新型燃煤超临界二氧化碳布雷顿循环单级分流发电系统的制作方法

文档序号:11942737阅读:501来源:国知局

本发明属于先进高效火力发电领域,涉及一种新型燃煤超临界二氧化碳布雷顿循环单级分流发电系统。



背景技术:

不断提高发电机组的效率是电力行业研究的永恒主题和目标。对于发电企业而言,系统的循环效率越高,单位发电量的能耗就越低,对应的能源消耗量和污染物排放量就越低。对于传统的以蒸汽朗肯循环为能量转换系统的发电机组,若提高发电效率至50%左右,则需将主蒸汽参数提高至700℃,这就意味着需要花费高昂的经济代价和时间成本来研发新型镍基高温合金。为了避开材料方面的技术瓶颈,各国学者纷纷将目光转移到新型动力循环系统,以期实现发电效率的提升。经过各国学者大量的前期研究和论证,目前普遍认可的超临界二氧化碳布雷顿循环是极具潜力的新概念先进动力系统。这主要是由于超临界二氧化碳具有能量密度大、传热效率高等特点,超临界二氧化碳布雷顿循环高效发电系统可以在620℃温度范围内达到常规蒸汽朗肯循环700℃的效率,不需要再开发新型的高温镍基合金,且设备尺寸小于同参数的蒸汽机组,经济性非常好。

我国能源禀赋的特点决定了燃煤发电仍然是未来很长时期内我国电力结构的主体,因此,开发新型燃煤超临界二氧化碳布雷顿循环发电系统非常符合我国的基本国情,具有十分广阔的应用前景。

虽然国际上关于超临界二氧化碳布雷顿循环发电技术已经是公开技术,但是目前国内外关于超临界二氧化碳布雷顿循环发电系统大多是针对太阳能等新能源,而针对传统化石能源,特别是燃煤发电的新型系统鲜有涉及。对于燃煤超临界二氧化碳布雷顿循环发电系统来讲,由于整个循环系统中包括大量回热系统,锅炉入口超临界二氧化碳工质温度一般都要超过500℃。对于超临界二氧化碳锅炉来讲,如果仍按照传统蒸汽锅炉的受热面布置方法,在锅炉尾部布置常规省煤器,则由于省煤器处传热温压小,工质温升通常只有几摄氏度,使得受热面布置不合理、经济性差。此外,燃煤超临界二氧化碳布雷顿循环发电系统由于工质入口温度高,锅炉尾部排烟温度也较高,因此如何降低超临界二氧化碳锅炉的排烟温度,提高锅炉热效率也是燃煤超临界二氧化碳布雷顿循环发电系统至关重要的技术环节。



技术实现要素:

本发明的目的在于克服上述现有技术的缺点,提供了一种新型燃煤超临界二氧化碳布雷顿循环单级分流发电系统,该系统能够的降低锅炉排烟温度,提高锅炉的热效率及发电系统的效率。

为达到上述目的,本发明所述的新型燃煤超临界二氧化碳布雷顿循环单级分流发电系统包括锅炉及超临界二氧化碳布雷顿循环发电系统,锅炉包括依次相连通的炉膛、水平烟道及尾部烟道,炉膛内沿烟气流通的方向依次布置有水冷壁、墙式再热器及屏式过热器,水平烟道内布置有高温再热器,尾部烟道内沿烟气流通的方向依次布置有低温再热器、二级空气预热器及一级空气预热器,尾部烟道内布置有低温过热器,低温再热器与低温过热器并排布置;

超临界二氧化碳布雷顿循环发电系统中低温回热器的热侧出口分为两路,其中一路与超临界二氧化碳布雷顿循环发电系统中预冷器的入口相连通,另一路与超临界二氧化碳布雷顿循环发电系统中再压缩机的入口相连通,超临界二氧化碳布雷顿循环发电系统中高温回热器的冷侧出口与水冷壁的入口相连通;

水冷壁的出口与低温过热器的入口相连通,低温过热器的出口与屏式过热器的入口相连通,屏式过热器的出口与超临界二氧化碳布雷顿循环发电系统中的高压透平的入口相连通;

超临界二氧化碳布雷顿循环发电系统中高压透平的出口与墙式再热器的入口相连通,墙式再热器的出口与低温再热器的入口相连通,低温再热器的出口经高温再热器与超临界二氧化碳布雷顿循环发电系统中的低压透平相连通;

一级空气预热器的空气出口与二级空气预热器的空气入口相连通,二级空气预热器的空气出口与锅炉的空气入口相连通。

超临界二氧化碳布雷顿循环发电系统包括预冷器、主压缩机、再压缩机、低温回热器、高温回热器、锅炉、高压透平、低压透平及发电机;

低温回热器的热侧出口分为两路,其中一路经预冷器与主压缩机的入口相连通,主压缩机的出口与低温回热器的冷侧入口相连通,另一路与再压缩机的入口相连通,再压缩机的出口与低温回热器的冷侧出口通过管道并管后与高温回热器的冷侧入口相连通,低压透平的出口与高温回热器的热侧入口相连通,高温回热器的热侧出口与低温回热器的热侧入口相连通,低压透平的输出轴与发电机的驱动轴相连接。

尾部烟道内还布置有SCR脱硝装置,SCR脱硝装置位于二级空气预热器与一级空气预热器之间。

本发明具有以下有益效果:

本发明所述的新型燃煤超临界二氧化碳布雷顿循环单级分流发电系统的锅炉尾部烟道中布置有一级空气预热器及二级空气预热器,二级空气预热器将烟气温度降低到SCR脱硝反应的适宜温度区间350~400℃,降温后的烟气进入SCR脱硝装置进行脱硝反应,完成脱硝处理后的烟气再进入一级空气预热器中与空气进行换热,将锅炉排烟温度降低到一定水平,一方面有效低锅炉排烟温度,提高锅炉热效率,另一方面可将锅炉助燃空气加热到500℃以上,提高助燃空气的温度,利于煤粉的着火和燃烧,同时利于在锅炉燃烧器区域创造高温强还原性气氛环境,从而大幅度减少氮氧化物的生成,进而提高锅炉的发电效率。另外,低温回热器的热侧出口分别与预冷器及再压缩机进口相连,使得整个循环发电系统得到简化。

附图说明

图1为本发明的结构示意图。

其中,1为预冷器、2为主压缩机、3为再压缩机、4为低温回热器、5为高温回热器、6为锅炉、7为高压透平、8为低压透平、9为发电机、61为水冷壁、62为墙式再热器、63为屏式过热器、64为高温再热器、65为低温再热器、66为低温过热器、67为二级空气预热器、68为SCR脱硝装置、69为一级空气预热器。

具体实施方式

下面结合附图对本发明做进一步详细描述:

参考图1,本发明所述的新型燃煤超临界二氧化碳布雷顿循环单级分流发电系统包括锅炉6及超临界二氧化碳布雷顿循环发电系统,锅炉6包括依次相连通的炉膛、水平烟道及尾部烟道,炉膛内沿烟气流通的方向依次布置有水冷壁61、墙式再热器62及屏式过热器63,水平烟道内布置有高温再热器64,尾部烟道内沿烟气流通的方向依次布置有低温再热器65、二级空气预热器67及一级空气预热器69,尾部烟道内布置有低温过热器66,低温再热器65与低温过热器66并排布置;超临界二氧化碳布雷顿循环发电系统中低温回热器4的热侧出口分为两路,其中一路与超临界二氧化碳布雷顿循环发电系统中预冷器1的入口相连通,另一路与超临界二氧化碳布雷顿循环发电系统中再压缩机3的入口相连通,超临界二氧化碳布雷顿循环发电系统中高温回热器5的冷侧出口与水冷壁61的入口相连通;水冷壁61的出口与低温过热器66的入口相连通,低温过热器66的出口与屏式过热器63的入口相连通,屏式过热器63的出口与超临界二氧化碳布雷顿循环发电系统中的高压透平7的入口相连通;超临界二氧化碳布雷顿循环发电系统中高压透平7的出口与墙式再热器62的入口相连通,墙式再热器62的出口与低温再热器65的入口相连通,低温再热器65的出口经高温再热器64与超临界二氧化碳布雷顿循环发电系统中的低压透平8相连通;一级空气预热器69的空气出口与二级空气预热器67的空气入口相连通,二级空气预热器67的空气出口与锅炉6的空气入口相连通。

超临界二氧化碳布雷顿循环发电系统包括预冷器1、主压缩机2、再压缩机3、低温回热器4、高温回热器5、锅炉6、高压透平7、低压透平8及发电机9;低温回热器4的热侧出口分为两路,其中一路经预冷器1与主压缩机2的入口相连通,主压缩机2的出口与低温回热器4的冷侧入口相连通,另一路与再压缩机3的入口相连通,再压缩机3的出口与低温回热器4的冷侧出口通过管道并管后与高温回热器5的冷侧入口相连通,低压透平8的出口与高温回热器5的热侧入口相连通,高温回热器5的热侧出口与低温回热器4的热侧入口相连通,低压透平8的输出轴与发电机9的驱动轴相连接;尾部烟道内还布置有SCR脱硝装置68,SCR脱硝装置68位于二级空气预热器67与一级空气预热器69之间。

本发明的具体工作工程为:

低温回热器4热侧出来的乏气分为两部分,一部分通过预冷器1中冷却后再进入主压缩机2升压,然后再进入低温回热器4的冷侧进行预热升温,另一部分直接通过再压缩机3升压后与低温回热器4的冷侧出口工质进行汇流后进入高温回热器5冷侧中,高温回热器5冷侧输出的工质进入到水冷壁61中,然后再依次经水冷壁61、低温过热器66及屏式过热器63;屏式过热器6流出工质进入高压透平7膨胀做功,做功后的排气依次经墙式再热器62、低温再热器65和高温再热器64后进入低压透平8做功,低压透平8的乏气依次流经高温回热器5热侧及低温回热器4热侧,用来加热由再压缩机3升压后的新工质。

为了进一步降低锅炉6排烟温度,提高锅炉6热效率,本发明在尾部烟道内布置有一级空气预热器69及二级空气预热器67,其中,经二级空气预热器67换热后烟气的烟温降低到SCR脱硝反应的适宜温度区间,即350℃~400℃,然后降温后的烟气进入SCR脱硝装置68进行脱硝处理,脱硝处理后的烟气进入到一级空气预热器69中对进入到锅炉6中的空气进行加热,使加热后空气的温度满足炉膛燃烧及传热要求。

以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1