密封容器的制作方法

文档序号:4161329阅读:340来源:国知局
专利名称:密封容器的制作方法
技术领域
本发明涉及具备以淀粉为主要原料并且含有具有生物降解性的发泡成形物和在其表面上粘贴的覆盖膜的生物降解性容器本体,和在容器本体的开口周围边缘部分上热密封的盖子的密封容器,特别涉及适合作为食品容器等使用后可以废弃的一次性各种发泡成形物使用的密封容器。
背景技术
通常,作为使用后可以废弃的一次性成形物,塑料成形物和纸浆成形物已成为主流。这是因为,根据成形物的用途,通常对上述一次性成形物的材料要求具有一定程度的耐久性和强度,同时要求容易成形。
但是,上述塑料成形物和纸浆成形物都在作为一次性成形物使用时存在下述的各种问题。
首先,塑料成形物存在下面的问题在焚烧处理时产生非常高的温度,损坏焚烧炉,或者副产二恶烷(ダイオキシン)类的环境污染物质。而且,即使对塑料成形物进行填埋处理,塑料在自然环境下也基本上不分解,因此,在第一次填埋的场所不可能再次填埋塑料。而且,由于近年来废弃物的量增加,填埋场所也难以连年得到保证。另外,由于塑料成形物不容易分解,在自然环境下持续经过很长时间仍会造成污染。
而且,由于作为塑料原料的石油等化石燃料的贮藏量年年减少,因此,将来塑料成形物的价格可能会比现在高。
另一方面,对于纸浆成形物而言,除了材料容易焚烧处理之外,其在自然环境下也能够分解,因此,在这方面也优于塑料成形物。但是,作为纸浆原料的树木其生长周期长,因此,大量的纸浆消耗会大幅度减少森林资源。森林资源的减少不仅会大量破坏该地区的环境,从大规模上看,还大量损害森林吸收二氧化碳的效果,加速大气中二氧化碳增加造成的全球变暖。
因此,为了解决上述问题,特别是从环境方面考虑,近年来,成形物的处理方法从废弃处理转移到再利用处理。
但是,在上述再利用处理中,例如,如果举出对一次性成形物的一个主要用途即食品容器的例子,在将容器返回到再利用处理之前,必须除去附着在该容器中的食物残留物和调味品等残渣。这是因为作为再利用原料必须尽可能地避免混入杂质。
由于这些残渣的除去通常是通过水洗进行的,因此,结果一旦污水排放量增大,就会导致由此引起的河流和海洋等水质污染这一其他环境问题。而且,上述残渣的除去本身就非常费工,降低了再利用的效率,并且,目前社会上还没有确定足够的再利用体系,因此,再利用处理在成本方面也存在问题。
因此,作为与再利用处理不同的成形物的新的处理方法,开发了通过利用微生物生物降解的成形物处理技术,并已经展露头脚。在该处理技术中,以各种生物降解性的塑料和淀粉等天然高分子为主要原料成形成形物,因此,能够避免上述各种问题的产生。
特别是,在采用上述生物降解的处理技术中,从实用性方面考虑,注意到了利用淀粉和蛋白质等天然高分子的技术。这是因为,上述各种生物降解性塑料具有与目前各种塑料(非分解性或者难分解性)基本相同的优质品质性能,但是实际上存在生物降解速度慢的问题。
例如,如果增大采用生物降解性塑料成形的成形物的厚度(壁厚),直至完全分解就需要非常长的时间,因此,在使用的范围内不能增大成形物的体积。而且,在将上述生物降解性塑料构成的成形物作为特别是一次性饭盒等使用时,与食品残渣一起废弃(コンポスト化)成为对环境最没有负荷的处理方法,但是,由于上述生物降解性塑料的分解速度比食品残渣慢得多,废弃处理困难。而且,通常,成形物具有厚度和强度时,难以焚烧处理,用于提高生物降解性塑料的分解速度的粉碎也变得困难,所有,混合处理生物降解性塑料制成的成形物事实上是不可能的。
与此不同,淀粉和蛋白质等具有良好的生物降解性,可以利用即使增大体积也非常容易分解的、通过农业等能够大量生产的植物淀粉等,因此,资源的保证并不困难,基本上可以作为发泡成形体利用,因此,具有能够获得兼有适当厚度和绝热性的成形物的优点,特别受关注。
作为上述使用淀粉和蛋白质等进行的生物降解的处理技术,可以举出例如(1)日本公开专利公报“特开平5-320401号公报”(
公开日平成5年12月3日)、(2)日本公开专利公报“特开平7-224173号公报”(
公开日平成7年8月22日),(3)日本公开专利公报“特开平7-10148号公报”(
公开日平成7年1月13日),(4)日本公开专利公报“特开2000-142783公报”(
公开日平成12年5月23日),(5)日本公开专利公报“特开平7-97545号公报”(
公开日平成7年4月11日)等各种技术。
首先,在(1)和(2)的技术中,由于主要原料使用淀粉的天然物质,与生物降解性塑料相比,具有能够发挥良好的分解性的优点,同时,与纸浆相比,具有成形形状多样性的优点,但是,缺乏耐水性和耐湿性,用途受到限制,导致必须保证防湿保管等问题。
(3)和(4)的技术中,以淀粉或者与其类似的各种多糖类为主要原料,成形为成形物,但是,为了提高耐水性,在成形物的表面涂覆天然树脂(达玛树脂或者虫胶树脂等),形成耐水覆膜。
但是,在以淀粉为主要原料成形得到的成形物(包括发泡成形物)中,表面不形成完全的平滑状态,而是产生细微的凹凸,因此,采用单纯的涂覆方法,在与耐水覆膜中的凹凸部分对应的位置容易产生细微的针孔。因此,即使可能期望一定程度的防水效果,也难以赋予完全的耐水性。特别是在要求耐湿性的情况下,从上述耐水覆膜的针孔容易吸收潮气,导致成形物容易变形等问题。
而且,上述达玛树脂和虫胶树脂等,为了涂覆,例如必须溶解在醇类等有机溶剂中。因此,在涂覆处理之后除去有机溶剂时,存在这些有机溶剂在空气中扩散,需要不对大气造成环境污染所用的大规模的装置等制造设备上的问题。
在上述(5)的技术中,与上述(3)和(4)的技术同样,对由淀粉等构成的缺乏耐水性的生物降解性材料的表面涂覆将聚酯溶解在卤化烃中形成的生物降解性涂覆剂。在该技术中,作为具体的涂覆方法使用浸涂法(浸渍涂覆法),因此,即使对复杂形状的成形物,也可以形成适度的耐水覆膜。
但是,在该技术中,必须除去用于涂覆剂溶解的卤化烃,与上述(3)和(4)的技术同样,存在需要用于防止卤化烃扩散的装置等问题。而且,卤化烃对人体和环境不利的方面多,特别是在(5)的技术中具体举出的卤化烃是氟系的,因此,在大气中必须尽可能地限制挥发。结果,作为上述装置,存在需要大型的气密室和回收装置的问题。
除了上述各种技术之外,还有以蜡和疏水性蛋白质制成涂覆液之后涂覆在成形物表面上的方法,但是,通常,在成形物的整个表面上十分均匀并且完全地涂覆耐水覆膜很困难。如果是平板那样的平的成形物,涂敷比较容易,但是,在上述以淀粉为主要原料的成形物中,其表面容易产生凹凸,妨碍形成均匀的膜,另外,如果是杯状或者瓶状等其截面大致呈圆形的成形物,需要旋转成形物和涂敷装置,涂敷的难度进一步增大。
进而,例如,即使采用浸涂法等能够将涂敷液足够均匀地涂敷,涂敷后的涂敷液直至发生固化形成覆膜之前都会流下来,存在在覆膜上容易产生不均的问题。
而且,上述蜡的熔点较低,因此,存在耐热性差的问题。上述疏水性蛋白质虽然耐热性比较良好并且不必使用有机溶剂,但是,多数情况下使用水系溶剂,因此,存在在涂敷过程中成形物吸收水分发生软化变形的问题。
此外,目前还有人提出不对上述成形物表面涂敷耐水覆膜而是层压耐水覆膜的技术。具体地说,例如(6)日本公开专利公报“特开平11-171238号公报”(
公开日平成11年6月29日),(7)日本公开专利公报“特开平5-278738号公报”(
公开日平成5年10月26日),(8)日本公开专利公报“特开平5-294332号公报”(
公开日平成5年11月9日)等技术。
在上述(6)的技术中,不是将淀粉成形,而是用非透水性或者非吸收性保护层被覆通过浆模压法制备的容器。该技术具有可以直接使用目前实施的对纸容器被覆塑料的技术的优点,但是,浆模的主体是纤维,因此,生物降解速度缓慢,因此存在无法与食品的残渣等一起废弃,对容器也难以增加厚度,并且还无法进行深冲成型,无法制成多种多样的成形物等问题。
另一方面,在上述(7)和(8)的技术中,在由天然多糖类和蛋白质或者将它们在可生物降解的范围内进行化学修饰的产物制成的生物降解性容器的表面被覆生物降解性塑料薄膜,制造生物降解性容器。
在该技术中,使用生物降解性塑料作为薄的耐水覆膜,另一方面,容器本体是用天然多糖类和蛋白质等成形为具有足够厚度的容器,因此,能够发挥足够的耐水性和足够的生物降解性。因此,作为使用淀粉和蛋白质等的采用生物降解的处理技术,是特别需要的技术。
但是,在上述(7)的技术中,其仅具有对生物降解性容器本体被覆生物降解性塑料薄膜的构成,对生物降解性容器的具体构成几乎没有提及。
例如,生物降解性容器本体以多糖类或者蛋白质为主要成分时,其存在强度的问题,但是(7)的技术中,对于强度没有任何说明。而且,对于怎样具体被覆生物降解性塑料薄膜,例如是通过涂敷法形成,还是预先形成被覆膜再粘贴等,没有任何记载。
在上述(7)的技术中,对于对生物降解性容器本体的生物降解性塑料薄膜的被覆状态完全没有规定。上述生物降解性塑料薄膜是为了提高以多糖类或者蛋白质为主要成分的生物降解性容器本体的耐水性而被覆的,但是,在上述(7)的技术中,仅描述了被覆,对被覆状态是什么样的没有任何记载。
不管怎样将生物降解性容器用在一次性使用的用途中,作为一次性容器的稳定性和耐久性都是必须的,生物降解性塑料薄膜容易从生物降解性容器本体上剥离这种情况当然不能说具有耐久性。所以,对容器本体的被覆状态变成了重要的条件,但是,在上述(7)的技术中,对这方面没有任何考虑。
而且,由于上述生物降解性塑料的生物降解速度迟缓,难以作为厚壁的成形物使用,但是,生物降解速度不仅与成形物的壁厚有关,还与成形物中所含的总量也有很大关系。因此,在上述(7)的技术中,只记载了将生物降解性容器本体发泡和提高生物降解性,对发泡的程度和生物降解性的关系,以及生物降解性塑料和生物降解性容器本体的生物降解的平衡没有作任何说明,因此,无法使一个容器本体的生物降解良好地进行。
另一方面,上述(8)的技术可推测为对应于上述(7)公开的生物降解性容器的一个制造方法,但是,在该技术中,将热塑性塑料溶解在溶剂中,涂敷在生物降解性容器本体的表面,将其干燥,挥发溶剂后,层压由热塑性塑料构成的其它涂敷薄膜并进行热压。也就是说,为了稳定并粘贴涂敷薄膜(相当于生物降解性塑料薄膜),公开了将热塑性塑料用作粘结剂。
在本发明中,正如针对上述(3)到(5)的技术所描述的,如果将热塑性塑料溶解在溶剂中加以利用,会导致需要用于防止溶剂扩散的装置等问题。而且,在(8)的技术中的具体实施例中,作为溶剂使用氯仿,其在大气中无法尽可能地发散,因此,与(5)的技术相同,作为上述装置,还存在需要大规模的气密室和回收装置的问题。
在上述(8)的制造方法中,在预先由多糖类和蛋白质预先形成密封条之后,通过用模具压制成形该密封条,可以得到生物降解性容器本体。因此,存在无法成形例如杯状的深冲形状的容器和带间壁食品托盘那样的成形物厚度均匀的成形物的问题。
而且,作为用于保存食品的容器可使用下述密封容器在内部具有用于容纳食品的空间,并且,具备具有用于取放上述食品的开口的容器本体和用于密封上述容器本体开口的、以塑料为主要成分的盖膜,上述盖膜被热封在容器本体开口的边缘部分。
例如,作为杯面的容器,可以使用将在塑料膜上进行铝蒸镀的盖膜热封在由发泡苯乙烯构成的大碗形状的容器本体的开口边缘部分上的密封容器。但是,现在,作为杯面的容器使用的容器都是不具有生物降解性的容器。
因此,需要具有与现有的杯面容器等同的各种性能,例如在流通和保存时保持内容物即干燥状态的面的质量,和用于防止损坏的作为保存用容器的功能、加入热水放入面溶解汤料保持能吃状态的作为调理用容器的功能、以及舒适并且安全地食用做好的面的作为容器的功能等,并且能够发挥非常良好的生物降解性的生物降解性的密封容器。
发明公开本发明鉴于上述问题,其目的在于提供除了具有足够强调和至少实现足够耐水性之外还能够发挥非常良好的生物降解性的生物降解性密封容器。
本发明的另一目的是提供在流通和保存时保持内容物的品质,具有用于防止破损的足够的强度和遮光性、遮香性(保香性、气味遮断性)、阻气性(水蒸气阻挡性、酸阻挡性等)等作为保存用容器的功能,并且,具有耐热性、耐水性、保温性等作为调制用容器的功能,以及具有绝热性和容易招待和拿取的作为餐具的功能等,除此之外,还能够发挥非常良好的生物降解性的生物降解性的密封容器。
为了达到上述目的,本发明的密封容器的特征在于在内部具有用于容纳内容物的空间,并且,具备具有用于取放上述内容物的开口的生物降解性的容器本体和用于密封上述容器本体开口的以塑料为主要成分制成的盖子的密封容器中,上述容器本体包括成形成给定形状的生物降解性发泡成形物和在其表面上粘贴的被覆膜,上述生物降解性发泡成形物是以淀粉或者其衍生物为主要成分,通过将在其中混合水得到的浆状或者糊状的成形用原料进行水蒸气发泡进行成形的成形物,上述被覆膜以生物降解性塑料为主要成分,至少具有疏水性,上述盖子热封在容器本体的开口的边缘部分。
根据上述构成,生物降解性发泡成形物虽然通过以淀粉为主要成分制备浆状或者糊状的成形用原料,用其进行水蒸气发泡成形,可以成形成非常复杂的形状,同时成形达到的发泡成形物保持一定程度的含水率,与现有的淀粉成形物相比,能够发挥优良的强度。而且,由于对该成形发泡成形物粘贴了具有生物降解性的被覆膜,例如,采用与发泡成形物成形时的成形模相同的成形模进行热压,在发泡成形的同时粘贴,可以依照发泡成形物的形状确实并且容易地被覆。
根据上述构成,构成容器本体的成形物是发泡体(发泡成形物),因此绝热性优良。结果,例如,在往容器本体内部的空间内加入热水时,能够避免热量散到外部和水冷却,或者容器本体的外侧表面变得过热不易拿取。而且,根据上述构成,构成容器本体的成形物是发泡体(发泡成形物),因此,能够获得一定的遮光性。结果,例如,在容器本体内部的空间容纳作为内容物的食品时,能够防止光造成的食品的质量降低。
上述被覆膜以具有接近常规塑料的形状的生物降解性塑料为主要成分,至少具有疏水性,因此,仅通过粘贴该被覆膜,能够使以上述淀粉为主要成分的发泡成形物具有耐水性。而且,通过适当选择生物降解性塑料的种类等,能够另外赋予阻气性等其它各种功能。
采用上述构成,盖子被热封在容器本体的开口的边缘部分,因此,能够提供保持足够密封性和阻气性的密封容器。
上述盖子优选是以生物降解性塑料为主要成分的膜。
采用上述构成,由于容器本体和盖子都可生物降解,因此,可以在打开密封容器取出内容物之后,不将盖子从容器本体上分离,或者,将从容器本体上分离的盖子与容器本体一起,进行生物降解处理。而且,不必将盖子分开,可以省去废弃处理的步骤。而且,还提供了对环境有利到盖子能够生物降解程度的密封容器。
采用上述构成,由于盖子是以塑料为主要成分的膜,因此能够对盖子赋予耐透湿性和阻气性。而且,盖子是膜,容易弯曲,因此,在开封时盖子容易撕下。
上述被覆膜和盖子都优选作为主要成分的生物降解性塑料的熔点在130℃以上。
采用上述构成,容器本体用耐热性膜(被覆膜)被覆以原本就具有非常优良的耐热性的淀粉为主要成分的发泡成形体容器(生物降解性发泡成形体),盖子也由耐热性材料构成,容器本体和盖子都具有良好的耐热性。因此提供了在加入100℃左右的高温内容物时,容器本体和盖子都能够维持足够的强度和耐热性、耐水性、耐透湿性的密封容器。而且,上述构成的密封容器适用于例如杯面容器等加入热水的用途。
作为上述熔点在130℃以上的生物降解性塑料优选改性聚酯。
本发明的密封容器适合作为食品容器。也就是说,在本发明被覆膜的密封容器中,优选在上述容器本体内部的看见封入食品作为内容物。这样,即使在密封容器内部的空间残留食品,也会起到能够进行包括食品残渣的整个的生物降解处理这样的显著效果。
本发明的其它目的、特征和优点通过如下所示的记载能够充分理解。而且,被覆膜的优点在下面参照附图的说明中也变得清楚。
附图的简单说明

图1表示作为本发明一个实施方案的一例密封容器的大碗型密封容器的形状的截面简图。
图2表示作为本发明一个实施方案的一例密封容器的盘型密封容器的形状的截面简图。
图3表示作为本发明一个实施方案的一例密封容器的杯型密封容器的形状的截面简图。
图4(a)和图4(b)表示作为本发明一个实施方案的一例生物降解性容器本体的大碗型密封容器的形状的截面简图。
图5(a)和图5(b)表示作为本发明一个实施方案的其它例生物降解性容器本体的盘型密封容器的形状的截面简图。
图6(a)和图6(b)表示作为本发明一个实施方案的其它例生物降解性容器本体的杯型密封容器的形状的平面简图。
图7表示本发明使用的成形用原料组成的图表,表示以成形物原料整体作为基准的图表(I)、以固形部分总量为基准的图表(II)、和以原料成分总量和水的比例表示的图表(III)之间的大致关系。
图8(a)和图8(b)表示用于成形形成图4(a)和图4(b)表示的大碗型容器的本体的发泡成形物的成形模构成的截面简图。
图9(a)和图9(b)表示用于成形形成图5(a)和图5(b)表示的盘型容器的本体的发泡成形物的成形模构成的截面简图。
图10(a)和图10(b)表示用于成形形成图6(a)和图6(b)表示的杯型容器的本体的发泡成形物的成形模构成的截面简图。
图11(a)和图11(b)表示用于成形形成图6(a)和图6(b)表示的杯型容器的本体的发泡成形物的成形模的构成的其它例子的截面简图。
图12表示在图8(a)和图8(b)所示的成形模中具备内部加热用电极的一例构成的说明简图。
图13(a)表示用图8(a)和图8(b)表示的成形模形成的发泡成形物的形状的截面简图,图13(b)表示用图9(a)和图9(b)表示的成形模形成的发泡成形物的形状的截面简图,图13(c)表示用图10(a)和图10(b)或者图11(a)和图11(b)表示的成形模形成的发泡成形物的形状的截面简图。
图14是用于说明在图13(a)表示的生物降解性发泡成形物的表面上使用后粘贴法粘贴被覆膜的粘贴工序的说明简图。
图15(a)表示使用后粘贴法粘贴被覆膜的生物降解性容器本体的表面被覆膜的粘贴状况的说明简图,图15(b)表示使用同时粘贴法粘贴被覆膜的生物降解性容器本体的表面的被覆膜的粘贴状况的说明简图。
图16说明在制造图5(a)表示的盘型容器的同时粘贴法中采用制法1情况的说明图。
图17是说明在制造图4(a)表示的大碗型容器的同时粘贴法中采用制法2情况的说明图。
图18是说明在制造图5(a)表示的盘型容器的同时粘贴法中采用制法3情况的说明图。
图19是说明在制造图4(a)表示的大碗型容器的同时粘贴法中采用制法4的情况的说明图。
图20(a)是表示在采用制法5制造图6(a)表示的杯型容器时,将被覆膜切成膜片状态的两份的一个例子的平面简图,图20(b)是将被覆膜切成膜片状态的三份的一个例子的平面简图。
图21是说明在制造图6(a)表示的杯型容器的同时粘贴法中采用制法5的情况的说明图。
图22是说明在制造图6(a)表示的杯型容器的同时粘贴法中采用制法6的情况的说明图。
图23是说明在制造图6(a)表示的杯型容器的同时粘贴法中采用制法7的情况的说明图。
图24(a)是表示在图1所示的大碗型密封容器中,在大碗型容器的边缘部分粘贴被覆膜的情况下,盖子和大碗型容器的粘结状态的说明简图,图24(b)是表示在大碗型容器的边缘部分不粘贴被覆膜的情况下干燥和大碗型容器的粘结状态的说明简图。
用于实施发明的最佳技术方案基于附图对本发明的一个实施方案进行如下说明。但是,本发明并不限于此。
本发明的密封容器在内部具有用于容纳内容物的空间,并且,具备具有用于取放上述内容物的开口的生物降解性容器本体(容器本体)和用于密封上述生物降解性容器本体的开口的以塑料为主要成分的盖子,上述盖子被热封在生物降解性容器本体的开口的周边部分。
上述生物降解性容器本体包括成形为给定形状的生物降解性发泡成形物和在其表面上粘贴的被覆膜的生物降解性成形物。该被覆膜以生物降解性塑料为主要成分,至少具有疏水性。因此,上述生物降解性发泡成形物以淀粉或者其衍生物为主要成分,通过水蒸气发泡将在其中混合水得到的浆状或者糊状的成形用原料成形。
而且,在上述生物降解性容器本体中,优选将被覆膜等生物降解性塑料相当于生物降解性发泡成形物的量规定为一定量,或者规定生物降解性发泡成形物中所含的空气相的体积比例,进而,上述被覆膜优选在该生物降解性发泡成形物的表面上以大致致密的状态被覆。这时的粘着状态为被覆膜直接粘结更为优选,但是通过粘结剂层粘结也可以。
在以下的说明中,将上述生物降解性发泡成形物简单记为“发泡成形物”。而且,所谓上述的浆状是指至少在淀粉中加入水的状态即具有足够流动性的状态。但是,淀粉不需要溶解在水中,可以形成接近悬浮液的状态。另一方面,所谓上述糊状是指,流动性比上述浆状低的状态,即接近半固形的状态。
下面对生物降解性容器本体进行说明。具体地说,作为该生物降解性容器本体的一个例子,举出大碗形状的容器(是指大碗型容器),如图4(a)所示,该大碗型容器10a具有上述生物降解性发泡成形物即容器本体11a和直接大致密合粘贴以覆盖其表面的被覆膜12。或者,在上述大碗型容器10a中,如图4(b)所示,可以具有插入在容器本体11a和被覆膜12中间并将该被覆膜12粘贴在容器本体11a的表面上的粘结剂层13。如后所述,容器本体11a的表面不需要完全被被覆膜12覆盖,可以是部分覆盖的状态。
同样,作为生物降解性容器本体的其它例子,可举出盘型的容器(盘型容器),如图5(a)所示,该盘型容器10b也由容器本体11b和被覆膜12构成,或者,如图5(b)所示,形成在容器本体11b和被覆膜12中间具有粘结剂层13的构成。
作为生物降解性容器本体的其它例子,可举出杯型的容器(杯型容器),如图6(a)所示,该杯型容器10c也由容器本体11c和被覆膜12构成,或者,如图6(b)所示,形成在容器本体11c和被覆膜12中间具有粘结剂层13的构成。在图6(a)和图6(b)中,上图是杯型容器10c的纵向截面图,下图是对应于上图的平面图(从上方俯瞰杯型容器10c的图)。
形成生物降解性容器本体的本体(上述容器本体11a·11b·11c)的上述生物降解性发泡成形物以淀粉或者其衍生物为主要成分,通过水蒸气发泡由在其中混合水得到的浆状或者糊状成形用原料成形。
作为上述成形用原料的主原料使用的淀粉,没有特别的限定。例如,可以使用马铃薯、玉米、木薯、米、小麦、甘薯等由作为主要谷物的世界上生产的农产品容易得到的淀粉。上述淀粉可以由特定的农产品制造,也可以混合由多种农产品制造的产物。
上述淀粉的衍生物是指在不影响生物降解性的范围内对淀粉进行修饰的,具体的可举出例如α化淀粉、交联淀粉、改性淀粉等。也可以使用上述未修饰的淀粉和上述淀粉的衍生物混合的混合物。但是,广义上说,本发明的淀粉包括未作任何修饰的淀粉(狭义的淀粉)和上述淀粉的衍生物及它们的混合物。在以下的说明中如果没有特别的限定写为“淀粉”,就是指广义的淀粉。
作为上述成形用原料中所含淀粉的含有率,如图7的“(II)主要固形部分总量中”的图表所示,以该成形用原料的主要固形部分的总量为100重量%时,优选在50重量%到100重量%的范围内。而在以加水的成形用原料全部为100重量%时,如图7的“(I)成形用原料中”的图表所示,优选在20重量%到60重量%的范围内。在该范围内,生物降解性容器本体可以看成其主要成分为淀粉,能够发挥良好的生物降解性。下面对上述主要固形部分和其总量进行说明。
在上述成形用原料中,除了上述淀粉之外,还可以含有各种添加剂。作为这些添加剂,具体地说,可举出增量剂、强度调整剂、可塑剂、乳化剂、稳定剂、均质性调整剂、保湿剂、手感调整剂、导电率调整剂、介电损失调整剂、膨化剂、着色剂等。
这些添加剂可以举出具有提高生物降解性容器本体的制造效率和避免制造过程中的问题的制造过程上的优点,以及提高得到的生物降解性容器本体的品味和降低生物降解性容器本体的成本的作为成品的密封容器的优点。这些添加剂只要不会大幅度降低发泡成形物和生物降解性容器本体的质量,就没有特别的限定。
上述增量剂是目的在于通过加入到成形用原料中增加该成形用原料重量并尽可能地减小主要原料即淀粉的使用量,是降低成本的添加剂。因此,只要是比淀粉更便宜的,就没有特别的限定,优选可以使用兼顾废物处理的伴随食品等的加工制造的副产物。
具体地说,可以举出例如(1)以芹、土豆、柑桔类(桔子、柠檬、葡萄柚等)、苹果、葡萄、浆果类、凤梨、甘蔗、甜菜等蔬菜和水果为原料的食品(饮料)的制造加工时等产出的榨汁渣和压榨渣或者它们的混合物;(2)以豆腐渣等豆腐等的豆腐渣为原料的加工食品制造时产生的副产物;(3)日本酒、烧酒、啤酒、红酒等酒类制造时产生的酒糟、烧酒糟、啤酒酵母渣、红酒酵母渣或者它们的化合物;(4)咖啡、红茶、麦茶、绿茶、乌龙茶等茶类等嗜好物类的残渣、茶渣或者它们的混合物;(5)大豆、玉米、菜籽、蓖麻等榨油后的榨油渣或者它们的混合物;(6)麸子、米糠、稻壳等渣类精制时生产的副产物或者它们的混合物;(7)麸质粗粉等淀粉生产时产生的副产物;(8)玉米蛋筒、饼干、薄脆、华夫饼干等糕点和面包制造产品制造时产生的烘烤屑或者它们的混合物;(9)对上述各副产物等干燥处理和或粉碎处理的产物等等。它们可以只使用一种也可以两种以上混合使用。
上述强度调整剂是调整发泡成形物和生物降解性容器本体的强度(特别是提高强度)的添加剂,没有特别的限制,具体地说,例如,作为上述增量剂举出的(1)~(9)各种副产物;(10)葡萄糖(葡萄糖)、糊精或者异构化汤等糖类或者它们的混合物;(11)山梨糖醇、甘露糖醇、乳糖醇等糖醇或者它们的混合物;(12)植物性油脂、动物性油脂、它们的加工油脂等油脂或者它们的混合物;(13)巴西棕榈蜡、小烛树蜡、蜂蜡、石蜡、微晶蜡等蜡类或者它们的混合物;(14)黄元胶、虫胶、愈疮胶、刺槐豆胶、果胶、阿拉伯树胶、梧桐胶、楤木胶、カラギ—ナン、フア—セルラン、寒天、藻酸及其盐等、微生物产生的多糖类或者由植物产生的多糖类等增粘多糖类或者它们的混合物;(15)钙、钠、钾、铝、镁、铁等金属的氯化物、硫酸盐、有机酸盐、碳酸盐、氢氧化物、磷酸盐等金属盐类或者它们的混合物;(16)石英粉、硅藻土、滑石、硅等不溶性矿物类或者它们的混合物;(17)纤维素、微晶纤维素、纸、纸浆(也指废纸浆、原浆)、羧甲基纤维素、甲基纤维素、乙酰纤维素等植物性纤维及其衍生物或者它们的混合物;(18)玻璃、金属、碳、陶瓷等无机物或者由它们构成的纤维等的各种构造物;(19)贝壳、骨粉、蛋壳、叶子、木粉等天然原料或者它们的混合物;(20)碳酸钙、碳、滑石、二氧化钛、硅胶、氧化铝、非纤维填料或者它们的混合物;(21)硬脂酸、乳酸、月桂酸等脂肪酸或者它们的金属盐等盐类,或者酸酰胺、酯等脂肪酸衍生物或者它们的混合物;(22)甘油、聚甘油、丙二醇、乙二醇甘油脂肪酸酯、聚甘油脂肪酸酯、丙二醇脂肪酸酯、糖酯、卵磷脂、山梨聚糖脂肪酸酯、聚山梨醇酯等其它食品添加剂或者它们的混合物;(23)虫胶、松香、白松树脂、古塔波胶、达玛树脂等天然树脂或者它们的混合物;(24)聚乙烯醇、聚乳酸等生物降解性树脂或者它们的混合物;(25)乙酰基三丁基サイトレ—ト、锆盐溶液、碱式铵锆碳酸盐溶液或者它们的混合物等。这些强度调整剂可以只使用一种,也可以两种以上混合使用。
上述可塑剂是指改善成形用原料的流动特性丙赋予得到的发泡成形物和生物降解性容器本体柔软性的添加剂,没有特别的限定,但是,具体的说例如上述增量剂中举出的(1)~(9)各种副产物;作为强度调整剂举出的(10)~(21)和(23)、(24)的各种化合物;(26)乙酰基聚丁基サイトレ—ト、或者甘油、聚甘油、丙二醇、乙二醇等糖醇类或者它们的混合物等。这些可塑剂可以只使用一种,也可以两种以上混合使用。
上述乳化剂是在往成形用原料中加入油性添加剂时,将该油性添加剂充分混合制成水中油滴型的乳液状的添加剂,对此没有特别的限定,具体可举出(27)甘油酸酯、聚甘油酸酯、丙二醇脂肪酸酯、糖酯、山梨糖醇酯、卵磷脂、聚山梨糖醇等表面活性剂或者它们的混合物。
上述稳定剂是能够使调制的成形用原料的状态稳定化的添加剂,没有特别的限定,具体的可举出作为上述主原料的淀粉(狭义的、没有修饰的)或者其衍生物;上述强度调整剂中举出的(10)糖类;(11)糖醇;(14)增粘多糖类;(17)植物性纤维及其衍生物(但是除纸之外);(21)脂肪酸、脂肪酸盐、脂肪酸衍生物等。这些稳定剂可以只使用一种也可以两种以上混合使用。
上述离模剂是用于从成形模容易取出成形后的发泡成形物并尽可能地使发泡成形物的表面光滑而添加的添加剂,对此没有特别的限定,具体的可举出例如上述强度调整剂中举出的(12)油脂;(13蜡;(14)增粘多糖类;(21)脂肪酸、脂肪酸盐、脂肪酸衍生物等。这些离模剂可以只使用一种也可以两种以上混合使用。
上述均质性调整剂是用于使浆状或者糊状的成形用原料中的均质性,即尽可能的细化成形用原料的“纹理”(这时,形成处于浆状或者糊状状态的固形部分的粒子等)、并形成均一并且光滑的状态的添加剂,没有特别的限定,具体的例如可举出作为上述主原料的淀粉(狭义的、未修饰的)或者其衍生物;在增量剂中举出的(1)~(9)的各种副产物;强度调整剂中举出的(10)~(25)的各种化合物等。这些调整剂可以只使用一种也可以两种以上混合使用。
上述保湿剂是使发泡成形物中含有一定水分的物质,具有与上述可塑剂同样的技能。也就是说,如果能使以淀粉为主要成分的发泡成形物处于含有一定程度水分的状态(保湿状态),能够获得α化的淀粉的脆度(脆性)降低,其强度和柔软性提高的效果。因此,保湿剂还具有作为可塑剂和强度调整剂的功能。
作为上述保湿剂也没有特别的限定,具体的可举出例如上述主要原料的淀粉(狭义的、未修饰的)或者其衍生物;作为增量剂举出的(1)~(9)的各种副产物;强度调整剂中举出的(10)糖类;(11)糖醇;(12)油脂;(13)蜡;(14)增粘多糖类;(15)金属盐类;(17)植物性纤维及其衍生物;(19)贝壳、骨粉、蛋壳、叶子、木粉等天然材料类;(22)食品添加剂类等。这些保湿剂可以只使用一种也可以两种以上混合使用。
上述这些手感调整剂是具有作为浆料调整剂的功能的并且能够提高浆状或者程序员预料的手感的添加剂,没有特别的限定,可举出上述作为可塑剂、乳化剂、稳定剂举出的所有材料和化合物等。这些调整剂可以只使用一种也可以两种以上混合使用。
上述导电率调整剂是在成形发泡成形物时,在如后所述使内部发热时,特别是通过通电加热使内部发热进行加热成形时,用于控制发热状态的一个因素,即调整成形用原料的导电率的添加剂,没有特别的限定,具体的可举出例如上述强度调整剂中举出的(12)油脂;(13)蜡;(14)增粘多糖类;(15)金属盐类;(28)盐类、酸、碱、醇等的各种水溶性电介质等。这些调整剂可以只使用一种也可以两种以上混合使用。
上述介电损失调整剂是在成形发泡成形物时,特别是在通过高频介质加热使内部发热进行加热成形时,用于控制发热状态的一个因素,即用于调整成形用原料的介电损失的添加剂,没有特别的限定,具体的可举出例如(12)油脂;(13)蜡;(15)金属盐类;(16)不溶性矿物类;(17)植物性纤维及其衍生物;上述介电率调整剂中举出的(28)各种水溶性电介质;(29)锆盐、铵锆碳酸盐水溶液等含锆盐的化合物或者它们的混合物等。这些介电损失调整剂可以只使用一种也可以两种以上混合使用。
上述膨化剂是用于调整成形用原料的发泡程度并通过膨化进行促进制成与形状和用途相应的发泡成形物,对此没有特别的限定,具体的可举出例如(30)苯磺酰肼化合物、偶氮腈化合物、亚硝基化合物、二偶氮乙酰胺化合物、偶氮缩算化合物等有机类膨化剂及其含有它们的各种制剂;(31)イスパタ等铵类膨胀剂以及含有它们的各种制剂;(32)碳酸氢钠、硫酸铝钾酒石酸氢铵、碳酸镁等无机类膨化剂以及含有它们的各种制剂等。这些膨化剂可以只使用一种也可以两种以上混合使用。
上述着色剂是基于对发泡成形物整体进行着色的目的而添加的添加剂,没有特别的限定,具体的例如(33)二氧化钛和碳黑等无机类颜料;(34)例如颜料索引中规定的各种被称为着色剂的天然或者合成的有机类染料;(35)焦糖、可可粉等天然原料的着色剂等。这些着色剂可以只使用一种也可以两种以上混合使用。
作为上述成形用原料中所含的添加剂,二氧化钛遮光性优良,呈现提高表面印刷时的美观性的美丽的白色,并且,基于能够提高强度和阻气性,是优选的添加剂。为了含有二氧化钛并充分获得这些性能,在成形用原料中二氧化钛的用量优选为0.2重量%以上,更优选在0.3重量%以上,进一步优选在0.4重量%以上。
在被覆膜中,在上述成形用原料中所含的添加剂中,增量剂(有时也作为增量性添加剂)的含量优选为该成形用原料的主要固形成分总量中所含的淀粉的含量以下。
也就是说,可以不特别含有增量性添加剂(增量剂),但是,从减小被覆膜的生物降解性容器本体的原料成分或者有效利用上述各种废物的观点出发,优选以与淀粉的含量相当的量为最大的含量范围。因此,对于作为主原料的淀粉和作为添加剂中的增量性添加剂的增量剂,将它们合并作为主要固形部分。
主要固形部分中,如果增量性添加剂的含量超过了淀粉的含量,得到的生物降解性容器本体的主要成分实质上不是淀粉,因此,生物降解性容器本体的性质降低,因此是不利的。而且,由于成形用原料中所含的“固形部分”中也包含功能型添加剂的固形部分(参照图7的“(I)成形用原料中”的图表)中将上述淀粉和增量剂和在一起表示为“主要固形部分”。
即,在本发明中,如图7的“(II)主要固形部分总量中”的图表所示,以主要固形部分(淀粉和增量剂)的总量(主要固形部分总量)为100重量%时,淀粉(包括衍生物)在50重量%以上100重量%以下的范围内,增量剂在0重量%以上不到50重量%的范围内(图中记为0到不足50重量%)。
如图7的的“(I)成分用原料中”的图表横一栏中所示,上述主要固形部分总量在以加上水的成形用原料全部为100重量%时,优选为70重量%以下。
上述成形用原料中所含的添加剂中,除去上述增量剂(增量性添加剂)的各添加剂(即功能型添加剂)的含量如图7的“(I)成形用原料中”所示,在以加上水的成形用原料总量为100重量%时,优选在0重量以上25重量%以下的范围内,更优选在0重量%以上20重量%以下的范围内。而且,对于在以主要固形部分总量为100重量%时的功能型添加剂的添加量,即功能型添加剂相当于主要固形部分总量的量,只要成形用原料中的最终含量在上述范围内,就没有特别的限定。
上述功能型添加剂与上述增量剂同,在成形用原料中也可以不特别含量,但是,为了提高被覆膜的生物降解容器本体的性能,优选在成形用原料100重量%中含有25重量%以下。在功能型添加剂的含量超过25重量%时,除了不能发挥与其含量对应的功能,之外,还有可能根据状况降低生物降解性容器本体的性能,因此是不利的。
在将上述主要固形部分(作为主要原料的淀粉+增量剂)和功能型添加剂合起来作为原料成分时,在本发明所使用的成形用原料中,可进一步含有水。这里所说的水可以是工业上使用的水,没有特别的限定。
作为上述成形用原料中的水的含量,如图7的“(I)成形用原料中”的图表所示,如果以该成形用原料为100重量%,加入水,使其在20重量%以上70重量%以下的范围内,优选在25重量%以上55重量%以下的范围内。
换言之,如图7的“(III)原料成分和水的对比”的图表所示,在以成形用原料中的原料成分(主要固形部分+功能型添加剂)的总量为100重量%时,水在25重量%以上230重量%以下的范围内加入,优选在33重量%以上120重量%以下的范围内加入。如果水的含量在上述范围内,成形用原料就成为浆状或者糊状。
成形用原料中水的含量如果不足20重量%,成形用原料中所含的水分过少,几乎没有流动性,对成形上是不利的。另一方面,如果超过70重量%,成形用原料中所含水的含量过多,固形部分的含量降的过多,无法充分成形,因此是不利的。
由于上述成形用原料变成了浆状或者糊状,因此,如后续所述,成形模内的模穴内可能容易填充成形用原料,成形加工型提高。而且,在成形后的发泡成形物中可能残留一定程度的水分,如后续所述,可以提高发泡成形物的柔软性。
在上述成形用原料中,除了上述主原料、添加剂、水分之外,可以含有其它添加剂。作为其它添加剂的具体例子,可根据对生物降解性容器本体赋予的什么功能适当选择,没有特别的限定。
而且,所谓本实施方案中所述的浆状或者糊状,只是基于成形用原料的流动性方便地分类,与水的含量没有关系。例如,在一定的含量下,含水的成形用原料形成浆状的,如果增加该成形用原料中的稳定剂和豆腐渣等这样的吸水性的增量剂或者纸浆等的含量,有时会形成糊状。
如果使用上述成形用原料上述发泡成形物成形,但是,作为其成形方法,可举出采用具有与所需成形物的形状一致的模穴并由至少两个以上部分构成的成形模的方法。在上述成形模的模穴内加入上述成形用原料,如果加热和加压,成形上述发泡成形物。
作为上述成形模,可举出至少具有成形后可取出发泡成形物的能够分割的两个以上金属制的模片的构成。
具体地说,作为成形模的例子,可举出如图8(a)、图9(a)、图10(a)所示,如由上下两个金属制的模片21a、22a构成的模具20a、模片21b、21b构成的模具20b以及由模片21c、22c构成的模具20c,以及,如图11(a)所示,由具有与上述模片21c同样形状的上模片21d和所述下模片22c分成两部分的形状的下模片23d、24d构成的模具20d等。
也就是说,本发明所使用的成形模可以是包括能够分割的多个模片的构成,对于分割的方法(即模片的个数),可与发泡成形物的形状一致适当设定,没有特别的限定。
例如,对于上述大碗型容器10a的盘型容器10b,由于形成了在平面上扩展的方向的尺寸大的形状,如上述模具20a和模具20b所示,优选使用上下分成两部分的成形模。另一方面,即使在上述杯型容器10c的情况下,与模具20a和模具20b同样,可以是上述分成两部分的成形模即模具20c,这种杯型容器10c与大碗型容器10a和盘型容器10b相比,形成在高度方向上尺寸大的形状,因此,与模具20c这样的分成两部分类型相比,更优选使用模具20d这样的分成三部分类型的。
上述模具20a、20b、20c是将上下各模片21a、21b、21c和22a、22b、22c组合的状态,如图8(b)、图9(b)、图10(b)所示,在内部形成与所需的发泡成形物(参见图4(a)、图4(b)、图5(a)、图5(b)、图6(a)和图6(b))的形状一致的模穴25a、25b、25c。同样,上述模具20d也是将各模片21d、23d、25d组合的状态,如图11(b)所示,形成模穴25d。
而且,虽然未图示,但是,在上述模具20a、20b、20c、20d中可以具备可动地连接用于取出发泡成形物的顶出杆和上述各模片21a~21d以及20a~22c,23d、24d的铰链和导轨或者拉杆等。
在本实施方案中,作为成形模的一个例子,虽然举出了上述模具20a、20b、20c、20d,但是并不限于此,可以使用目前公知的各种成形模,而且其形状也与发泡成形物一致适当选择。
但是,如后述所述,本发明中使用的成形模要求具有用于水蒸气发泡成形的耐热性,同时也必须具有强度、耐磨耗性等。进而,在采用微波进行内部加热时,微波透过性也是必须的。而且,在采用微波的内部加热时,作为上述成形模,优选使用具备微波透过性、耐热性、强度、耐磨耗性的树脂和陶瓷等构成的成形模,但是,除此之外,特别是后述的采用通电、高频介电的内部加热时,由于模本身作为电极的一部分发生作用,因此,更优选金属制的“模具”。
作为上述成形时的加热手段,可以使用例如直火和远红外线、电热器、IH加热装置等、采用直接加热成形模的直接加热手段的外部加热、通电加热、高频介质加热、微波加热等加热内部成形用原料本身的通过内部加热手段的内部加热。
外部加热时,可通过上述直接加热手段直接加热成形模(模具20a等)。由此,从成形模对模穴(模穴25a等)内的成形用原料进行外部加热,该成形用原料通过水蒸气发泡,发泡成形物成形。
另一方面,内部加热时,可以使用与外部加热用的上述成形模同样形状的,这时,例如,如图12中示意性所表示的,如果作为例子举出上述模具20a,在各模片21a、22a的组合中,对各模片21a、22a分别连接电极26、26,同时,在各模片21a、22a的接触部分配制绝缘体27,进而,在电极26、26上可以使用连接电泳28的构成。因此,可以对填充在模穴25a内的成形用原料进行内部加热。电极26除了上述电源28之外,与未图示的开关和控制电路等连接。
而且,将上述电极26配子在模片21a或者模片22a上的构成也可以适用于上述外部加热的情况。即,即使在外部加热的情况下,为了直接加热成形模,可以采用配制直接加热手段和电极26的构成。而且,配制上述电极26的图12所示的构成可以同时使用外部和内部加热。
作为加热成形的加热温度,没有特别的限定,外部加热时,优选将成形模在140℃以上240℃以下的范围内加热。如果成形模的加热温度在该范围内,可以充分加热模穴(模穴25a等)内的浆状或者或者成形用原料,得到作为固形物的成形物。而且,由于上述温度范围在水的沸点100℃以上,成形用原料中所含的水分必定形成水蒸气发泡,可以容易地获得上述发泡成形物。
另一方面,在内部加热时,通过对上述电极26施加低频交流电压和高频电场,可以对模穴(模穴25a等)内成形用原料本身,因此,加热温度与内部加热的各种条件有关,没有特别的限定,在成形用原料在水蒸气发泡的温度范围内即可。
作为上述各种条件,具体地说,电极26的特性与上述低频交流电压和高频电场的大小有很大关系,另外,如上所述,与成形用原料的导电率和电介损失也有很大关系。这是因为,在通过通电加热进行加热成形时,其发热状态受成形用原料的导电率的控制,在通过高频介质加热进行加热成形时,其发热状态受成形用原料的介电损失的控制。
对于上述各种条件的具体设定范围,实际使用上,模穴的温度可以设定得在与外部加热同样的温度范围内,没有特别的限定。
作为上述加热时间,可根据加热温度和发泡成形物的形状和厚度等适当设定,但是,优选至少成形后的发泡成形物的含水率达到规定的范围内的时间。换言之,优选使成形用原料中的水分基本上没有完全蒸发的时间。
上述加热时间如果达到了直至发泡成形物的水分小于后述的给定范围的长时间,该发泡成形物形成过剩发泡的状态,并且不具有给定的含水率,因此,变硬和变脆,并且降低了发泡成形物的品质,因此是不利的。
作为具体的加热时间,没有特别的限定。例如,在进行高频介质加热时,与一般的外部加热相比,在非常短的时间内就可以成形,而且,在发泡成形物壁厚时,加热时间有变长的倾向。因此,加热时间基本上根据加热手法和发泡成形物的形状等适当设定,通常,优选在10秒以上5分钟以内的范围内。
对于加热成形时的加压也没有特别的限定,通常例如优选5kg/cm2以上50kg/cm2以下的范围。当然,对于该成形压力,可根据各种条件改变。
通过采用上述模具20a、20b、20c、20d等的成形模并对模穴25a、25b、25c、25d内的成形用原料加热、加压,如图13(a)、图13(b)、图13(c)所示,可以得到作为发泡成形物的大碗型容器本体11a、盘型容器本体11b或者杯型容器本体11c,这些发泡成形物成形后的最终含水率在3重量%以上20重量%以下的范围内,优选在3重量%以上15重量%以下的范围内。
如果最终的含水率不足3重量%,含水率过低,发泡成形物变硬变脆,柔软性降低,因此是不利的。另一方面,如果含水率超过了20重量%,含水率变得过高,发泡成形物潮湿到需要以上的程度,重量增大,被覆膜12难以粘贴和粘合,因此是不利的。
如在上述保湿剂的说明中所描述的那样,仅仅将淀粉单纯地α化制成成形物,该成形物变硬变脆,其用途非常受限制。因此,在被覆膜中,将成形用原料制成浆状或者糊状,含有足够的水分,仅通过简单地成形,就能够将得到的发泡成形物的含水率设定在上述范围内。根据成形条件和其它环境条件,有时含水率多少在上述范围之外,但是,这时,通过将发泡成形物在一定湿度的仓库内放置一定时间,或喷雾,反之,在干燥库内放置一定时间,可以调整含水率。
在生物降解性容器本体中,对上述发泡成形物(容器本体11a等)的表面,可粘贴由生物降解性塑料构成的被覆膜12。该被覆膜12至少具有疏水性,因此,通过粘贴在上述发泡成形物上,至少赋予该发泡成形物耐水性。而且,更优选该被覆膜12赋予阻气性、绝热性、耐磨耗性、提高强度和柔软性等。
特别是,在将被覆膜的密封容器用在密封性高的保存容器等中时,必须避免内部容纳的内容物的氧化和吸湿,因此,被覆膜12能够赋予阻气性即具有阻气性是非常优选的。
而且,特别是,在将被覆膜的密封容器用作杯面容器等时,必须避免内部容纳的内容物的热量造成生物降解性容器本体的变形和熔融,因此,被覆膜12优选具有高的耐热性。具体地说,被覆膜12优选开始软化温度在130℃以上,更优选开始软化温度在150℃以上。而且,被覆膜12优选熔点在130℃以上,更优选熔点在170℃以上,进一步优选熔点在200℃以上。特别优选被覆膜12的开始软化温度在130℃以上,并且熔点在170℃以上,最优选开始软化温度在150℃以上,并且熔点在200℃以上。这样就能够避免因内部容纳的内容物的热量等造成的生物降解性容器本体的变形和熔融。
作为上述被覆膜12的原料,只要是能够发挥生物降解阻并且至少粘贴在上述发泡成形物的表面上之后能够发挥耐水性,优选能够发挥阻气性等的材料,就没有特别的限定。
具体地可举出例如3-羟基丁酸-3-羟基戊酸共聚物、聚-对-羟基苯醛(PHB)、聚丁二酸丁二醇酯(PBS)、聚己内酯(PLC)、醋酸纤维素类(PH)聚合物、聚丁二酸乙二醇酯(PESU)、聚酯酰胺、改性聚酯、聚乳酸(PLA)、マタ—ビ—(注册商标,イタリア·ノバモント公司;以淀粉为主要成分,以具有生物降解性的聚乙烯醇类树脂和脂肪族聚酯类树脂等为次要成分)、纤维素脱乙酰壳多糖复合物等所谓作为“生物降解塑料”公知的各种材料。这些原料可以只使用一种,也可以以两种以上的复合物的形式使用。而且,在这些生物降解性塑料中,可以加入生物降解性的可塑剂和填料等副原料。
作为上述被覆膜12的原料,从具有良好的阻气性和耐透湿性、耐热性方面考虑,优选改性聚酯。而且,作为上述被覆膜12,从强度、耐热性、阻气性优良的方面考虑,优选可二轴拉伸的生物降解性膜。而且,作为上述被覆膜12,最优选可二轴拉伸的改性聚酯。
可以对上述各原料(生物降解性塑料)混合淀粉,制作被覆膜12。这时,上述生物降解性塑料对淀粉的混合比只要不降低被覆膜12的疏水性等各种功能,就没有特别的限定,例如,优选使用重量比为1∶1左右的混合比。
另外,在上述被覆膜12中可以加入各种添加剂。作为具体的添加剂,例如,可举出着色剂和能够提高耐水性、阻气性等添加剂、能够提高粘贴时的软化的各种特性的添加剂等,没有特别的限定。
上述被覆膜12的厚度(膜厚)没有特别的限定,如果是在粘贴到发泡成形物上之前,能够形成0.01mm以上数mm以下的范围内的膜或者片就可以。
如后所述,上述被覆膜12加热软化后粘贴在发泡成形物的表面上,因此,粘贴后的厚度比上述范围薄。该粘贴后的被覆膜12的厚度根据作为原料的生物降解性塑料的种类,可适当设定到能够发挥耐水性和阻气性等程度的厚度,没有特别的限定,优选其上限为80微米以下,更优选为50微米以下。对于下限,如上所述,只要是能够发挥耐水性和阻气性等的程度的厚度就可以,通常优选使用5微米以上。
在生物降解性容器本体中,在整个重量中,发泡成形物所占的重量优选为60重量%以上。也就是说,在生物降解性容器本体中,在整个重量中,生物降解性塑料所占的重量优选至少在40重量%以下。
如上所述,生物降解性塑料比淀粉的生物降解速度慢。具体地说,在将以淀粉为主要成分的发泡成形物的生物降解速度规定为1时,相同重量的生物降解性塑料的生物降解速度因生物降解性塑料的种类和形状大大不同,但是,通常可以认为在数分钟到数十分钟的范围内。
因此,如果生物降解性容器本体中所含的生物降解性塑料的量过多,不管具有多少生物降解性,作为生物降解性容器本体整体的生物降解性都低。因此,为了发挥更优良的生物降解性,规定整个重量中生物降解性塑料的量的上限非常有利。
在此,在生物降解性容器本体中,也有作为生物降解性塑料,一定包含上述被覆膜12,同时,作为后述的粘结剂(粘结剂层13)使用生物降解性塑料的情况。因此,所谓规定生物降解性塑料的量的上限是指规定该被覆膜12和粘结剂层13的量的上限。
但是,上述粘结剂层13不一定必须使用(例如图4(a)中表示的大碗型容器10a等),并且,作为上述粘结剂层13,如后所述可以使用所谓淀粉类等非塑料制的天然原料。因此,作为被覆膜的生物降解制的成形物,通过规定以淀粉为主体的发泡成形物的量来规定上述生物降解性塑料的量。
在生物降解性容器本体中,由于将被覆膜12和粘结剂层13薄膜化,生物降解性塑料变得容易分解。如果考虑到此,在生物降解性容器本体中,如上所述,通过使发泡成形物所占的重量在60重量%以上,可将生物降解性塑料(被覆膜12和粘结剂层13)的重量规定在至少40重量%以下。结果,生物降解性塑料和发泡成形物的生物降解的平衡变得良好,因此,能够更进一步地提高生物降解性容器本体的生物降解性。
特别是,发泡成形物由于是发泡体,因此生物降解性良好,由于控制了被覆膜12和粘结剂层13相对于发泡体的含量,因此,从整体上看,能够发挥非常良好的生物降解性。因此,在将被覆膜的密封容器用作食品容器等时,即使将生物降解性容器本体与食品残渣一起丢弃,也不产生任何问题。
在生物降解性容器本体中,在整个重量中,发泡成形物所占的重量优选为60重量%以上。也就是说,在生物降解性容器本体中,在整个重量中,生物降解性塑料所占的重量优选至少在40重量%以下。
在本发明中,作为粘贴被覆膜12的构成,因生物降解性容器本体的制造方法,有在发泡成形物上直接粘贴的构成(例如参见图4(a))和通过粘结剂层13粘贴的构成(例如参见图4的(b))两种,如果是后一种构成,在粘贴被覆膜12时需要粘结剂。
作为上述粘结剂,只要具有生物降解性并且能够将被覆膜12粘贴在发泡成形物上就可以,没有特别的限定,具体地说,可举出例如淀粉和蛋白质为主要原料的天然的各种糊和粘结剂、在其中混合PVA(聚乙烯醇)的混合物等、水性的粘结剂;在水中具有难溶性或者不溶性并因热改性而固化的蛋白质;在上述被覆膜12的熔点以下可熔融的低熔点的生物降解性塑料(通常为合成品),以及,它们的混合物等低熔点的粘结剂;在常温下具有流动性的热固性的粘结剂等。
由于上述水性粘结剂以天然物质为主体,基本上与发泡成形物相同的淀粉等材料作为原料,因此,具有在生物降解性和稳定性方面非常优良的优点。上述水性粘结剂的使用方法没有特别的限定,可用毛刷等在发泡成形物表面上涂敷之后粘贴被覆膜12,或者反之在被覆膜12的表面上涂敷后粘贴在发泡成形物表面上。
作为上述低熔点的粘结剂,可以使用在上述被覆膜12的熔点以下可熔融的低熔点的生物降解性塑料(通常为合成品)和它们的混合物等。即,在作为上述被覆膜12的具体例举出的生物降解性塑料中,可适当选择比作为形成最表层的被覆膜12选择的生物降解性塑料的熔点低的,具体地说,在低于被覆膜12的软化点的温度下熔融或者在不到被覆膜12的软化点以上的温度下熔融的物质。
例如,在作为被覆膜12使用以聚乳酸和改性聚酯为主要成分的膜时,其软化点在80℃~100℃的范围内,因此,作为上述低熔点的粘结剂,优选使用熔点在60~70℃的聚己内酯。
上述低熔点生物降解性塑料通常可形成薄膜状来使用。即上述低熔点生物降解性塑料非常优选作为粘结剂薄膜使用。如后所述,上述被覆膜12通过粘贴模对发泡成形物进行加热和加压压制来粘贴,因此,这时,被覆膜12和发泡成形物中间夹入了由低熔点生物降解性塑料构成的粘结剂膜,通过加热和加压压制,低熔点生物降解性塑料溶解,因此,具有作为良好的粘结剂的作用。
作为包括上述水性粘结剂和低熔点生物降解性塑料的被覆膜的粘结剂,优选不使用挥发性有机溶剂。在使用有机溶剂时,在被覆膜12的粘结工序,还需要设置防止有机溶剂挥发扩散等的装置,因此,制造设备大型化,所以是不利的。
下面对生物降解性容器本体的制造方法进行说明。
作为生物降解性容器本体的制造方法,有在将由成形用原料构成的给定形状的发泡成形物进行水蒸气发泡成形之后,粘贴被覆膜的方法(后粘贴法),和,在成形用原料的水蒸气发泡成形的同时粘贴被覆膜的方法(同时粘贴法)两种方法。
首先,对后粘贴法进行说明。该后粘贴法包括将至少由上述成形用原料构成的给定形状的发泡成形物(容器本体11a、11b、11c等)进行水蒸气发泡成形的成形工序,和,将上述被覆膜12在加热软化之后压制在上述发泡成形物表面上进行粘贴的粘贴工序这两个工序。该方法制成的生物降解性容器本体如图4(b)、图5(b)、图6(b)等所示,具有在被覆膜12和发泡成形物(容器本体11a、11b、11c)中间含有粘结剂层13的构成。
由此,在成形时能够保持能够发挥足够强度的程度的含水率,同时,获得对稳定的含水率的本体(发泡成形物)稳定粘贴被覆膜12的生物降解性容器本体。
本发明中,在粘贴上述被覆膜12时,采用具有与上述发泡成形物成形所使用的成形模(模具20a等)形状大致相同的粘贴模。例如,在构成大碗型容器10a的容器本体11a上粘贴被覆膜12时,如图14所示,采用具有与上述模具20a形状大致相同的模具30。
上述粘贴模的形状不需要与发泡成形物的外形完全一致,只要是能够以充分粘贴在发泡成形物表面的程度将被覆膜12导入的形状就可以。通常,能够以低成本制造粘贴模,同时,能够确实并且容易地将被覆膜12粘贴在复杂形状的发泡成形物上。结果,可以以更加简单的工序制造生物降解性容器本体。
上述粘贴模的形状可以形成具有与成形模基本上相同形状的模穴的构造,对此没有特别的限定,在粘贴被覆膜12和粘结剂膜两层膜时,为了确实熔融粘结剂膜,可具备与成形模相同的加热手段。而且,例如,在粘结制造上述大碗型容器10a时的被覆膜12时,可以将图8(a)、图8(b)或者图12所示的模具20a直接用作粘贴模。
如果对一例具体的粘贴方法进行说明,如图14所示,首先,对模具30配置作为发泡成形物的大碗型容器本体11a,同时,在该容器本体11a中的与要粘贴被覆膜12的表面对应的位置配置被覆膜12。
图14中,为了举出在发泡成形物整体上粘贴被覆膜12的例子,在模具30的下模片32上装载被覆膜12,在其上装载容器本体11a,再在其上装载被覆膜12,再在其上配置模具30的上模片31。而且,容器本体11a以夹持在两块被覆膜12之间的方式配置。
在作为粘结剂采用上述低熔点的生物降解性塑料时,如图14所示,在被覆膜12和容器本体11a之间配置由其构成的粘结剂膜13a。也就是说,在下模片32上按顺序放置被覆膜12、粘结剂膜13a、容器本体11a(发泡成形物)、粘结剂膜13a和被覆膜12。在图14中,为了便于说明,在膜之间和成形物与膜之间离开一定的间隔。
然后,在预先将模片31、32的温度设定在被覆膜12的软化点以上熔点以下的温度之后,从上下闭合上模片31和下模片32,通过在各模片31、32上施加适当的压力,将被覆膜12粘贴在容器本体11a的表面上。这时,粘结剂膜13a在被覆膜12的软化点以下的温度下熔融,因此,熔融的粘结剂膜13a在容器本体11a的表面上融着,变成粘着剂层13,在其上粘贴被覆膜12。
在将被覆膜12的软化点以上熔点以下的温度下熔融的生物降解性塑料作为粘结剂膜13a使用时,各模片31、32的加热温度也必须设定在被覆膜12的软化点以上熔点以下的温度。
作为上述被覆膜12的粘贴时的压力,因使用的粘着剂的这类可适当设定,没有特别的限制,优选施加减小发泡成形物厚度程度的高压。由此,由粘结剂层13产生的被覆膜12的粘结性变得良好,同时,作为最终成形物的生物降解性容器本体(图4)b〔中的大碗型容器10a〕的厚度也能够变薄,并能够提高叠放性(杯子的重叠难易和将杯子重叠至给定高度时杯子的数量)。
在本发明的制造方法中,在采用后粘贴法时,如上所述,作为用于粘贴被覆膜12的粘结剂,特别优选使用粘结剂膜13a。在该方法中,在粘贴被覆膜12之前,由于可以只配置粘结剂膜13a,需要在发泡成形物的表面上涂覆粘结剂的工序,可以进一步简化生物降解性塑料容器本体的制造方法。
也就是说,构成生物降解性塑料容器本体的本体的发泡成形物(容器本体11a等)以淀粉为主要成分并具有一定的含水量,因此,显然是亲水性的。与此不同,被覆膜12如上所述是疏水性的。因此,采用后粘贴法在发泡成形物上简单地粘贴被覆膜12,对发泡成形物没有充分粘结的可能性非常高。
与此不同,如果采用上述粘结剂膜13a粘贴被覆膜12,如图15(a)所示,通过粘结剂层13可将被覆膜12确实粘贴在亲水性的发泡成形物11上。结果,能够使生物降解性塑料容器本体中的被覆膜12的粘贴状态稳定化并进一步提高耐水性和阻气性。
在上述后粘贴法中,作为上述被覆膜12可以使用后述的同时粘贴法中使用的所谓成形模、膜片或者外形型膜等的、预先成形为与要准备的生物降解性容器本体的外形大致一致形状的被覆膜。
这样,如果预先将被覆膜成形为与生物降解性容器本体的外形大致一致的形状,在粘贴工序中被覆膜不会被破坏。因此能够将深冲的深形的生物降解性容器本体良好地成形。对应上述成形膜、膜片或者外形形膜等在同时粘贴法中进行更详细地说明。
下面对同时粘贴法进行说明。同时粘贴法如上所述至少包括在将成形用原料进行水蒸气发泡成形的同时粘贴被覆膜12的成形同时粘贴的工序。采用该方法得到的生物降解性容器本体的构成为,如图4(a)、图5(a)、图6(a)等所示,在发泡成形物(容器本体11a、11b、11c)等的表面上直接形成被覆膜12。这种同时粘贴法与上述后粘贴法相比,具有如下的优点。
首先,可举出的第一个优点是能够减少工序数量。也就是说,同时粘贴法实际上能够在一个工序中粘贴被覆膜12,因此,与至少需要两个工序的上述后粘贴法相比可以减少工序数量。而且,由于能够在一个工序粘贴,因此,能够缩短制造所需要的时间。而且,可以提高生物降解性容器本体的生产效率。
可举出的第二个优点是不需要使用粘贴模。也就是说,在同时粘贴法中,由于在用成形模(模具20a等)成形发泡成形物(容器本体11a等)的同时还粘贴被覆膜12,因此,不需要如后粘贴法所述用于粘贴被覆膜12的粘贴模(图14表示的模具30等)。因此,能够降低制造设备的成本,并也不需要包括粘贴模的粘贴用设备,因此,能够达到节省制造设备空间的目的。
可举出的第三个优点是不需要使用粘结剂。也就是说,在同时粘贴法中,由于在成形的同时粘贴被覆膜12,因此,被覆膜12能够以大致紧密的状态粘贴在发泡成形物(容器本体11a等)的表面上。而且,能够一致粘结剂部分的原材料费用,并且由于不使用粘结剂,因此提高了达到的生物降解性容器本体容器本体的淀粉含有比例,可进一步提高生物降解性。
可举出的第四个优点是将被覆膜12基本上贴紧粘贴在发泡成形物上,因此,被覆膜12的粘贴状态可形成与采用粘结剂膜13a的上述后粘贴法同样程度的稳定的状态。
如上所述,容器本体11a等的发泡成形物具有亲水性,与此不同,被覆膜12是疏水性的,因此,在发泡成形物上简单地粘贴被覆膜12,对发泡成形物没有充分粘结的可能性非常高。
但是,在同时粘贴法中,在至少形成被覆膜12主要成分的生物降解性塑料的软化点以上熔点以下的温度下,与成形用原料的水蒸气发泡成形同时贴被覆膜12。因此,被覆膜12在加热加压状态下面对处于发泡成形过程的发泡成形物,在软化状态下承受来自外部的由成形模产生的压力,并且承受来自内部的处于发泡成形过程的发泡成形物的压力,形成与该发泡成形物粘贴的状态。结果,被覆膜12以在发泡成形物的表面上熔融的形式粘贴。
这样,如图15(b)所示,在达到的生物降解性容器本体的截面上,被覆膜12的层和发泡成形物11的表面的截面15不形成简单粘贴时(参见图15(a)所示的后粘贴法的状态)那样的平滑的面,例如形成具有凹凸的不规则的面,形成被覆膜12对发泡成形物11充分粘贴的状态。结果,被覆膜12的粘贴状态非常牢固,粘贴状态的稳定性也与具备粘结剂层13的情况处于同一水平。因此,能够进一步提高得到的生物降解性容器本体容器本体的耐水性和阻气性。
在图15(b)中,将被覆膜12的层和发泡成形物11的表面的截面15示意性地表示为例如具有凹凸的不规则的面,当然并不限于此,根据被覆膜12的成分和发泡成形物11中所含的成分或者同时粘贴法中的诸多条件可以得到各种形状的截面。而且,在被覆膜中,在通过同时粘贴法得到的生物降解性容器本体中,只要被覆膜12的层和发泡成形物11处于大致完全紧贴的状态就可以。
综合上述四个优点,通过采用同时粘贴法,与后粘贴法相比,可以更有效并且低成本制造具有与后粘贴法同样特征的生物降解性容器本体,因此,能够以更低的价格提供该生物降解性容器本体。而且,根据一次性用途可以方便地使用被覆膜的密封容器。
但是,根据被覆膜12的这类和成形用原料的组成等,同时粘贴法有时难以实施,这时,使用后粘贴法非常有利。也就是说,后粘贴法和同时粘贴法各有各的优点,这些方法根据情况可适当选择。而且,任何方法都具有作为生物降解性容器本体的制造方法的优良特征。
在此,在同时粘贴法中,有在成形用原料的水蒸气发泡成形的同时,在熔点以下软化点以上的温度下将被覆膜12软化,在与发泡成形物成形的同时粘贴被覆膜12的方法。因此,对所使用的被覆膜12必须适当设定加热手法的条件。
也就是说,为了将成形用原料水蒸气发泡成形,必须简单地加热到100℃以上,因此,在采用外部加热作为加热手法时,作为被覆膜12必须选择其低熔点在100℃以上的生物降解性塑料作为主要成分的。被覆膜12如果以熔点在100℃以下的生物降解性塑料为主要成分,在用于将成形用原料充分进行水蒸气发泡成形的温度下,被覆膜12完全熔融。因此,被覆膜12无法维持膜的形状或者片的形状,在发泡成形物的表面上不能形成没有间隙和球(ホ—ル)等的均匀的被覆膜12的层。
另一方面,在作为加热手法采用内部加热时,被覆膜12优选使用以熔点在100℃以上的生物降解性塑料为主要成分。但是,与外部加热相比,可以使用熔点比较低的。
在内部加热时,直接加热成形用原料。而且,被覆膜12被处于发泡成形过程中的高温的成形用原料加热,粘贴在发泡成形物的表面上。因此,如果使用内部加热,被覆膜12不在模具中直接加热,因此,可以使用以熔点比较低的生物降解性塑料为主要成分的被覆膜12。
作为内部加热,特别优选介质加热。采用介质加热,在发泡成形时的初期,成形用原料在短时间内发热,整体上一次膨胀。这样,将被覆膜12挤压在模具中的压力强并且均一地产生。而且,通过控制成形模的温度和成形用原料的发热,可将被覆膜中的成形模接触面(与成形模接触的面)的温度控制在熔点以下,同时,将发泡成形物中的粘结面(与被覆膜粘结的面)的温度提高到熔点附近。结果,可以得到发泡成形物和被覆膜12的粘结度高的生物降解性容器本体。
上述介质加热是指通过被加热物质的介质损伤加热被加热物的方法,有对被加热物(介电体)作用高频(HF;3~30MHz)进行介质加热的高频节点加热和对被加热物(介电体)作用微波(HF;1~100GHz)进行介质加热的微波加热等。其中,高频介质加热从由于可以控制采用金属制的“模具”作为电极进行介质加热的输出设备(高频波产生装置)的精密输出从而容易控制成形用原料的发热等方面考虑更为优选。
另一方面,采用外部加热,由于在通过成形模直接加热被覆膜12之外,还加热其内部的成形用原料,因此,为了使成形用原料充分发泡成形,就要对被覆膜12施加很高的温度。因此,作为被覆膜12优选使用熔点更高的,而且,成形模的加热温度考虑到被覆膜12的熔点和软化点必须仔细设定。
因此,在同时粘贴法中,如果从容易粘贴和被覆膜12的选择范围等方面研究,同时粘贴法中的加热手法比内部加热法更加具有实用性。
但是,外部加热是由成形模直接加热被覆膜12,具有容易控制被覆膜12的软化和与发泡成形物表面的粘着的优点。而且,在软化点高的被覆膜12的情况下,如果使用内部加热,一旦将成形用原料加热到能够使被覆膜12充分软化的程度,根据成形用原料的种类,有可能过度发泡成形,或者发泡成形物的品质降低,因此有时外部加热更为优选。这样,在同时粘贴法中,加热手法的外部加热和内部加热都有各自的优点,因此,所谓加热手法的条件是根据制造什么样的生物降解性容器本体,采用外部加热,或者采用内部加热,或者并用二者等适当选择的条件,对此没有特别的限定。
在上述同时粘贴法中,根据粘贴时被覆膜12的使用方法,可以分为例如如下的七种制造方法。
<制法1>
制法1是与上述后粘贴法中的被覆膜12的粘贴工序同样,不作任何成形,在片状的被覆膜12中夹持成形用原料,与在成形模中进行水蒸气发泡成形的同时在得到的发泡成形物上粘贴被覆膜12的方法。这种制法特别适合用在如图5(a)所示的盘型容器10b,与片状的被覆膜12一致,成形为在水平扩展的方向上尺寸大的形状的生物降解性容器本体的用途。
如果具体说明该制法1,如图16所示,在图9(a)、图9(b)所示的模具20b中,在上下模片21b、22b之间配制两块片状的被覆膜12,再在这些被覆膜12、12之间提供浆状或者糊状的成形用原料14。在这种状态下,将模具20b加热到被覆膜12的主要成分即生物降解性塑料的熔点以下的温度。之后,闭合上下模片21b、22b,采用上述外部加热和/或内部加热进行加热和加压成形。在此工序中,可以得到作为生物降解性容器本体的盘型容器10b(参见图5(a))。
<制法2>
制法2是在上述制法1中将所使用的被覆膜12成形为与生物降解性容器本体的外形大致一致的形状的方法。该制法适合用于如图4(a)表示的大碗型容器10a等所示,成形为一定程度深冲的深形即高度方向的尺寸大的形状的生物降解性容器本体的用途。
在上述被覆膜12中,虽然取决于作为主要成分的生物降解性塑料的种类,但是,也包含在成形时不能大幅度延伸的被覆膜。因此,在成形例如图4(a)表示的大碗型容器10a这样的深冲的深形生物降解性容器本体时,如果使用上述制法1,被覆膜12损坏,有可能无法充分覆盖发泡成形物。因此,要预先准备接近成形被覆膜12之后的外形的形状的成形模。这样,可确实并且有效地覆盖对更加复杂的深冲的深形发泡成形物。
对于上述被覆膜12的成形方法,采用片膜的通常的成形方法,没有特别的限定,例如优选真空成形、射出成形、吹制成形等各种成形方法。而且,对于成形形状,只要与成形后的生物降解性容器本体的形状大致一致就可以,没有必要进行直至细部都一致的成形。被覆膜12具有一定程度的柔软性,因此,只要其大致的形状与成形后生物降解性容器本体的形状即成形模的形状一致就可以。
如果具体说明制法2,如图17所示,在图8(a)、图8(b)所示的模具20a中,在上下模片21a、22a之间配制两块预先成形为与大碗型容器10a的外形大致一致的形状的成形模12a,再在这些被覆膜12a、12a之间提供浆状或者糊状的成形用原料14。在这种状态下,将模具20b加热到被覆膜12a(被覆膜12)的主要成分即生物降解性塑料的熔点以下的温度。之后,闭合上下模片21a、22a,采用上述外部加热或内部加热进行加热和加压成形。在这个工序中,可以得到作为生物降解性容器本体的盘型容器10a(参见图4(a))。
<制法3>
制法3是在上述制法1中,将使用的被覆膜12加工成带状,再在该袋状的被覆膜1 2中放置成形用原料的方法。该制法特别适合用于成形为如图5(a)表示的盘型容器10b所示的、与片状被覆膜12一致、在平面上扩展的方向上尺寸大的形状的生物降解性容器本体的用途。
在该制法中,将被覆膜12加工成袋状以能够在内部容纳成形用原料,制成包袋膜。如果在该包袋膜的内部放入成形用原料,用包袋膜将成形用原料大致包装,因此,除了能大量准备预先在包袋膜中分注成形用原料的包装物之外,还能够保存一定的时间。进而,在制造生物降解性容器本体时,只将该原料包装物一小包放入成形模中就能完成成形的准备。而且,具有能够进一步简化制造工序的优点。
作为将上述被覆膜12加工成袋状包袋膜的方法没有特别的限定,适合使用用于将片状或者膜状的塑料加工成带状的现有公知的方法。具体地可举出高温包装等。而且,对于在包装膜内分注成形用原料的原料包装物的保存方法,没有特别的限定,只要是不使淀粉腐烂的现有的保存方法就可以。
在被覆膜中,在上述包装膜12b中放置成形用原料的物质使发泡成形用组合物。这种发泡成形用组合物(下面简称为成形用组合物)如上所述能够预先大量准备并保存一段时间,同时,只要一小包加入成形模中进行成形,就很容易地制造粘贴了被覆膜的生物降解性容器本体。因此,适合作为以容易并且简单的工序制造生物降解性容器本体的组合物。
具体说明制法3,如图18所示,将被覆膜12预先加工成袋状制成包装膜12b,在该包装膜12b中分注给定量的成形用原料14,制备成形用组合物40b。该成形用组合物40b可保存在给定的储料器等中。然后,在图9(a)、图9(b)所示的模具20b中,在下模片22b上装载从储料器出来的上述成形用组合物40b。仅此就可完成成形准备。
在该状态下,将上述模具20b加热到被覆膜12(包装膜12b)的主要成分即生物降解性塑料的熔点以下的温度。之后,闭合上下模片21b、22b,采用上述外部加热或者内部加热进行加热和加压成形。在这个工序中,可以得到作为生物降解性容器本体的盘型容器10a(参见图5(a))。
<制法4>
制法4是综合上述制法1、2和3的方法,所使用的被覆膜12被预先成形为呈袋状并且与生物降解性容器本体的外形大致一致的形状。也就是说,制法3中的包袋膜12d进一步形成与生物降解性容器本体的外形大致一致形状的成形包袋膜。该制法适合用于如图4(a)所示的大碗型容器10a等那样的成形为一定程度深冲的深形即高度方向的尺寸大的生物降解性容器本体的用途。
上述成形包袋膜可以在将被覆膜12预先加工成袋状的包袋膜之后大致按照生物降解性容器本体的外形成形,也可以按照上述外形成形之后加工成包袋膜。成形方法和对包袋膜的加工方法没有特别的限定,如上所述,适合使用目前公知的方法。
具体说明制法4,如图19所示,将被覆膜12成形为成形包袋膜12c,在该包装膜12c中分注给定量的成形用原料,制备成形用组合物40c。该成形用组合物40c可保存在给定的储料器等中。然后,在图8(a)、图8(b)所示的模具20a中,在下模片22a上装载从储料器出来的上述成形用组合物40c。仅此就可完成成形准备。
在该状态下,将上述模具20a加热到被覆膜12(成形包装膜12c)的主要成分即生物降解性塑料的熔点以下的温度。之后,闭合上下模片21a、22a,采用上述外部加热或者内部加热进行加热和加压成形。在这一个工序中,可以得到作为生物降解性容器本体的大碗型容器10a(参见图4(a))。
<制法5>
制法5是在上述制法1中将被覆膜12预先切成与生物降解性容器本体的外形大致一致的形状的膜片来说明的方法。该制法适合用于成形为如图6(a)表示的杯型容器10c等所示的、深冲程度深的形状和更复杂形状的生物降解性容器本体的用途。
上述模片的具体形状没有特别的限定,通常优选使用如图20(a)、图20(b)所示,按照成形后的生物降解性容器本体(例如杯型容器10c)的展开简图,制成切下各面的多个膜片12d的方法。
上述膜片12d如图20(a)、20(b)所示,还具有与粘贴处相当的重叠部分12e。该重叠部分12e设置在将构成底面的膜片12d的周围和构成侧面的膜片12d卷成圆筒状时粘结的端部等上。
这些重叠部分12e,在成形时,在将膜片12d配置在成形模的模穴内时,各膜片12d彼此给定的部位相互重叠。这样,成形时,该重叠部分12e和与其重叠的膜片12d的一部分相互软化并粘结(熔敷)。结果,形成多个膜片12d叠成一个的大致杯形的被覆膜12,该被覆膜12再粘贴在发泡成形物的表面上,制成被覆膜的杯型容器10c。
对于作为展开简图的膜片12d的形状没有特别的限定,以与杯型容器10c一致的情况为例,可以上如图20(a)所示的将侧面和底面分别作为一个膜片12d的、将展开图分成侧面和底面两部分的形状,也可以是如图20(b)所示分成一个底面两个侧面三部分的膜片12d的、将展开图分成三部分的形状。这种膜片12d只要在全部加起来重叠,重叠部分12e的状态下形成与杯型等生物降解性容器本体相应的形状就可以。
在该制法中,使粘贴前的被覆膜12成形为与通过上述制法2和制法4进一步成形之后的形状一致的形状。因此,这种制法可以有效地用在使用以拉伸性差的生物降解性塑料为主要成分的被覆膜12时,特别是,用在用拉伸性差的被覆膜12成形上述杯型容器10c这样的深冲形状的生物降解性容器本体时,进而用在想任意调整粘贴后的被覆膜12的厚度时等。
具体说明该制法5,如图21所示,在图11(a)、图11(b)所示的模具20d中,沿着下模片23d、24d的模穴的形状,配制与杯型容器10c的底部对应的膜片12d和与侧面对应的膜片12d。这时,要充分确保使上述重叠部分12e重叠。
然后,对形成为大致杯型的膜片12d进一步提供成形用原料14。另一方面,与上模片21d的形状一致,配制与杯型容器10c的底部对应的膜片12d和与侧面对应的膜片12d,与该膜片12d一起将上模片21d与下模片23d、24d闭合。当然,这些模片21d、23d、24d都被加热到被覆膜12的主要成分即生物降解性塑料的熔点以下的温度。
然后,采用上述外部加热或者内部加热进行加热和加压成形。该加热加压成形时,通过如上所述熔融膜片12d中的重叠部分12e,相对于发泡成形物(容器本体11c)的表面形成没有间隙的被覆膜12的层。结果,通过上述工序,可以制成生物降解性容器本体的杯型容器10c(参见图6(a))。
<制法6>
制法6是,在制法5中,在重叠部分12e粘贴膜片12c,在成形之前的时候完全与生物降解性容器本体的外形基本一致。该制法也与制法5同样,适合用于如图6(a)表示的杯型容器10c等成形为深冲程度深的形状和形状更复杂的生物降解性容器本体的用途。
这种制法与制法5基本上同样,但是,预先将重叠部分12e、12e熔融,然后确实地粘贴,形成外形型膜。因此,在分批成形时,是对使用上述制法5中重叠部分12e、12e的熔融困难的被覆膜12的情况有效的方法。
具体说明本制法6,如图22所示,在图11(a)、图11(b)表示的模具20d,在上模片21d、23d、24d之间重叠配置两块预先以大致杯形粘贴的外形型膜12f,再向这些外形型膜12f、12f之间提供成形用原料。在这种状态下,模具20b被加热到外形型膜12f(被覆膜12)的主要成分即生物降解性塑料的熔点以下的温度。然后,闭合上下模片21c、23d、24d,采用上述外部加热或者内部加热进行加热和加压成形。通过这个工序,能够制造作为生物降解性容器本体的杯型容器10c(参见图6(a))。
<制法7>
在制法7中,是在制法6中进一步组合制法3的方法。即,在重叠部分12e粘贴膜片12c,使得在成形之前的时候完全与生物降解性容器本体的外形基本一致,将它们重叠,加工成大致袋状的形状,向内部分注成形用原料。这种制法与制法5和制法6同样,优选用于如图6(a)表示的杯型容器10c等所示的成形为深冲程度深的形状和更为复杂形状的生物降解性容器本体的用途。
这种制法与制法3和制法4也同样,在将被覆膜12制成包袋膜之后,准备在内部放置成形用原料构成的成形用组合物,因此,能够将该成形用组合物保存一定时间,同时,只通过将该成形用组合物一小份加入到成形模中,就可完成成形的准备。而且,能够进一步简化制造工序。
具体说明该制法7,如图23所示,在将被覆膜12按照杯型容器10c的外形制成膜片之后,将其粘贴制成外形型膜,再将其两片粘贴,预先加工层袋状的外形包袋膜12g。然后,在该外形包袋膜12g中分注给定大量成形用原料14,准备成形用组合物40g。该成形用组合物40g可以保存在给定的储料器等中。然后,在图11(a)、图11(b)表示的模具20d中,在下模片23d、24d上装载从储料器出来的大致杯形的成形用组合物40g。仅此,就可完成准备。
在这种状态下,上述模具20d被加热到被覆膜12(外形包袋膜12g)的主要成分即生物降解性塑料的熔点以下的温度。然后,闭合上下膜片21d、23d、24d,采用上述外部加热或者内部加热进行加热和加压成形。通过这一个工序,就能够获得作为生物降解性容器本体的杯型容器10c(参见图6(a))。
在本发明中,要粘贴被覆膜12,如上所述,如果采用后粘贴法,可再准备一组具有与发泡成形物的成形使用的成形模形状大致相同的模穴的粘贴模用于膜的粘贴。而如果使用同时粘贴法,可以不需要粘贴模在成形时成批粘贴被覆膜12。
因此,能够以正确并且确实的基本上粘着的状态在发泡成形物的表面上粘贴被覆膜12。特别是,在制造形状复杂的成形物时,由于其形状与成形模的模穴的形状有关,因此,在例如采用后粘贴法中,按照发泡成形物制造粘贴模30,即使不细微地调整形状,也能够在复制成形模的程度上很容易地制造。
而且,在本发明中,在以天然原料即淀粉为主要原料进行水蒸气发泡成形预先成形成给定形状的发泡成形物之后,粘贴被覆膜12或者在发泡成形的同时粘贴被覆膜12。因此,只要是可起模的形状,任何形状的成形物都可以成形。例如,即使是杯子这样的深冲形状和厚度不均匀的带间壁的食品托盘等,也能够确实地成形。
另外,通过后粘贴法粘贴被覆膜12时,如上所述,可以使用与成形使用的成形模大致形状相同的粘贴模,因此能够获得具有生物降解性并且耐水、耐湿性优良的非常多种多样形状的成形物。
作为被覆膜12,如果使用不仅具有耐水性还具有阻气性等的本发明,可以赋予生物降解性容器本体阻气性等各种功能,因此,在作为容器等使用时,可以防止内容物的氧化的吸湿,并且能够提供保存性优良的成形容器。
进而,如果在被覆膜12的表面预先用生物降解性油墨印刷上文字和图案,只粘贴该被覆膜12就可以。这样,与在发泡成形物表面上直接印刷相比,就能够更加容易地在发泡成形物的表面上施以赋予装饰性的细微的印刷。
也就是说,在被覆膜中,由于预先对被覆膜12赋予了任何功能,因此,如果在发泡成形物上粘贴该被覆膜12,就可以对生物降解性容器本体简单并且确实地赋予各种功能。
接着,对本发明的密封容器举出采用上述图4(a)、图5(a)和图6(a)表示的容器10a~10c的情况作为例子,采用图1、图2和图3进行说明。这里,虽然未图示,但是代替图4(a)、图5(a)和图6(a)表示的容器10a~10c,可以使用图4(b)、图5(b)和图6(b)表示的容器10a~10c。
如图1所示,作为本发明的密封容器的大碗型密封容器50a在内部具有用于容纳内容物51的空间,并且,具备具有用于取放内容物51的开口的大碗型容器10a和用于密封大碗型容器10a的开口的以塑料为主要成分的盖子17,上述盖子17被热封在大碗型容器10a的开口的周边部分。
如图2所示,作为本发明的密封容器的盘型密封容器50b在内部具有用于容纳内容物51的空间,并且,具备具有用于取放内容物51的开口的盘型容器10b和用于密封盘型容器10b的开口的以塑料为主要成分的盖子17,上述盖子17被热封在盘型容器10b的开口的周边部分。
如图3所示,作为本发明的密封容器的杯型密封容器50c在内部具有用于容纳内容物51的空间,并且,具备具有用于取放内容物51的开口的杯型容器10c和用于密封杯型容器10c的开口的以塑料为主要成分的盖子17,上述盖子17被热封在盘型容器10c的开口的周边部分。
被覆膜12至少如图24(a)所示粘贴在容器本体(大碗型容器10a、盘型容器10b、杯型容器10c)的开口的边缘部分16上以能够进行热封。
发泡成形物11由于是以天然淀粉为主要原料进行水蒸气发泡的,因此,如图24(a)和图24(b)示意性所示的,在发泡成形物11的表面上产生非常细微的凹凸。因此,如图24(b)所示,在容器本体的开口的边缘部分16上不粘贴被覆膜12时,如果存在上述凹凸,片状的盖子17和边缘部分16的接触状态变差,无法实现足够的密封状态。
而且,也存在涂敷具有耐水性的树脂的现有技术,但是,由于一开始在发泡成形物11的表面上就存在细微的凹凸,因此,不管怎样均匀涂敷树脂,在凹凸位置涂敷的树脂的被膜上容易产生间隙和真空,难以形成一致的被膜。因此,无法发挥足够的耐水性和耐湿性。并且,在必须防止内容物氧化等的情况下,还要求具有阻气性,但是上述细微凹凸的存在也降低了阻气性。
与此不同,在被覆膜中,将原本作为完整的膜成形的被覆膜12通过例如粘结剂层13粘贴,在发泡成形的同时软化,直接紧贴并粘贴,因此,如图24(a)所示,在上述边缘部分16中,提高了密封状的盖子17和粘贴被覆膜12的边缘部分16的粘结性。结果,开口部分的耐水性、耐湿性、阻气性等的密闭性(密封性)提高,能够进一步提高内容物的保存性。
被覆膜的密封容器在例如象在内部加入沸水的杯面的容器(图1中表示的大碗型密封容器50a等)等在内面暴露于高温(100℃左右)的用途中,在整个容器上粘贴被覆膜12,赋予容器高的耐热性是优选的。
本发明的密封容器中,在例如在内部放入干燥面的杯面容器等作为在内部放入干燥食品的容器使用时,为了使内部的干燥食品(干燥面等)不氧化或者不吸湿,在整个容器上粘贴被覆膜12,赋予整个容器阻气性是优选的。
盖子17优选是以塑料为主要成分的膜。这样,在能够赋予盖子17耐透湿性和阻气性的同时,开封时盖子17还容易剥离。
而且,盖子17优选具有遮光性。作为具有遮光性的盖子17,可认为是层压塑料层和折光层的层压体,即将在塑料上加入遮光性材料的材料成形的产物等,从能够获得足够的遮光性方面考虑,优选是层压塑料层和遮光层的层压体(其中,在至少与生物降解性容器本体接触的一侧存在塑料层)。而且,作为折光层,可举出由铝等金属形成的层、二氧化硅等无机化合物形成的层、纸等纤维形成的层等。盖子17由于遮光性优良并且可以进行印刷,因此,最优选是塑料层和金属层、纸层、塑料层按顺序层压的层压体。
盖子17可以以不具有生物降解性的塑料为主要成分,这时,由于无法将盖子17与容器本体(大碗型容器10a、盘型容器10b、杯型容器10c)一起进行生物降解,因此,在废弃时必须分开盖子17。因此,盖子17优选以生物降解性塑料为主要成分。这样,容器本体(大碗型容器10a、盘型容器10b、杯型容器10c)和盖子17两方都可以生物降解。因此,在打开密封容器(大碗型容器50a、盘型容器50b、杯型容器50c)取出内容物51之后,从容器本体上不分离盖子17,或者将容器本体上分离的盖子与容器本体一起进行生物降解处理。而且,不需要分离盖子17,能够省去废弃处理的麻烦。而且,盖子17尽可能地是可生物降解的,能够提高更利于环境的密封容器。
由于上述原因,盖子17的最佳方案是层压由生物降解性塑料构成的生物降解性膜和遮光层形成的层压膜,至少在与生物降解性容器本体接触一侧的表面上存在生物降解性膜。
上述生物降解性膜进一步优选赋予了阻气性、绝热性、耐磨耗性、强度提高和柔软性等的膜。特别是,在使用本发明的密封容器作为密封性高的保存容器等时,由于必须避免在内部容纳的内容物的氧化和吸湿,因此,生物降解性膜非常优选能够赋予阻气性的,即具有阻气性的。
在将本发明的密封容器用作杯面容器等时,由于必须避免因内部容纳的内容物51的热量引起的生物降解性容器本体的变形和熔融,因此,生物降解性膜优选具有高的耐热性。具体地说,生物降解性膜优选熔点在130℃以上。这样,能够避免因内部放置的内容物51的热量等热量引起的盖子17的变形和熔融。
作为上述生物降解性膜的原料,只要能够发挥生物降解性,并且至少在上述发泡成形物的表面上粘贴之后能够发挥耐水性优选阻气性等的材料,就没有特别的限制。具体地说,作为被覆膜12的原料可举出示例的各种材料。在示例的各种材料中,作为构成盖子17的生物降解性膜的原料,从具有良好的阻气性和耐透湿性方面考虑,优选改性聚酯,从强度优良的角度考虑,特别优选二轴拉伸的改性聚酯。示例的各种材料可以只使用一种,也可以制成两种以上的复合物使用。而且,在生物降解性塑料中,可以加入生物降解性的可塑剂、填料等副产物。
对上述各原料(生物降解性塑料)可以混合淀粉制成被覆膜12。这时,对于淀粉相对于上述生物降解性塑料的混合比,只要不降低被覆膜12的疏水性等各种功能,就没有特别的限定,例如,优选使用以重量比计1∶1左右的混合比。
另外,在上述生物降解性膜中,可以加入各种添加剂。作为具体的添加剂,可举出例如着色剂、能够提高耐水性和阻气性等的添加剂、能够提高粘贴时软化中的各种特性的添加剂等,没有特别的限定。
作为上述层压膜中的遮光层,只要是具有遮光功能的层就可以,没有特别的限定,可举出铝蒸镀层等金属蒸镀层、二氧化硅蒸镀层等无机化合物蒸镀层、纸层等纤维层等。而且,在遮光层是金属蒸镀层和无机化合物蒸镀层时,在遮光层的一个面上可以层压生物降解性膜,在遮光层的两个面上可以层压生物降解性膜。另一方面,遮光层是纸层时,为了避免纸层剥离,优选遮光层用生物降解性膜夹持。
而且,作为上述层压膜中的层压方案,可举出(a)在生物降解性的一个面上施以铝蒸镀或者二氧化硅蒸镀、(b)在生物降解性膜的一个面上施以铝蒸镀或者二氧化硅蒸镀后,在铝蒸镀面或者二氧化硅蒸镀面上粘贴生物降解性膜,(c)用生物降解性膜夹持纸层(纸叠层)等。
上述层压膜的厚度(膜厚)根据生物降解性塑料的种类等,适当选择能够发挥耐水性和阻气性等的程度的厚度,没有特别的限定。至于下限,只要是能够发挥上述耐水性和阻气性等的程度的厚度就可以。
上述盖子17通过热封在容器本体(大碗型容器10a、盘型容器10b、杯型容器10c)的开口的边缘部分,与被覆膜12熔融。作为盖子17的热封方法,可以上在加热被覆膜12和盖子17的同时将盖子17挤压在被覆膜12上的方法,对此没有特别的限定,例如,有将盖子17上存在塑料的面和容器本体的边缘面合在一起,采用加热到给定温度的密封模进行加热加压的方法。
作为热封时盖子17的加热温度(密封型的表面温度),只要是熔融被覆膜12和盖子17的温度,即被覆膜12和盖子17的主要成分即塑料的熔点以上的温度就可以。而且,作为加热手法,可以使用上述外部加热和内部加热。具体地说,可以使用例如直火或者远红外线、电热器、IH加热装置等直接加热密封模的加热手段的外部加热和通电加热、高频介质加热、微波加热等加热内部的被覆膜12和盖子17本身的内部加热手段的内部加热。
作为放置在本发明的密封容器中的容器本体内部的空间的内容物51,例如杯面(杯装拉面、杯装乌东面、杯装荞麦面、杯装炒面等)等方便食品、汤和果汁等液状的食品等食品是合适的。在将本发明的密封容器作为封入上述食品的食品用密封容器使用时,废弃时,即使在密封容器内部的空间残留食品,包括食品的残渣,也可以整个进行生物降解处理。
本发明的密封容器具有特别的耐水性,因此,适合作为水分含量多的食品使用。而且,本发明的密封容器在盖子17和容器本体具有阻气性和耐透湿性、遮光性的情况下,适合用作经过一段时间保持质量的同时能够保存杯面等方便食品这样的干燥食品的保存容器。
如上所述,本发明密封容器的容器本体在以淀粉为主要原料的发泡成形物的杯面上粘贴生物降解性塑料构成的本发明。这样,保持具有上述发泡成形物所具有的形状的维持性(保持适当厚度的形状)和绝热性,对其表面能够赋予牢固的耐水性。同时,还能够提高上述发泡成形物的强度和柔软性。
而且,发泡成形物和模都具有生物降解性,特别是壁厚的发泡成形物由于以淀粉为主要原料具有非常优良的生物降解性,同时,膜虽然以生物降解速度缓慢的生物降解性塑料为主要原料,但是膜厚小,也能够充分进行生物降解。因此,生物降解性容器本体在废弃时能够发挥良好的生物降解性。
在发泡成形物的表面上粘贴作为完整的膜的本发明,在发泡成形物的开口的边缘热封密封状的盖子,因此,能够完全密封开口。
下面基于实施例和比较例对本发明进行更详细的说明,但是,本发明并不限于此。
在容器内放入作为内容物的100g氯化钙,将盖子热封,制成密封的密封容器“试验品”,采用什么都没有封入的密封容器作为“空白”。然后,将“试验品”和“空白”放入40℃、相对湿度为90%的恒温恒湿器中,测定每十天的重量变化。然后,通过计算(试验品增加重量)-(空白增加重量)算出因透湿造成的每十天的重量变化。
将容器在40℃相对湿度90%的高湿度环境下放置30天,通过确认有无因吸湿引起的软化和变形、吸湿后的表面状态(良好还是不良)、吸湿后的强度(优秀(◎)、良好(○)、不良(×)三个等级评价),来评价耐湿强度。

采用モコン公司(MOCON,Inc.)制的氧透过试验机(OX-TRAN),从容器的口不将氮气入管和出管插入到容器内,用粘结剂固定密封口部,开通该管子,往容器内通入一定流量的氮气,在23℃、相对湿度50%的气氛下测定从外部透过容器的空气中的氧量(容器内部的气体中的氧气不利)。氧气100%的气体透过量(氧气透过率)的换算是通过空气的试验值(空气透过度)乘以系数4.8的演算来进行。
采用ガ—ドナ—公司(BYK-Gardner GmbH)制的光透过度测定器“ヘイズ·ガ—ド·デユアル”,在该测定器的感光部分密封容器底面的外侧,从容器开口部分的外侧照射光,测定透过的光的比例(光透过度)。该测定对各样品各进行30个,采用其测定值的平均值作为遮光性的判断。该值在没有遮光性时为100%。
采用株式会社レオテツク制的电流计,使用直径2mm、顶端部分的曲面率为1R的棒状插入件,计算将该棒状插入件以6cm/分钟的速度扎入容器时的最大应力和进入距离。
在オリエンテツク公司(Orientec corporation)制的“ORIENTEC-1250A”上安装5KN的负载传感器,将安装在负载传感器上的比容器开口部分尺寸大的平板圆板状的圆盘以100.0mm/分钟的速度下降,测定将容器整体压缩变形时的损坏点负荷。
按照杯面容器的JAS(日本农林规格)规格的规定,往空的容器中加入热水,确认经过15分钟后的变形和保留60分钟之后的状态(或者向外渗出水(热水)),并确认有无变形和水(热水)的渗出。
向容器内部加入沸水,在容器的外侧表面(外面)和内侧表面(内面)粘贴具有温度记录针的热电偶,测定5分钟时间的温度变化。
在容器内部加入25℃的水530g,将其放入家庭用的微波炉中,施加600W的功率,加热10分钟,然后,测定容器外面的温度,同行研究容器有无变形等。
采用JIS K6950“塑料—水系培养液中好气的最终性生物降解度的求出方法—采用封闭呼吸计的耗氧量的测定的方法”,测定生物降解度。
首先,混合高脂檀醇淀粉(脂檀醇含量为60%的玉米淀粉)30.0g和作为水不溶性纤维(强度调整剂)的针叶树原浆(バ—ジンパルプ)7.0g、作为强度调整剂的碳酸钙7.0g、作为稳定剂和强度调整剂的瓜尔胶0.2g、水55.8g,制成糊状的成形用原料(下面称为成形用原料(1))100g。
接着,除了代替高脂檀醇淀粉,使用分别含有马铃薯淀粉25重量%和高脂檀醇淀粉(脂檀醇含量为60%的玉米淀粉)75重量%的混合物之外,与成形用原料(1)的制法同样,制备糊状的成形用原料(下面称为成形用原料(2))100g。
再将作为主要原料的马铃薯淀粉30.0g和聚乙烯醇15.0g、作为水不溶性纤维(强度调整剂)的针叶树原浆4.0g、作为强度调整剂的碳酸钙10.0g、作为稳定剂和强度调整剂的瓜尔胶0.2g、水58.5g混合,制成糊状的成形用原料(下面称为成形用原料(3))127.7g。这时固形部分(成形用原料中除水之外的成分)的重量为69.2g,成形用原料的固形部分比例(固形部分相对于成形用原料的总重量的比例)为54.2重量%。
下面,按照上述同时粘贴法的制法1,采用上述成形用原料(1)~(3)作为成形用原料14,采用厚度为35微米的二轴拉伸的改性聚酯膜作为被覆膜12,采用图8(a)和图8(b)表示的模具20a,制造大碗型容器10a。
这时,作为加热手法,并采用电加热器加热模具20a的外部加热和采用高频介质加热的内部加热。而且,这些外部加热和内部加热要将模具20a的温度调整到130~160℃。
接着,使用改性聚酯/纸/铝(铝蒸镀层)/改性聚酯的四层膜作为盖子17,将上述膜对得到的大碗型容器10a进行热封。具体地说,通过将上述膜中的接近纸铝一方的面(铝上形成的改性聚酯露出表面的面)与大碗型容器10a的边缘面闭合,采用加热的密封模加热加压,进行热封。
这样,可得到大碗型密封容器50a。对于得到的大碗型密封容器50a,采用上述试验方法进行耐透湿性试验,计算由透湿产生的重量变化。结果列在表1。
除了作为被覆膜12,使用厚度50微米的二轴拉伸的改性聚酯膜之外,与实施例1同样,制造大碗型密封容器50a。
混合作为主要原料的马铃薯淀粉35.0g和聚乙烯醇7.0g、作为水不溶性纤维(强度调整剂)的针叶树原浆7.0g、作为填充剂和着色剂的二氧化钛0.3g、水50.7g,制成糊状的成形用原料(下面称为成形用原料(4))100.0g。
除了使用上述成形用原料(4)作为成形用原料14之外,与实施例2同样,制造大碗型密封容器50a。
在将大碗型容器本体成形之后,在40℃、相对湿度90%的恒温恒湿器中调整到容器本体的含水量为10%,除此之外,与实施例3同样,制造大碗型密封容器50a。
对于得到的大碗型密封容器50a,采用上述试验方法进行耐透湿性试验,计算由透湿引起的重量变化。而且,作为实施例1~3的对照,采用市售的快餐面(杯面)容器(发泡苯乙烯制;下面简单地称为市售品),作为评价基准。结果在表1表示。
表1

由表1表示的结果,本发明的密封容器是具有与发泡苯乙烯制的密封容器等同或者其之上的耐透湿性的密封容器。
下面为了确认该耐透湿性是不是由覆盖容器表面的被覆膜引起的性能,采用六种透湿度不同的膜。所谓六种膜是指透湿度为2.8cc/m2·24小时·大气压(28ml/m2·天·MPa)的膜(厚度50微米的二轴拉伸的聚丙烯(OPP)膜)、透湿度为5.5cc/m2·24小时·大气压(54ml/m2·天·MPa)的膜(厚度25微米的二轴拉伸的聚丙烯膜)、透湿度为7.0cc/m2·24小时·大气压(69ml/m2·天·MPa)的膜(厚度20微米的二轴拉伸的聚丙烯膜)、透湿度为32cc/m2·24小时·大气压(320ml/m2·天·MPa)的生物降解性膜(厚度50微米的二轴拉伸的改性聚酯膜)、透湿度为46cc/m2·24小时·大气压(450ml/m2·天·MPa)的生物降解性膜(厚度30微米的二轴拉伸的改性聚酯膜)和透湿度为80cc/m2·24小时·大气压(790ml/m2·天·MPa)的生物降解性膜(厚度25微米的二轴拉伸的改性聚酯膜)。然后,对这六种膜,分别将两块膜重叠成形为与大碗同样的形状,为了使容积率一定,制成在外侧设置环状支撑的膜制的大碗状袋。然后,对制成的六中大碗状袋采用与上述试验方法同样的方法进行耐透湿性试验。
除了用比较例1使用的三种生物降解性膜(二轴拉伸的改性聚酯膜)的一种只代替被覆膜12之外,与实施例3同样,制造三种大碗型密封容器50a。它们也与上述试验方法同样,进行耐透湿性试验。
比较例1和实施例5的结果是,只重叠两块膜(比较例1)时,如果所用的膜的透湿度为5.5cc/m2·24小时·大气压(54ml/m2·天·MPa)以下,不能发挥与市售品同等的足够的耐透湿性,与此不同,被覆膜的大碗型密封容器50a(实施例5)中,所使用的膜的透湿度为46cc/m2·24小时·大气压(450ml/m2·天·MPa)以下,具有与市售品等同的足够的耐透湿性。
由此可见,在被覆膜的密封容器中,除了由表面的膜引起的防透过效果之外,构成容器本体的淀粉发泡成形物本身也具有大的防止透过效果。
在现有技术中,对于生物降解性膜,厚度100微米以下时难以实现透湿度10cc/m2·24小时·大气压(98ml/m2·天·MPa)以下的膜。但是,由实施例5的结果可见,根据本发明,采用即使是生物降解性膜都容易实现的46~80cc/m2·24小时·大气压(450~790ml/m2·天·MPa)的透湿度的膜,就可以制造耐透湿性优良的容器。
而且,对实施例1~3中制备的大碗型密封容器50a,采用上述试验方法测定耐湿强度试验。其结果在表2表示。
表2

由表2表示的结果可见,本发明的密封容器完全消除了淀粉发泡成形物的一般性性质即湿度差的缺点,是具有作为容器的足够的耐湿强度的密封容器。
对于实施例1~4中获得的大碗型密封容器50a,采用上述试验方法进行氧透过试验。作为各实施例的对照,使用市售的方便面容器(发泡苯乙烯制),作为评价的基准。结果在表3表示。
表3

由表3表示的结果可知,本发明的密封容器具有比市售的发泡苯乙烯制的容器更加优良的氧阻挡性,是能够用于保护内容物不受氧化改性的用途的密封容器。
对于实施例1~3中得到的大碗型密封容器50a,采用上述试验方法进行遮光性试验。而且,作为各实施例的对照,使用市售的方便面容器(发泡苯乙烯制),作为评价基准。其结果在表4表示。
表4

由表4的结果可见,本发明的密封容器使具有与市售的发泡苯乙烯制的容器等同的遮光性的密封容器。
对于实施例1、3、4中得到的大碗型密封容器50a,采用上述试验方法进行扎透试验和屈压强度试验。作为各实施例的对照,使用市售的方便面容器(发泡苯乙烯制),作为评价基准。其结果在表5表示。
表5


由表5表示的扎透强度的最大应力和屈压强度的结果可见,本发明的密封容器具有优于市售的发泡苯乙烯制的容器的刚性。而且,由扎透强度的进入距离的结果可见,本发明的密封容器还兼有与上述的发泡苯乙烯制的容器大致等同的柔软性。
对实施例1~4中制备的大碗型密封容器50a采用上述试验方法进行耐热水性试验。其结果在表6表示。
表6

由表6的结果可见,没有发现水的渗透和变形等。而且,由此结果可见,本发明的密封容器在其中注入热水即使用于当时面的烹调等也没有任何问题,可以情人具备耐热水性。
对于实施例1~4中制备的大碗型密封容器50a,采用上述试验方法进行绝热性和保温性试验。作为各实施例的对照,使用市售的方便面容器(发泡苯乙烯制),作为评价基准。其结果在表7表示。
表7

由表7的结果可见,本发明的密封容器是具有与上述的发泡苯乙烯制的容器等同的绝热性和保温性的密封容器。
对于实施例3中制备的大碗型密封容器50a,使用上述试验方法进行微波炉使用试验。
结果,从试验开始6分钟30秒时容器内的水开始沸腾,从试验开始直到10分钟后,沸腾状态继续。然后,从试验开始到10分钟后取出的容器外面的温度最高部分为78℃,是能用手端着的温度。而且,大碗型密封容器50a在加热10分钟之后没有熔融和变形的地方。
由此可见,本发明的密封容器与上述的发泡苯乙烯制的容器不同,能够耐受采用微波炉的加热烹调。
而且为了确认容器的生物降解性,对于实施例4中得到的大碗型容器50a采用上述试验方法进行30天期间的生物降解性试验,计算生物降解度。其结果在表8表示。
表8

在本试验中,表示25天左右60%以上的分解度。由表8的结果可见,本发明的密封容器具有足够的生物降解性。
在针对实施发明的最佳方案的项目中完成的具体的实施方案或者实施例到底是用于说明本发明的技术内容的,并不是只限于这些具体的例子和狭义的接受,本发明的精神在如下记载的权利要求的范围内,可以进行许多改变来实施。
工业上的可利用性根据本发明,如上所述,能够提供除了具有足够强度和实现至少足够的耐水性之外,还能够发挥非常良好的生物降解性的生物降解性的密封容器。
根据本发明,如上所述,能够提供保持流通和保存时内容物的质量,具有用于防止破损的足够的强度和遮光性、遮香性、阻气性等的作为保存用容器的功能,并且,具有耐热性和耐水性、保温性等作为烹调用容器的功能,以及具有绝热性和容易招待端取的作为餐具的功能等,还能够发挥非常良好的生物降解性的生物降解性的密封容器。
而且,本发明的密封容器适合作为在内部空间放入食品的密封容器使用。特别是,本发明的密封容器要求兼有上述作为保存用容器的功能、作为烹调用容器的功能和作为参加的功能,而且,适合用作能够与食品的残渣一起废弃处理的、杯面等在内部空间放入方便食品的密封容器。
权利要求
1.一种密封容器,其中,在内部具有用于容纳内容物的空间,并且,具备具有用于取放上述内容物的开口的生物降解性的容器本体和用于密封上述容器本体开口的、以塑料为主要成分的盖子的密封容器中,上述容器本体包括成形成给定形状的生物降解性发泡成形物和在其表面粘贴的被覆膜,上述生物降解性发泡成形物以淀粉或者其衍生物为主要成分,通过将在其中混合水得到的浆状或者糊状的成形用原料进行水蒸气发泡进行成形而成,上述被覆膜以生物降解性塑料为主要成分,至少具有疏水性,上述盖子热封在容器本体开口的周围边缘部分。
2.权利要求1记载的密封容器,其中,上述盖子是以生物降解性塑料为主要成分的膜。
3.权利要求2记载的密封容器,其中,上述被覆膜和盖子的主要成分即生物降解性塑料的熔点都在130℃以上。
4.权利要求1到3的任意一项记载的密封容器,其中,上述生物降解性塑料是改性聚酯。
5.权利要求1到4的任意一项记载的密封容器,其中,上述被覆膜是二轴拉伸的膜。
6.权利要求1到5的任意一项记载的密封容器,其中,在上述容器本体内部的空间放入食品作为内容物。
7.权利要求6记载的密封容器,其中,在上述容器本体内部的空间封入作为上述食品的杯面。
8.权利要求1到7的任意一项记载的密封容器,其中,上述盖子是层压由生物降解性塑料构成的生物降解性膜和遮光层而成的层压膜。
9.权利要求8记载的密封容器,其中,上述遮光层包括金属蒸镀层和纸层。
10.权利要求1到9的任意一项记载的密封容器,其中,上述生物降解性发泡成形物包含二氧化钛。
11.权利要求1到10的任意一项记载的密封容器,其中,上述容器本体的总重量中上述生物降解性发泡成形物所占的重量为60重量%以上。
12.权利要求1到11的任意一项记载的密封容器,其中,上述成形用原料以整体为100重量%时水的含量为20重量%以上70重量%以下。
13.权利要求1到12的任意一项记载的密封容器,其中,上述被覆膜以大致紧贴的状态直接粘贴在上述生物降解性发泡成形物的表面上。
14.权利要求1到13的任意一项记载的密封容器,其中,上述生物降解性发泡成形物的最终含水率为3重量%以上20重量%以下。
全文摘要
大碗型容器(10a)在以淀粉为主要成分的容器本体(11a)的表面上粘贴以生物降解性塑料为主要成分并至少具有疏水性的被覆膜(12)。上述容器本体(11a)通过将含有淀粉和水的浆状或者糊状的成形用原料进行水蒸气发泡来成形,能够发挥非常优良的生物降解性。
文档编号B65D65/46GK1639022SQ0380437
公开日2005年7月13日 申请日期2003年2月20日 优先权日2002年2月21日
发明者小笹晃夫, 桥本明久, 篠原ゐみ 申请人:日世株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1