自动调控飞行高度,以达到最佳飞行高度来合理喷洒化控剂。
[0043]由于在不同区域内农作物的长势不同,所需要喷洒的化控剂量不同。为此通过可见-近红外作物氮素光电测量仪来监测这一区域内氮素含量,由氮素含量来反馈出这一区域内植株的长势和种植疏密度。将可见-近红外作物氮素光电测量仪检测到的这一信号通过第一信号转换电路转换成电压信号,转换后的这一电压信号通过ECU与预期设定的最佳喷洒量电压信号形成一个电压差信号(电压差反应实际喷洒量),将这一电压差信号输送给化控剂流量自空调调节仪,由其来精准、变量、合理控制化控剂流量以完成精准喷洒作业。
[0044]该设备的中试效果表明:该设备对棉花的变量、合理、精准可控喷洒化控剂精准度可以达到94%以上,不但时效性好,而且准确度高;同时实现了自动化无人操控农作物化控理念,打破了传统的人工化控,在指导农作物实际生产中起到了举足轻重的作用。
[0045]最后应说明的是:以上所述仅为本实用新型的优选实施例而已,并不用于限制本实用新型,尽管参照前述实施例对本实用新型进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
【主权项】
1.一种基于无人机的自动精准调控喷洒农作物化控剂的设备,其特征在于,包括:化控剂喷洒器、可见-近红外作物氮素光电测量仪、化控剂流量自空调调节仪、化控剂储存箱、压电式雷达距离监测仪、自控系统、蓄电池和无人机操控信号接收器,所述可见-近红外作物氮素光电测量仪、无人机操控信号接收器和压电式雷达距离监测仪的输出端均与自控系统的输入端电连接,所述自控系统的输出端与化控剂流量自空调调节仪的输入端电连接,化控剂储存箱内的化控剂经化控剂流量自空调调节仪后,通过化控剂喷洒器均匀喷洒,所述蓄电池为设备提供电源。2.根据权利要求1所述的基于无人机的自动精准调控喷洒农作物化控剂的设备,其特征在于,所述自控系统包括,中央控制器ECU、将可见-近红外作物氮素光电测量仪监测的信号转换为电压信号的第一信号转换电路、飞行高度输入端口、将输入的飞行高度信号转换为电压信号的第二信号转换电路、喷洒化控剂输入端口、将输入的喷洒化控剂信号转换为电压信号的第三信号转换电路、将压电式雷达距离监测仪监测的飞行高度信号转换为电压信号的第四信号转换电路、将电压差信号转换为飞行高度的第五信号转换电路、飞行高度自控调节装置和将电压差信号转换为喷洒剂量信号的第六信号转换电路,所述飞行高度输入端口与第二信号转换电路的输入端电连接,所述喷洒化控剂输入端口与第三信号转换电路的输入端电连接,所述可见-近红外作物氮素光电测量仪的输出端与第一信号转换电路的输入端电连接,所述压电式雷达距离监测仪的输出端与第四信号转换电路的输入端电连接,所述第一信号转换电路、第二信号转换电路、第三信号转换电路和第四信号转换电路的输出端均与中央控制器ECU的输入端电连接,所述无人机操控信号接收器的输出端与中央控制器ECU的输入端电连接,所述中央控制器ECU的输出端分别与第五信号转换电路和第六信号转换电路的输入端电连接,所述第五信号转换电路的输出端与飞行高度自控调节装置电连接,所述第六信号转换电路的输出端与化控剂流量自空调调节仪电连接。3.根据权利要求2所述的基于无人机的自动精准调控喷洒农作物化控剂的设备,其特征在于,所述化控剂储存箱内设置多个隔板,且隔板上设置小孔。4.根据权利要求3所述的基于无人机的自动精准调控喷洒农作物化控剂的设备,其特征在于,所述可见-近红外作物氮素光电测量仪为两个,两个可见-近红外作物氮素光电测量仪分别设置在无人机的机翼外端。5.根据权利要求3所述的基于无人机的自动精准调控喷洒农作物化控剂的设备,其特征在于,还包括,附着在无人机表面的太阳能电池板和太阳能转换器,所述太阳能电池板的输出信号经太阳能转换器后,输入至蓄电池。6.根据权利要求3所述的基于无人机的自动精准调控喷洒农作物化控剂的设备,其特征在于,所述压电式雷达距离监测仪设置在无人机的前端。7.根据权利要求3所述的基于无人机的自动精准调控喷洒农作物化控剂的设备,其特征在于,还包括作业操控报警信号灯,所述作业操控报警信号灯分别与飞行高度自控调节装置及化控剂流量自空调调节仪电连接。
【专利摘要】本实用新型公开了一种基于无人机的自动精准调控喷洒农作物化控剂的设备,包括:化控剂喷洒器、可见-近红外作物氮素光电测量仪、化控剂流量自空调调节仪、化控剂储存箱、压电式雷达距离监测仪、自控系统、蓄电池和无人机操控信号接收器,所述可见-近红外作物氮素光电测量仪、无人机操控信号接收器和压电式雷达距离监测仪的输出端均与自控系统的输入端电连接,所述自控系统的输出端与化控剂流量自空调调节仪的输入端电连接,化控剂储存箱内的化控剂经化控剂流量自空调调节仪后,通过化控剂喷洒器均匀喷洒,所述蓄电池为设备提供电源。达到实现自动化、区域性精准喷洒化控剂作业来达到高产、节药、保护农田生态环境等目的。
【IPC分类】B64D1/18
【公开号】CN205221118
【申请号】CN201521057109
【发明人】朱鹏, 石宏刚, 周勇, 王飞, 张东明, 冯波
【申请人】石河子市智农科技发展有限公司
【公开日】2016年5月11日
【申请日】2015年12月17日
当前第2页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1