复合材料片材及用于制造它的方法与流程

文档序号:15234158发布日期:2018-08-21 20:10阅读:432来源:国知局

本发明涉及复合材料片材和用于制造它的方法。



背景技术:

术语“复合物”是指通过将两种或更多种组分(也称为相)结合而获得的一种材料,所述两种或更多种组分按照各种比例和形状结合,使得最终产品具有非均匀结构,并且具有的化学-物理性质不同于单独成分的化学-物理性质。称为基质的其中一个相具有连续的形式,且其主要用于保持一个或多个增强相的内聚力,用于保证部件的特定形状,以及用于保护和均匀地将载荷传递到另一个增强相。相反,后者由不连续成分构成,通常由纤维或颗粒制成,纤维或颗粒的任务是保证机械强度和刚度,大部分外部载荷由它承载。

在颗粒复合物中,增强物由“颗粒”构成,这种“颗粒”(不同于纤维)可以被认为是等轴的,即每个颗粒的直径与长度之比约等于1(而纤维在长度方向上是更伸展的)。

具有由纤维构成的分散相的复合材料呈现出很强的各向异性。假设颗粒是等轴的,则在颗粒复合物中没有发现这种各向异性(或者至少它非常低)。

复合物的基本思想是优化所谓传统材料在化学物理、机械和轻质性质方面的性能。

通过将具有给定性质的材料(例如聚合物)与具有不同性质的另一种材料(例如碳纤维)结合,可以获得由这两种材料构成的一种材料,其增强其最佳性质。复合材料特别有趣,这是因为它们提供了不同性质的特定组合,而这些不同性质在常规材料如金属合金、陶瓷和聚合物中不能同时存在。

在汽车工业中,已知使用由复合材料制成的面板来制造机动车辆的内部部件,例如车顶内衬、装载空间、后窗台板等。

所述面板必须表现出相当大的机械强度以及良好的柔韧性水平和尽可能低的重量。

由填充有植物填料的热塑性材料制成的面板由于它们的可模塑性(例如通过热成形)、它们良好的机械强度、它们良好的断裂行为以及低制造成本而是良好的折衷。此外,植物填料允许生产非常轻的面板,在带有它们的车辆的操控和燃料消耗方面具有明显的优点。

文献ep2247653描述了一种复合材料片材,其具有聚丙烯基质和由植物纤维,特别是纤维素构成的填料。

植物纤维的一种替代是使用矿物纤维或无机纤维,特别是玻璃纤维。这种纤维更耐磨、更硬、熔点高且完全阻燃。相反,除了金属纤维,它们非常脆。

特别地,玻璃纤维具有高的弯曲和冲击强度、低的热导率和电导率以及相对低的密度,这使得它们特别可用于在汽车工业中使用。

另一方面,不同于植物纤维,如果它们没有很好地嵌入复合物的基质(这保证了其可模塑性)中,它们可能在环境中扩散,并且危害健康。



技术实现要素:

本发明的目的是提供一种具有聚合物基质和无机纤维(特别是玻璃纤维)的填料的复合材料片材或板,其中基质能够完美地嵌入填料,将其牢固地结合在其中,从而避免存在可从其分离并分散在环境中,特别是车厢中的表面纤维。

本发明通过提供一种复合材料片材来实现这一目的,该复合材料片材具有通过挤出由热塑性材料(特别是聚烯烃族,例如聚乙烯、聚丙烯、聚烯烃的混合物等)和具有预定长度的非植物纤维(典型地玻璃纤维)的组构成的混合物而获得的特征,并且其中挤出是以产生被称为纤维“垫”的三维纤维结构的参数进行的,在三维纤维结构中,纤维自身交缠。

特别地,这种垫由主要布置在挤出方向上的纤维的组合来构成,但同时由于通过挤出机打开和对齐各个纤维束所施加的机械作用,在平面的其他两个方向上表现出一种各向同性。

本发明基于意想不到的技术效果。众所周知,可以通过用聚合物基质例如聚丙烯浸渍玻璃纤维的预成型层来生产复合物片材。构成该层的纤维,无论是否按照主方向取向、织造或无纺的,都可以通过用压延机涂覆和压缩,或者通过使用在不同温度下的循环的软化技术,由基质润湿。发明人已经发现,可以通过挤出方法获得完全被聚合物基质覆盖的三维纤维结构,同时保持纤维的尺寸受控。

特别地,本发明涉及使用直径在5至50微米范围内、长度在1至20mm范围内的纤维。

特别地,本发明涉及使用具有前述特征的纤维,这些纤维被一起分组成纤维束,这些纤维束通过首先由混合器、然后由挤出机的一个或多个螺杆、然后由挤出机的输出模头施加的机械作用来形成三维结构而被分离成各个单元并被定向。

当纤维组具有厚度范围为0.5至2mm、优选约1mm并且长度范围为2至20mm、优选约2至3mm的量级的圆柱体形状时,产生最大效果。如果使用马弗炉进行复合材料的煅烧,则这种效果非常明显。复合材料中构成所谓的垫的无机组分保持不变,而有机物通过煅烧从体系中除去。因此,可以分析嵌入聚合物基质中的无机填料的量和排列。

通过挤出施加在由热塑性聚合物的颗粒或粉末和玻璃纤维的附聚物构成的异质混合物上的机械作用能够使纤维组断裂并将长丝分散在聚合物基质中。

具体而言,根据本发明的用于生产复合材料片材的方法规定了将颗粒或粉末形式的热塑性材料与具有预定长度的纤维组混合,并通过将混合物通过挤出模头挤出来形成片材。以产生被嵌入热塑性材料中的、被称为垫的三维纤维结构的参数进行混合和挤出。正是混合步骤使得纤维束分离而不显著改变其尺寸特性。在挤出步骤中,各个纤维被布置以形成垫,该垫又被热塑性材料完全浸渍。

必须注意,根据本发明的片材是如何完全可回收的。为此,根据一个实施例,该方法规定了初步研磨该再循环复合物片材以获得待混合的热塑性材料和纤维的步骤。在这种情况下,提供进一步的步骤,例如在混合物中加入通过大体上研磨边料和废料获得的一定量的材料(假设它们在配方方面彼此一致)。

如果认为热塑性材料和纤维典型地基本上以相同的比例即50和50(重量方面)存在于片材中,则通过以相同的量向混合器供给再循环材料和聚合物材料,如果在混合步骤之后的步骤中添加相同量的纤维,则最终挤出将能够保持相同比例的组分。

混合和挤出步骤有利地在挤出机中进行,特别是在具有输出平模头的双螺杆挤出机中进行。由于混合螺杆和挤出模头施加的机械作用,纤维彼此交缠,从而在混合/挤出步骤的同时产生纤维交缠。

根据本发明的板或片材特别可用于在汽车工业中使用。例如,它们可用于形成后窗台板、装载空间、机动车辆的车顶内衬、车体部件、卡车驾驶室、扰流板、控制板、工具保持面板、灯外壳等。

然而,其它应用也是可能的,特别是在那些需要小负担和同时高水平机械强度的领域,尤其是在低成本产品和轻质产品中。

附图说明

本发明的示例在下文中通过以下附图进行描述,其中:

图1示出了纤维取向相对于对应于90°的角度的挤出方向的分布百分比的并且对于不同设置的温度和平台的挤出模具沿挤出方向的长度的图形表示。

图2示出了与图1类似的曲线图,但是测量限于沿着片材的两个相对表面中的每一个表面的约0.5mm深度的层。

图3是将根据图1和图2的示例的片材沿挤出方向和垂直于挤出方向的弯曲模量的比率与图1和图2的曲线图的峰值相关联的曲线图。

具体实施方式

下面将借助附图描述一些示例。

包含根据本发明的聚烯烃树脂和玻璃纤维的共混物的挤出片材已经被挤出。片材厚度为2.2mm。

模头沿挤出方向的长度在40和100mm之间分四个步骤变化。

被挤出的材料的温度在200℃至220℃之间。

图1示出了纤维的分布相对于它们相对于挤出方向的取向的曲线,并以百分数表示。

数据的测量是通过评估相对于挤出方向沿某一角度定向的纤维来进行的,该角度在图1中与90°角度一致。

纤维的最大取向角为0°和180°,这对应于纤维垂直于挤出方向和从挤出方向开始的两个方向中的取向。

通过rx断层摄影机进行测量,该断层摄影机每次相对于落在沿挤出方向定向的轴线上的旋转中心角向移位0.5°。

在每个采集角度,已经确定了沿所述角度定向的纤维的对应百分比。

这些曲线已经重新标度,以便它们从0°到180°的积分对应于包含在片材中的100%的纤维。

不同的曲线涉及从30cm到100cm的挤出模头的不同长度。

这四条曲线由符号和名称2141pdc、2141pss、2141psc、2141pdd识别。

从曲线上看,通过改变模头的长度,纤维的分布变得越来越非各向同性。限定为2141pdc的曲线是最平坦的曲线。这意味着纤维相对于挤出方向是各向同性定向的。

这对于在相对于挤出方向而言的纵向和横向上的弯曲模量值的比率具有影响,其中该挤出方向平行于纵向。

与示例2141pdc相关的曲线最大值与曲线最小值的分布的比率为约1.2。

通过改变模头的长度,更大数量的纤维在平行于挤出方向的方向上对齐。与示例2141pdd相关的曲线显示了更高的动态范围,并指示曲线最大值与曲线最小值的分布的比率为约5.7:1。

这意味着在这种情况下,与横向于挤出方向定向的纤维相比,在平行于挤出方向的方向上定向了更高百分比的纤维。在这种情况下,上文所定义的纵向和横向弯曲模量之间的比率是不同的且更大,使得片材在纵向上具有更高的抗弯曲应力性。

图2示出了在距片材表面约0.5mm深度的薄表层中纤维相对于挤出方向的取向分布的情况。

同样,测量是相对于与图中的90°角相对应的挤出方向并且使用与图1相同的rx断层图像进行的。

如上所述,已经扫描了用四个模头长度获得的四个片材。如上已经完成的,四个片材和相关的曲线被识别。

在阅读曲线时,似乎改变模头长度的效果不仅在于使曲线变平,这意味着纤维取向分布具有更高程度的各向同性或非各向同性,还在于它改变沿着挤出方向(90°)居中的纤维的可能取向的角宽度。曲线2141pdc更平坦,且大多数纤维将以各向同性的方式沿着相对于挤出方向(90°)在约-50°和+50°之间的方向分布。曲线2141pdd显示了纤维在不同取向上的更非各向同性的分布,但是可能的取向的角宽度相对于挤出方向减小到约-30°至+30°。示例2141psc和2141pss显示了2141pdc和2141pdd之间的中间行为。

尽管以上示例限于模头长度的变化,但实验也显示了对于相对于通过改变正被挤出的混合物的温度确定的挤出方向,在不同角度取向上的纤维分布的类似影响。

图3示出了根据本发明的片材上的纵向弯曲模量与横向弯曲模量的比率,其示出了纤维沿着相对于挤出方向的不同取向的不同分布。

如上所述,术语纵向在此指平行于挤出方向,而术语横向指垂直于挤出方向的方向。

另外两个示例被添加到被2141所示的示例中,并结合图1和2的四种情况进行了讨论。

从以上描述可见,本发明允许相对于平行于和垂直于片材挤出方向的两个不同方向(纵向和横向)优化片材的机械性质。这在不需要改变片材材料的组成或片材的厚度的情况下,仅通过仅改变挤出方法的一些参数和特别地挤出模头的长度和/或待挤出材料质量的温度,将纤维的不同分布设定在相对于挤出方向的不同取向上来实现。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1