具有两相制冷剂分配系统的降膜式蒸发器的制作方法

文档序号:4520640阅读:140来源:国知局
专利名称:具有两相制冷剂分配系统的降膜式蒸发器的制作方法
技术领域
本发明涉及对制冷系统的蒸发器内的两相制冷剂混合物进行分配。更具体地说,本发明涉及将饱和的两相制冷剂均匀地分配给制冷冷却器中所用的降膜式蒸发器内的管束并均匀地分配至其上。
制冷冷却器的主要构件包括一压缩机、一冷凝器、一膨胀装置和一蒸发器。高压制冷剂气体从所述压缩机传送至将制冷剂气体冷却并冷凝成液态的冷凝器。经冷凝的制冷剂从冷凝器流至并流经所述膨胀装置。制冷剂流经膨胀装置会使得其压力下降并且使其进一步冷却。其结果是,从膨胀装置传送至蒸发器的制冷剂是一种相对较冷的、饱和的两相混合物。
传送至蒸发器的两相制冷剂混合物与设置在其内并且可使诸如水、流体之类的相对较温暖的热传递媒质通过的管束相接触。该媒质藉助与热负载进行热交换接触而变暖,制冷冷却器的目的就是使热负载冷却。相对较冷的制冷剂与流经所述管束的相对较暖的热传递媒质之间的热交换接触将使制冷剂气化并将热传递媒质冷却。刚被冷却的媒质返回到热负载以进一步冷却所述热负载,而经加热且刚被气化的制冷剂将从蒸发器中导引出去然后抽送至压缩机内,以重新压缩然后传送至所述冷凝器,形成一个连续过程。
近来,由于环境方面、效率方面和其它类似方面的问题和关切导致需要对制冷冷却器内的蒸发器进行重新设计以便从热交换效率立场上说希望使这些蒸发器更为有效并减小这些冷却器内所需的制冷剂装填量。为此,在过去几年中,与臭氧消耗有关的环境状况和环境变暖问题已显得非常重要。这些问题和其后果都导致需要减小制冷冷却器中所使用的制冷剂的量并改变其性质。
在工业应用中已知但未予广泛使用的所谓降膜式蒸发器近年来一直被看作是适于用在制冷冷却器中,以解决类似于那些在上文中指出的效率问题、环境问题和其它问题和担忧。虽然在制冷冷却器中采纳和应用降膜式蒸发器在理论上是有利的,但是,它们的设计、制造以及将它们装入冷却器系统内已证明是引起争议的,尤其是需要将制冷剂在其内的管束上均匀分配。在制冷冷却器应用中,对送入这种蒸发器内的制冷剂进行均匀分配对于蒸发器和冷却器作为一个整体的有效工作来说是很重要的,并且对于完成这种分配作业的装置的结构设计、对于减小冷却器的制冷剂装填量而无需牺牲冷却器的可靠性来说也是很重要的。制冷剂的均匀分配也是成功且有效地使流入蒸发器内的油从其中流出而回到冷却器的压缩机的决定因素。藉其可使油自冷却器蒸发器返回这一方法的效率影响了必须存在于冷却器内部供使用的油的量以及冷却器效率。转让给本发明受让人的美国专利5,761,914可能涉及了这一方面。
目前在制冷冷却器中采用降膜式蒸发器的例子是相对较新颖的、由本发明受让人制造的所谓RTHC冷却器。除了上文中提到的’914专利之外,还有美国专利5,645,124、5,638,691和5,588,596,这些专利同样都转让给了本发明的受让人,并且都是从一个美国专利申请中衍生出来的,由于它们都与用在制冷冷却器及其制冷剂分配系统中的降膜式蒸发器的设计有关,因此它们的描述应视为早期的尝试。文献还有同样转让给本发明受让人的美国专利5,561,987,它也涉及了一种冷却器以及采用一降膜式蒸发器的冷却器系统。
在工业应用中为本技术领域目前状态的RTHC冷却器中,输送至降膜式蒸发器的制冷剂不是一种两相混合物,而仅仅是处于液态。正如对于本技术领域的那些熟练人员显然的是,对仅处于液态的制冷剂进行均匀分配要比分配两相制冷剂混合物更为方便的多。对仅处于液态的制冷剂进行传送以将其分配给RTHC冷却器内的降膜式蒸发器内的管束虽然可以很方便地均匀分配制冷剂,但是,由于需要在蒸发器的制冷剂分配器的冷却器上游采用一个单独的汽一液分离构件,因此,其成本较高且较为昂贵。在RTCH冷却器内采用单独的汽一液分离构件由于增加了材料成本和冷却器的制造成本而显著增加了RTCH冷却器的成本,因此,要将这种归口于所谓ASME压力容器的汽一液分离构件加以制造并用在一冷却器系统中是较为昂贵的。
虽然RTHC冷却器是一种基于螺旋式压缩机的冷却器,但应予理解的是,它仅仅是可以与降膜式蒸发器一起使用的各种冷却器系统中的一个例子而已。因此,可对在离心式或其它冷却器中采用这种蒸发器的直接可能性进行仔细考虑,这可以从以下对较佳实施例的描述中得到认识。
因此需要这样一种用在制冷冷却器系统中的降膜式蒸发器及其冷剂分配器,它们可将两相制冷剂均匀分配给冷却器的蒸发器管束,而与驱动冷却器的压缩机的性质无关,而且无需用来在将两相制冷剂混合物送入蒸发器并且/或者送入其内的制冷剂分配装置之前将两相制冷剂混合物分离成蒸气组分和液体组分的装置。
本发明概述本发明的目的在于提供一种在制冷冷却器中使用的降膜式蒸发器,其中,送入蒸发器内的两相制冷剂混合物可均匀地分配而与蒸发器管束热交换接触。
本发明的另一目的在于不再需要单独装置或方法,藉助所述单独装置或方法可在从膨胀装置送至制冷冷却器内的降膜式蒸发器的制冷剂流入蒸发器的制冷剂分配器之前对所述制冷剂进行汽一液分离。
本发明的另一目的在于提供一种在降膜式蒸发器中使用的制冷剂分配器,藉助采用分级的流动步骤,所述制冷剂分配器可将制冷剂沿着蒸发器内的管束的长度并且横向于其宽度方向来受控地且/或均匀地挤压。
本发明的又一目的在于提供一种用于制冷冷却器内的降膜式蒸发器的分配器,它可以最大程度地减少因分配作业和/或装置所造成的、分配制冷剂内的压力下降现象。
同样,本发明的目的在于提供一种用于降膜式蒸发器的分配器,它可以将两相制冷剂混合物均匀分配,而无需借助于那些可增大分配器内的制冷剂混合物的压力以实现均匀分配的装置/结构。
本发明的再一目的在于提供一种用于制冷冷却器内的降膜式蒸发器内的两相制冷剂的分配器,它可以在制冷剂的液态部分传送/淀积而与蒸发器管束形成接触之前吸收制冷剂的动能,以最大程度地减小其对于制冷剂传送使其与管束进行热交换接触的破坏性。
本发明的另一目的在于提供一种制冷冷却器,由于在冷却器内采用了一降膜式蒸发器,并且可以藉助无需将制冷剂的液体组分和其它组分分离而制造较为经济的装置来横向于其内的管束均匀分配制冷剂,因此,它更为有效,可减少制冷剂装填量,并且可以改善冷却器压缩机的回油情况。
本发明的这些和其它目的将在以下对较佳实施例和附图的描述中变得更为清楚,它们是这样来实现的,即,将一制冷剂分配器设置在制冷冷却器的降膜式蒸发器内,所述制冷剂蒸发器可承接来自于一膨胀装置的两相制冷剂混合物,并且藉助(1)在分配器内采用分级分配步骤,(2)使每一初级分配作业中的制冷剂混合物的速度基本保持恒定,(3)在混合物从分配器中分配出来之前减小最后一级分配中的混合物动能,可使均匀量的液体制冷剂以液滴形式并以滴落方式基本上沿着蒸发器管束的整个长度并横向于其宽度压挤出来。均匀分配是藉助首先使两相制冷剂混合物在分配器内部轴向流动通过一其几何形状可将其流速基本保持恒定的通道来实现的。藉此,可使两相制冷剂沿着分配器的整个长度并且沿着分配器下方的管束的长度来分配。然后使制冷剂在分配器内部横向流动通过那些具有类似几何形状、同样可使其内的制冷剂的流速基本保持恒定的通道。随后,在制冷剂从分配器中压挤出来并与蒸发器管束形成接触之前吸收制冷剂的动能,这可以被分类作为分配器内的三级分配,这样,就可以使自分配器送出然后送至管束上的液体制冷剂呈较大的、低能液滴的形式,这些液滴以均匀的方式滴落在蒸发器管束上部内的管子上。这种横向于管束的长度和宽度的均匀分配可提高蒸发器内部的热交换效率,有助于使自蒸发器中流出的油返回至冷却器压缩机,并且可以减小冷却器运行所需的制冷剂装填量。
附图简要说明

图1是其中采用了本发明降膜式蒸发器和制冷剂分配器的本发明水冷凝器的示意图。
图2和图3是本发明降膜式蒸发器的端视示意图和纵向剖视图。
图4是图1-图3中的制冷剂分配器的分解立体图。
图5是图4所示制冷剂分配器的俯视图。
图6是沿图5中线6-6截取的剖视图。
图6a是本发明蒸发器的上部的放大剖视图,它示出了将一膨胀装置定位在图示位置的设置方案。
图7是图5所示部分的部分剖视放大图。
图8是其中采用了导向叶片和流量分流器的一级分配部的剖视示意图。
图9和图10是一旋转式输入流分配器的侧视示意图和俯视示意图。
图11和图12是另一种设计的一级分配器的示意图。
图13是本发明制冷剂分配器的另一实施例的分解图。
图14示出了本发明的另一实施例,其中,制冷剂藉其流入本发明分配器的分配容积的孔不均匀地彼此隔开以根据所述分配器所叠置的管束内的管图案来对制冷剂的分配进行修整。
图15是本发明分配器的另一实施例,它示出了通道的另一种几何形状,两相制冷剂混合物藉助所述通道而被分配穿过由所述分配器所叠置的管束的宽度。
较佳实施例的描述首先请参阅图1,冷却器系统10的主要构件是一由电动机14驱动的压缩机12、一冷凝器16、一效率增高器18和一蒸发器20。这些构件相串联以使制冷剂在一基本制冷剂回路中流动,这将在下文中予以全面地描述。
在所述较佳实施例中,压缩机12是一种离心式压缩机。但应予理解的是,也可以考虑在那些其中压缩机是除了离心式之外的其它类型的冷却器中采用本文中所描述的这种降膜式蒸发器和制冷剂分配器并且落在本发明的保护范围之内。
总的来说,输送入冷凝器16内的高压制冷剂气体藉助与一种流体进行热交换而冷凝成液态形式,所述流体通常是水,它通过管道22而输送入所述冷凝器内。如在大多数的冷却器系统中的情况那样,压缩机内部所使用的一部分润滑剂将被传送离开压缩机而被挟带在从其中排放出去的高压气体内。压缩机排放气体内所挟带的润滑剂将落至或排入冷凝器的底部并前进流入在那里被冷却的、经冷凝的制冷剂内。
在冷凝器底部被冷却的液体由来自冷凝器的压力所驱动而流至并通过一在那里发生制冷剂的第一次压力下降现象的第一膨胀装置24(在所述较佳实施例中)。这种压力下降现象会导致在所述膨胀装置的下游形成一种两相制冷剂混合物,所述膨胀装置将所挟带的润滑剂与两相制冷剂混合物一起进行传送。两相制冷剂混合物和任何一种与其一起进行流动的润滑剂被输送入效率增高器18内,仍具有较高压力的两相制冷剂的大部分气态部分从所述效率增高器通过导管26而送回到压缩机12,在所述较佳实施例中,所述压缩机是一种两级压缩机。
送回到压缩机12的气体是被送至这样一个地方,即,在该处,在压缩机内部遭压缩的制冷剂所具有的压力低于从效率增高器送入其里的气体的压力。将压力相对较高的气体从效率增高器输送入压缩机内部的低压气流藉助与其相混合而增大了低压制冷剂气体的压力,并且不需要进行机械压缩。效率增高器的作用是众所周知的,其目的在于节省能量,否则将由电动机14耗用来驱动压缩机12。应予理解的是,虽然较佳实施例描述了一种采用一多级离心式压缩机和一效率增高器的冷却器,但是,本发明不仅可同样用于由其它类型压缩机驱动的冷却器,而且还可同样应用于那些仅采用单级或两级以上压缩以及/或者可以或不可以采用一效率增高器构件的离心式机器上。
离开效率增高器18的制冷剂流经管道28然后传送至一第二膨胀装置30。如将在下文中进一步描述的那样,第二膨胀装置30较有利地设置在蒸发器20的壳体32的顶部内或者顶部处,靠近设置在其内的制冷剂分配器50。制冷剂内的第二次压力下降现象的出现是由于制冷剂流过第二膨胀装置30并且压力相对较低的两相制冷剂混合物与被携带在其内的润滑剂一起从第二膨胀装置30送入制冷剂分配器而造成的。
正如将在下文中更彻底描述的那样,来自于第二膨胀装置30的两相制冷剂混合物以及挟带在其内的润滑剂藉助分配器50沿着蒸发器20的管束52的长度方向、横向于宽度方向的均匀承接使得所述混合物的液态制冷剂部分在其与蒸发器管束内的各管子进行热交换接触时可以高效地汽化,并且可使由54标示的润滑剂和少量液态制冷剂流入蒸发器的底部。在以液体形式从分配器50中流出来之后,最初被输送入分配器的两相混合物的蒸汽部分与形成在其内或一开始就形成在蒸发器壳体32内部的蒸汽一起被向上抽吸并离开蒸发器的上部然后回到正在进行压缩作业的压缩机12以便在其内再次压缩。在蒸发器壳体底部的富含润滑剂的混合物54藉助泵34或诸如喷射器之类的其它此类电动装置而单独地返回到冷却器压缩机,以便在其内加以再次使用。
现请参阅图2和图3,它们以端视图和纵向剖视图的形式示意性地示出了本发明的降膜式蒸发器20和制冷剂分配器50。可以认识到的是,制冷剂分配器50沿着蒸发器20内部的管束52的至少上部的至少大部分长度L和宽度W延伸。当然,被分配器50所叠置的管束的延伸长度和宽度越大,蒸发器20内的热交换处理的效率就越大,并且由于蒸发器内有更多的可用管表面用于热交换,因此,系统所需的制冷剂装注量就越小。
管束52包括多根以交错方式定位在分配器50下方以使其与液态制冷剂接触面积为最大的单独管子58,如在下文中予以更彻底描述的那样,所述液态制冷剂从分配器50的下表面60挤出并以相对较大的液滴形式挤至管束的上部。虽然管束52在本较佳实施例中是水平管束,但是,可以认识到的是,本发明也可以考虑采用以其它方式取向的管束。
除了液态制冷剂的较大液滴以及上文所指出的之外,至少一些制冷剂气体将直接从分配器50中挤出并且将直接前进进入蒸发器的上部。所谓的蒸汽通道62可以形成在管束内部,最初藉助与管束接触而汽化的制冷剂通过所述蒸汽通道与其外周缘相连。被汽化的制冷剂如箭头64所示的那样从管束的外周缘位置向上并围绕分配器50流动,然后与从分配器50中直接挤出的制冷剂气体一起流入蒸发器的上部。随后,这种制冷剂气体被抽吸通过蒸发器20的上部而后离开以进入压缩机12。
现请参阅图4、图5、图6、图6a和图7,分配器50包括一进入管66;一叠置在一遮盖部70上的一级分配部68,在该遮盖部中形成有一些级一喷射孔72和72a;二级分配板74,它装在遮盖部70内部,并且形成有多个独立的菱形狭槽76并叠置在一块其中形成有一些级二喷射孔80的级二喷射板78上;以及一其中形成有一些级三分配口84的底板82。
在本较佳实施例中,一级分配部68具有两个分支86和88,它们通向通过入口66而承接的两相制冷剂。正如将在下文中予以进一步描述的那样,进入蒸发器的两相制冷剂混合物的分配可以藉助设置在分配器入口处的流体导引装置来加以控制/促进,其目的是将流体适当地分配入所述分配器的一级部分的分支。
但是,要注意的是,请具体参阅图6a,由于第二膨胀装置30设置在入口分配器50附近,因此,它不仅可以有利地起作用以使两相制冷剂混合物膨胀而且还可以使其冷却并使其内的压力下降,但是,这会使所述混合物内出现紊流并在进入分配器之前使其各单独相发生混合。藉助将膨胀装置30定位在分配器50的进入管66附近,可以有利地减少或消除制冷剂混合物内的层化现象,这种层化现象会在其流过通向蒸发器20的管道时进一步加剧。因此,可以保证将恒定且大体均相的制冷剂混合物输送至分配器的入口,从而可以显著提高分配器相对于其制冷剂分配作用的效率。
由一级分配部68和分配板70的分支86和88形成的分支通道86a和88a最好是但不一定非要具有四个侧面和矩形横截面,并且其横截面面积沿着一远离入口66的方向逐渐减小。在本较佳实施例中,当自上往下观察时,分支86和88的末端90、92呈尖头状,并且通道86的侧面86a、86c和通道88的侧面88b、88c在那些端部会聚而成线接触。应予指出的是,钝角的采用,而不是采用尖头状末端可以增加分配器制造的方便性。总之,分支86和88的分支通道86a、88a最好是构造成其横截面沿着一远离入口66的方向逐渐减小。在美国专利5,836,382中描述了这种构造的总体性质以及从其中流过的流动情况。应予指出的是,虽然图中所示的分支86、88以及分支通道86a、88a是长度相等的,但是,它们不一定非要如此,只要能根据它们各自的容积将制冷剂适当地按比例分配至这些通道即可,这将在下文中作进一步描述。
分支通道86a、88a叠置在分配板70的级一喷射孔72和72a上。喷射孔72基本上是沿着其顶面96的轴向中心线94、在遮盖部70的整个轴向长度上延伸。如图所示,喷射孔72在遮盖部70的大部分长度上成对地延伸。在本较佳实施例中,各对喷射孔之间的距离D沿着一远离入口66的方向逐渐减小至分支通道,并且大体上与分支通道86a和88a的逐渐减小的横截面相一致。大体上设置在遮盖部70的中心线94上的单独喷射孔72a最好是形成在遮盖部70的轴向端上,在所述轴向端处,通道86a和88a位于它们最后的收敛部分内。
各对喷射孔72和/或单独的喷射孔72a均叠置在所述二级分配板74内的菱形切口上。正如可以从附图中认识到的那样,二级分配板74装在遮盖部70内部,这样,由通过喷射孔72和72a的压力而推动的两相制冷剂就可以流入由分配板74所形成的各菱形狭槽76内。
各狭槽76大体上具有与所述分配器的一级部分的分支通道86a和88a相同的性质和作用,它们与遮盖部70和级二喷射板78一起形成了一些独立的流道,这些流道大体上具有相同的四个侧面,并且呈矩形,其横截面朝着一远离制冷剂被承接入其内的方向逐渐减小。但是,菱形狭槽76是沿着一横向于板状构件70的中心线94的方向延伸的,与一级分配部的分支通道86a和88a的轴向取向相反,从而可以使两相制冷剂均匀地横穿过管束的横向宽度W。总之,在本较佳实施例中,由二级分配所形成的流动路径包括多个独立的通道,每一通道的横截面均是沿着下游流动方向逐渐减小,并且每一通道均与孔72和/或72a中的至少其中之一以及孔80中的至少其中之一但最好是几个呈流体连通,这将在下文中予以描述。
可以认识到的是,在分配器50内部的输入制冷剂混合物一开始先轴向分配然后再横向于其宽度作横向分配是所期望的并且是较佳的,但一开始先横向分配然后再轴向分配也是可以的。还可以认识到的是,虽然狭槽76大体上是沿着下游方向具有相同的收敛形状,但是,它们不一定非要呈菱形。
其中形成有一些级二喷射孔80的级二喷射板78紧紧地安装在遮盖部70内部,紧抵住二级分配板74,因此,二级分配板74的菱形狭槽76均叠置在那些形成在级二喷射板78内的级二喷射孔80的一横列98上。
正如从图6和图7可以认识到的那样,遮盖部70的级一喷射孔72和72a、二级分配板74的菱形狭槽76以及第二板状构件78的级二喷射孔80的位置最好是这样的,即,所有的喷射孔72和72a以及级二喷射孔80都位于与它们相关的菱形狭槽76的轴线100上。但是,还应予指出的是,级一喷射孔72和72a最好被定位成叠置在任一级二喷射孔80的正上方。正如将在下文中作进一步和更彻底描述的那样,除了尺寸相对较大之外,级三分配口84最好被对齐/定位成没有任何一个级二喷射孔80叠置在它们正上方。
总的来说,优化了级一喷射孔72和72a的位置,以保证建立起液态制冷剂沿着分配器的整个长度的均匀分配。因此,本较佳实施例可将任一列喷射孔72和72a沿着通道86a和88a的底部定位。此外,孔72和72a也可以被定位成沿着分配器轴线方向的密度大小有所变化以均衡除去在轴线一级分配过程中可能发生的偏差。但是,对于绝大部分来说,孔72和72a是沿着分配器的长度均匀分布的。
级二喷射孔80也是沿着菱形狭槽76的轴线100定位的。它们藉助将这些孔沿着各菱形狭槽76的轴线来定位而叠置,并且考虑到在将板74和78装在遮盖部70内部时会有少许变化而留出了余量,这可能是由于分配器制造工艺而造成的。也就是,由喷射孔80构成的各列98相对于菱形沟槽76的少许不对齐不会显著影响这种分配作业。应予指出的是,孔80可以大体上沿着菱形狭槽76的边缘来定位,而不是大体上沿着其中心线来排列。孔80的这种设置方式,虽然能提供一些优点,即,液态制冷剂很容易汇聚在菱形狭槽的边缘处,但也存在这样一个危险,即,板74和78的少许不对齐可能会使得大量的孔80被遮盖住。正如将在下文中进一步描述的那样,诸如当由分配器50所叠置的管束的几何形状或管图案使不均匀的制冷剂分配变得有利时,孔80也可以沿着狭槽76的长度方向不均匀地隔开以便有目的地进行“修整”,而不是将制冷剂横向于管束均匀分配。
在本较佳实施例中,相对于分配器50的底板82,其周缘部104安装成与遮盖部70的凸缘部102齐平接触,并且诸如借助粘接剂或藉助焊接与其相连,从而可以将构件74和78隐藏在其本身和遮盖部70之间。二级分配板74紧抵遮盖部70的下表面106齐平安装,并且第二板状构件78紧抵板74齐平安装。这两个构件同样藉助采用粘接剂或藉助点焊而固定在那里,从而可以在所述分配器的内部形成级三分配容积108。
在运行过程中,两相液态制冷剂和挟带在其内的油承接在一级分配部68的入口66内,并且被成比例地导引入支路通道86a和88a中。由于本发明制冷剂分配器的特殊设计,因此,当制冷剂混合物进入分配器时,其压力只需大于蒸发器壳体内的分配器外侧的压力几个p.s.i.即可。关于这一点,在本发明的一个可预见的、待由申请人用在离心式冷却器系统中的实施例中,制冷剂混合物进入分配器时的压力比蒸发器壳体内的50p.s.i.g.压力高出大约5p.s.i.,在所述蒸发器壳体内,待用制冷剂是一种称为R-134A的制冷剂。
由于将该混合物承接于在该处通道86a、88a为最宽的地方,并且由于那些通道沿着一远离入口66的方向收敛,因此,当混合物离开入口66并向下游流动经过通道86a、88a时,混合物的速度将基本保持恒定,并且在这种行进过程中几乎没有压降。其结果是,当冷却器10工作时将发现处于基本恒定压力下的两相制冷剂正流过通道86a和88a,并且两相制冷剂连续流动通过所有的级二喷射孔72和72a。这种流动是由于分配器50内的第一级和第二级内部一级分配器内的下游压力和分配器容纳在其内的蒸发器壳体之间存在相对较大的压差而造成的。如所指出的那样,从较小的级一喷射孔72和72a喷出的制冷剂基本上是沿着其上叠置有分配器50的管束的整个长度连续流动的。在本较佳实施例中,孔72和72a具有相对来说极小的直径,为3/32英寸左右。
由于两相制冷剂以基本恒定的压力和速度从通道86a和88a通过级一喷射孔72和72a连续挤压进入分配板74的菱形狭槽76的最宽部分,因此,两相制冷剂也将被连续地输送至分配器50并且横向于其所叠置的管束的宽度W方向横向分配在分配器50内部,而且在其流过各菱形狭槽的过程中几乎没有压降并且速度基本恒定。也就是,由于菱形狭槽76的各分支具有收敛的几何形状并且其横截面面积朝着下游流动方向逐渐减小,因此,两相混合物将以一均匀的压力和速度连续承接在那些在该处狭槽为最宽的狭槽中心部分内。
虽然制冷剂混合物是以基本恒定的速度和压力流经各菱形狭槽76的,但是,在本较佳实施例中的那一恒定速度和压力与混合物流经所述一级分配部的恒定速度和压力是不同的。这种差异是由于菱形混合物流过相对较小的喷射孔72和72a从而使得两相混合物的压力下降以及菱形狭槽的长度与混合物藉其在一级分配部内流动的分支通道的长度相比非常短而造成的。关于这一点,在其中所用制冷剂为R-134A制冷剂并且制冷剂进入分配器时的压力比蒸发器壳体内的压力高出5p.s.i.的上述冷却器实施例中,混合物流经菱形狭槽76时的压力比一级分配中的压力小了大约2.5p.s.i.。虽然在该实施例中,混合物的速度在菱形狭槽内基本保持恒定,但是,混合物在二级分配中的速度大约是其在一级分配中的速度的两倍。
但是,就总体效果而言,在每一独立菱形狭槽76内横向于分配器宽度流动的两相制冷剂在压降最小化以及流速基本保持恒定方面是具有相同特性的,因为两相制冷剂在一级分配器通道86a和88a中是沿着分配器的长度方向进行流动的。相对于分配器50中的一级和二级分配而言,净结果是当冷却器工作时,承接在分配器50的入口66中的两相制冷剂混合物可沿着分配器的长度方向并且横向于其宽度方向以一种连续的方式来分配,并且压降相对来说非常小,速度基本保持恒定。其结果是,可以使两相制冷剂在分配器内均匀地流动,以横向于其上叠置有分配器50的管束52的整个长度L和宽度W输送。
由于两相制冷剂混合物在一级和二级分配过程中在其最初的沿长度方向和宽度方向的分配之后可保持在一名义上高于蒸发器压力的压力下,因此,最好(但不是强制性的)在分配器的内部进行三级分配。关于这一点,在制冷剂混合物横向于分配器的长度和宽度方向分配之后,在具有名义高压的制冷剂混合物内具有很大的动能。该能量最好在将其液态制冷剂部分从分配器中输送出去并且与管束52的上部相接触之前立即予以减小或消除,以保证液态制冷剂和管束内的各管子进行有效地热交换接触。
发生在三级分配中的是从二级分配孔80中挤压出来的制冷剂与底板82的上表面进行相对高能的撞击(请记住形成在底板82内的孔口84与级二喷射孔是不对齐的)。作为这种撞击以及形成在分配器容积108内的低压的结果,由于分配口84的尺寸和个数相对较大,因此,制冷剂的动能将在分配器内释放出来,并且基本处于蒸发器压力下的低能两相制冷剂将存在于全部分配器容积中。
在容积108内的、现为低能的液态制冷剂与已前进进入该分配器的油一起从分配容积中缓缓流出,主要是从较大分配口84的周缘上流出,而其蒸气部分则是大体上通过那些分配口的中心部分而从容积108中挤压出来。可以认识到的是,分配口84的形状,以及级一喷射孔72、72a和级二喷射孔80的形状不必是圆形的,而是可以考虑采用多种形状,包括但不限于被适当定位的狭槽状形状。因此,本文中所使用的术语“孔”和“孔口”仅仅是为了传达“开口”这一概念。但是,在本较佳实施例中,孔72、72a和80以及孔口84是呈圆形的,并且孔口84的直径约为1/4至3/8英寸。
由于液态制冷剂以相对较低的速度和相对低能量的液滴形式淀积在管束52的上部上,由这些液滴在管束内的各管子周围形成液态制冷剂薄膜,并且在与管子相接触之后保持液态且仍处于低能液滴形式的制冷剂滴落至在其周围形成有液态制冷剂薄膜的管束内的其它管子上,因此,降膜式蒸发器20可以有效工作。横向于管束52的均匀分配是由于将分配器50的下表面60设置在管束上部附近、从分配器50输送出来的制冷剂具有低能性质、在将制冷剂送至分配器上之前横向于管束的长度和宽度方向对制冷剂进行均匀地内部分配,以及藉其将制冷剂从分配容积108中输送至管束上的孔口的个数较多而变得可能。
液态制冷剂通过管束缓缓下滴是连续进行的,并且越来越多的剩余液态制冷剂在向下流动并与管束下部内的各管子相接触时被气化。正如将予指出的那样,再请参阅图2,可以考虑的是,在管束下部内以虚线示出的至少一些管子58a可以存在于管束52上部的宽度W之外,因为藉助将管子适当地交错设置可以使液态制冷剂沿着向下的方向向外缓缓流动。
热量从各管子58内流动的流体传递至形成在其上的液态制冷剂薄膜是一个高效率的过程,并且最终只有相对来说极少百分比的液态制冷剂和传送至分配器50内的基本所有的润滑剂可向前流至并汇聚在蒸发器的底部,在该处形成有管束52的最小百分比的管子58。管束52内各管子的这个相对较少部分(通常占其25%或更少)可使所汇聚的剩余液态制冷剂的绝大部分气化然后离开位于蒸发器底部、润滑剂浓度相对来说极高的混合物。该混合物返回至所述压缩机以便在其内由诸如泵34、在受让人的上述美国专利5,761,914中所揭示的那种喷射器或冲洗系统来重新加以利用。
可以认识到的是,如果不采用三级分配(其目的是减小制冷剂混合物在淀积至管束之前进入蒸发器的压力/动能),将导致高能液态制冷剂飞溅和喷射离开管束上部内的各管子(即使藉助一级分配和第二分配可以成功地将两相制冷剂混合物横向于管束的整个长度和宽度分配在所述分配器内部)。如果允许形成飞溅的液态制冷剂,则这些飞溅的液态制冷剂的一部分将被直接向上运送并以薄雾形式随着藉助压缩机被抽离蒸发器的制冷剂气体一起离开蒸发器或者下落至蒸发器的底部,而不会与管束52内的任一管子形成接触而进行热传递。这两种情况可减小蒸发器内的热交换效率并增大冷却器的功率消耗。如果采用了可除去大量制冷剂动能的三级分配,则可以保证将自分配器50挤压出去的基本所有的液态制冷剂淀积在管束52上并且与其至少一个管子或多个管子进行低能接触。
由于分配器50能均匀地分配制冷剂并且由于气化作业可以在蒸发器20内部高效地进行,因此,可以显著减少冷却器10的制冷剂装填量。此外,由于分配器50可以对两相制冷剂混合物进行有效且均匀地分配,因此,可以减少冷却器工作所需的制冷剂装填量,并且不再需要在冷却器10内设置一个单独的汽一液分离器,从而可以象减少制冷剂装填量那样可显著降低冷却器10的制造使用成本。另外,由于藉助本发明分配器可对两相制冷剂进行均匀地分配,并且制冷剂最初进入时的压力与存在于分配器之外、蒸发器壳体内部的压力之间的压差相对较小,因此,分配器50可不必是太坚固或者从结构上予以增强或者在结构上采用一些小发明以适应于增大的内部压力,增大的内部压力可能在其它一些低效制冷剂分配器中有目的地增大以迫使制冷剂通过并全部到达所述分配器。
现请参阅图8、图9和图10,对用来将流入蒸发器20内的两相制冷剂进行分配以先将其轴向分配在蒸发器内的装置进行描述。如上文已指出的,最好将流入分配器50内的两相制冷剂适当分配至分配器一级分配部的各分支通道,以对混合物进行最初的轴向分配,该分配作业必须与各分支通道(可以有两个以上的分支通道)的相对容积成正比。
在分支通道的个数为2并且容积相等的情况中,最好使流入的制冷剂混合物的一半流入其每一分支通道内。但是,在分配器不对称的情况中,诸如通向一级分配部的入口不是设置在中心位置,如图8实施例所示的情况那样,其中一个分支通道的容积大于另一分支通道的容积,则必须对流入的制冷剂混合物进行适当分配或者降低蒸发器内的制冷剂分配效率和其内的热交换效率。
先请参阅图8所示实施例,入口导向叶片300可以有效地帮助制冷剂混合物转向流入不对称的一级分配部304的分支通道302a和302b。所述叶片对于流动几乎是没有限制作用,因此,在制冷剂混合物内几乎不会产生压降。导向叶片可使制冷剂流体分流并将制冷剂混合物的分离部分导引通过各叶片沟槽306,所述叶片沟槽具有可减少分配器入口308区域内的流体分层现象。其结果是,可以将适量的、经较好混合的两相制冷剂混合物从导向叶片中输送出来并使其流入分配器的各通道内,而不会产生可预知的压降。但是,予以指出的是,如图6a所示的那样在分配器入口处设置一膨胀装置,将具有大体相同的效果。
正如从图8中可以认识到的那样,传送入并通过入口36的混合物其大部分是向前流入较长且容积大于分支通道302a的分支通道302b内。传送入通道302a和302b内的制冷剂量取决于分流器310,所述分流器是一垂直的隔板,其设置在入口308内和/或其下方并且被选择成可根据不对称分支通道302a和302b的容积来对流入那些通道内的制冷剂流体进行分割。
现请参阅图9和图10,根据分配器的高一宽比,分配器一级分配部的性能,不管它是对称还是不对称的,还可以通过采用旋转式分配器400而不是导向叶片来进一步提高。两相制冷剂混合物流过入口402然后在本实施例中的进入管406的加盖端404的作用下被迫90°转向。制冷剂混合物从旋转式排放器400中流出、在百叶408的导引下流入一级分配部412的分支通道410a和410b中。由于一级分配部412的内侧壁414紧靠旋转式分配器400设置,因此,离开旋转式分配器400的部分两相制冷剂将撞击在一级分配部的内侧壁上从而在入口处形成良好混合。由此可降低两相混合物在入口附近被分流而以层流方式流动的趋势。还应予指出的是,可以将百叶408构造成笔直的(如图所示),但也可以是曲面状的。还应予指出的是,如果不采用轴向导引的百叶408a,而仅使用横向导引的百叶408b,将进一步减少流体层流现象,因为在这种情况中,从旋转式分配器400中导引出来的所有制冷剂混合物将直接且立即流入而与分配器的内侧壁相接触,由此可以增强其在分配器内部轴向流动之前的混合作用。
如上文所指出的那样,重要的是,在分配器入口内部的流体的流速和其在一级、二级分配中的速度之间的相互关系应尽可能接近相同。速度的变化是流体加速流动造成的。流体加速流动将使得混合物分离并且使分配器内部的两相混合物层流。藉助使入口速度与一级、二级分配中的混合物速度相匹配,诸如通过采用具有上文所指出的那些性质的装置,可以最大程度地减少两相混合物的加速流动现象和其在一级、二级分配内的层流现象。总之,虽然在所有场合中使用导向叶片和流量分配装置不是强制性的,但是,其在适当场合的使用将有助于分配作业。
现请参阅图11和图12,图中示出了一级分配部的另一种设计方案。关于这一方面,尽管在本较佳实施例中一级分配部68形成有一些具有恒定高度的分支通道以及由于其侧面收敛而使其容积减小,但是,通过采用其分支通道具有恒定的宽度但其高度朝着远离入口502的方向逐渐减小的一级分配部500,图11和图12所示实施例仍可获得相同的效果。但是,本实施例可能较难以制造。
现请参阅图13,图中示出了本发明的另一实施例,其中,一级和二级制冷剂分配是结合图4所示较佳实施例来描述的但其本质是保持不变的。关于这一点,在图13的分配器50a中,入口66a将制冷剂送入流道600内,所述流道的几何形状是将本较佳实施例中的一级和二级分配的收敛特征相结合。形成通道600的几何形状的板602安装在固体遮盖部604内部。
与图4所示较佳实施例的板78相类似的板606形成有多个孔口608,所述板设置在通道600的下方并且同样也隐藏在遮盖部604内。一与所述较佳实施例的底板82相类似的底板610与盖板602的底部相连并且与板606相协作而在其间形成一与所述较佳实施例中的分配容积108相类似的分配容积。
虽然本实施例的分配器具有较少的构件,而且其工作方式与所述较佳实施例的分配器相同,但是,应予认识到的是,因为通道600的几何形状是不规则的,由于从主通道614分支出来的子分支612呈菱形形状,并且不是沿着下游流动方向连续收敛的,因此,不能象所述较佳实施例中的那样很方便地控制其内制冷剂混合物的流动或者使速度和压力恒定。因此,虽然图13所示实施例的分配器的性能与图4所示实施例的分配器的性能极为类似,但是,其性能却稍逊一筹,其制冷剂的分配效率略低且分配的均匀性较低。因此,在会影响到一采用分配器50a的冷却器内所需制冷剂装填量的制冷剂均匀分配、流速保持和使压力等保持均匀等方面,与所述较佳实施例的分配器相比,本发明的目的没有有效或完全满足。
现请参阅图14,图中示出了一种其中分配器50能有利地以一种“修整”方式而不是以均匀方式将制冷剂横向于管束52的顶部分配的情况。关于这一点,在图14所示的实施例中,可以认识到的是,由于管束52被构造成其中心部比形成在其外缘的部分纵向更深且具有更多的管子,因此,显然将有更多的、可用来将管束中心部弄湿的管子表面积。
在这些情况中,可以有利地使更多量的制冷剂分配经过管束中心部的顶部以确保有足够量的制冷剂可用来与管束中心部热交换,而使较少量的制冷剂淀积在具有较少管子的管束外缘部分上。在这种情况中,如图中所示的那样,位于分配器50的菱形狭槽76下方的级二喷射孔80将沿着狭槽76的长度方向有目的地不均匀隔开,以保证有更多量的制冷剂可用来与管束的中心部热交换而不是与就管子数和形成在其那里的有效热交换面积而言纵向较浅的管束两侧热交换。虽然这种经修整的/不均匀的分配会破坏制冷剂混合物横向于分配器的宽度方向分配时的均匀流速,但是,藉助保证将制冷剂淀积在大量管束上和那些可最佳利用发生在管束内部的整体热交换的地方,有可能对该缺点作出补偿并且在一些情况中可预见到不止是对该缺点的补偿。
最后请参阅图15,图中示出了又一实施例,它是对图15中以虚线示出的、在前文中称为分配器50内的菱形狭槽76的形状进行改进。在图15所示实施例中,示出了一种不规则的“星星爆炸”型狭槽,如前几个实施例中的那样,所述狭槽是通过同样以虚线示出的级一喷射孔72自上而下送料的。但是,在这种情况中,制冷剂然后将通过相对较狭窄的沟槽700而导引至那些级二喷射孔702,如管束图案所示出的那样,这些级二喷射孔的位置对于沿横向均匀分配制冷剂或对其进行修整是很关键的。
正如从图14和15所示的其它实施例中可以认识到的那样,在相对管束作轴向分配之后均匀分配制冷剂混合物/保持制冷剂混合物的均匀流速不象对制冷剂混合物的轴向分配进行控制并且在轴向分配过程中保持其具有大体恒定的流速那样重要。这是由于管束的长度通常是其宽度的好几倍,这样就会相对于轴向分配作业加剧诸如在流速变化时可能发生的逆向分配的影响。因此,应考虑在制冷剂混合物横向分配中对制冷剂流量进行修整以使或多或少的制冷剂淀积在那些横向于管束宽度的位置处并/或对用于横向分配作业中的流速变化的容差加以考虑,它们应落在本发明的保护范围内,即使情况不是较佳实施例那样。
虽然以上已藉助一较佳实施例和几个其它实施例以及其改进例对本发明作了描述,但是,应予理解的是,对于本技术领域的那些熟练人员来说,本发明的很多其它变化和改进是很显然的并且应落在本发明的保护范围内。同样,当所附权利要求书中提到“一级分配部”时,其大体上是指流入分配器内的两相制冷剂藉其可横向于分配器的宽度方向或长度方向来传送的分配器部分和/或结构,“二级分配部”大体上是指可使两相混合物沿其它的长度方向和宽度方向流动的分配器部分/或结构。
权利要求
1.一种在制冷冷却器系统中使用的降膜式蒸发器,它包括一壳体;一设置在所述壳体内的管束;以及一设置在所述壳体内并且置于所述管束上方从而可使从所述分配器中喷射出来的液体制冷剂淀积在其上的制冷剂分配器,所述分配器包括两相制冷剂混合物藉其而流入的入口;至少一个一级分配部和一个二级分配部,所述一级分配部可承接来自所述入口的所述两相制冷剂混合物并且使所述混合物相对于所述管束沿一第一和第二方向之一在其内流动通过一流道,所述二级分配部可承接来自所述一级分配部的所述两相制冷剂混合物并且使所述混合物相对于所述管束沿所述两个方向中的另一方向在其内流动通过一流道,至少所述一级分配部构造成当所述二级制冷剂混合物从其中流过时可使其保持基本恒定的速度。
2.如权利要求1所述的降膜式蒸发器,其特征在于,所述管束包括多根在所述壳体内部沿一轴向延伸的水平管子,并且具有紧邻所述分配器的上部,所述一级分配部和二级分配部可在制冷剂从分配器中喷射出来并流入所述壳体内之前使所述两相制冷剂混合物越过所述管束上部的大部分轴向长度和横向宽度在所述分配器内部流动。
3.如权利要求2所述的降膜式蒸发器,其特征在于,所述制冷剂混合物流经的所述一级分配部和二级分配部的横截面面积沿着一下游流动方向、从所述混合物最先流入的地方减小。
4.如权利要求3所述的降膜式蒸发器,其特征在于,所述一级分配部使所述两相制冷剂混合物沿所述管束轴向流动,所述二级分配部使所述两相制冷剂混合物沿所述管束横向流动。
5.如权利要求4所述的降膜式蒸发器,其特征在于,所述一级分配部具有一个或多个大体上轴向的分支通道,来自所述入口的所述两相制冷剂混合物流经所述分支通道,每一所述分支通道的横截面面积大体上是沿着一远离所述两相制冷剂混合物流入其内的地方的方向减小。
6.如权利要求5所述的降膜式蒸发器,其特征在于,所述制冷剂分配器具有一三级分配部,所述三级分配部可承接来自于所述二级分配部的所述两相制冷剂混合物,并且构造成在所述混合物的液体制冷剂部分淀积在所述管束上之前减小其动能。
7.如权利要求6所述的降膜式蒸发器,其特征在于,它还包括一分流器,所述分流器可根据所述一级分配部的每一所述分支通道的容积将来自于所述入口的两相制冷剂混合物按比例分配入每一所述分支通道内。
8.如权利要求6所述的降膜式蒸发器,其特征在于,当所述冷却器系统工作时,所述三级分配部内的压力与所述壳体内部、所述分配器外部的压力基本相等。
9.如权利要求1所述的降膜式蒸发器,其特征在于,所述制冷剂分配器内形成有一分配容积,所述分配容积可在制冷剂从所述分配器中流出并流入所述壳体之前使来自于所述二级分配部的所述两相制冷剂混合物流入其内。
10.如权利要求9所述的降膜式蒸发器,其特征在于,当所述冷却器系统工作时,所述制冷剂混合物流经所述一级分配部和所述二级分配部时的速度可基本保持恒定。
11.如权利要求9所述的降膜式蒸发器,其特征在于,当所述冷却器系统工作时,所述一级分配部内的压力大于所述二级分配部内的压力,并且所述二级分配部内的压力大于所述分配容积内的压力。
12.如权利要求9所述的降膜式蒸发器,其特征在于,所述制冷剂从所述一级分配部通过多个第一孔传送入所述二级分配部,并且由所述二级分配部形成的所述流道包括多个独立的流道,每一所述独立流道与所述多个第一孔的至少其中之一流体连通。
13.如权利要求12所述的降膜式蒸发器,其特征在于,所述制冷剂从所述二级分配部通过多个第二孔传送入所述分配容积,并且制冷剂从所述分配容积中流出然后通过多个孔口流入所述壳体,所述孔口位于所述管束上方,并且大于所述两相制冷剂混合物藉其从所述二级分配部送出而送入所述分配容积的所述孔但不与它们相对齐。
14.如权利要求13所述的降膜式蒸发器,其特征在于,所述管束沿纵向在其第一部分所具有的管子多于形成在其第二部分的管子,所述制冷剂混合物藉其从所述二级分配部送出而送入所述分配容积的所述孔被定位成可将相对较多的制冷剂送入所述分配容积内、于一可便于相对较多液体制冷剂从所述孔口中流出的地方,在该处,所述孔口位于所述管束的所述第一部分上方。
15.如权利要求9所述的降膜式蒸发器,其特征在于,所述两相制冷剂混合物通过所述一级分配和所述二级分配部的流动大体上经过一其横截面沿下游流动方向连续减小的流动路径。
16.如权利要求9所述的降膜式蒸发器,其特征在于,所述一级分配部具有至少两个分支通道,所述两相制冷剂混合物从所述入口流入所述分支通道内,所述一级分配部还包括一分流器,所述分流器可根据所述至少两个分支通道的容积将所述两相制冷剂混合物按比例分配入所述至少两个分支通道内。
17.如权利要求16所述的降膜式蒸发器,其特征在于,它还包括一膨胀装置,所述膨胀装置与所述制冷剂分配器入口呈流体连通并且纵向设置在其上且位于其附近,从而可以使所述两相制冷剂混合物的各相在将所述制冷剂混合物即将送入所述制冷剂分配器入口之前相混合由此可以减少所述混合物中的层流现象。
18.如权利要求1所述的降膜式蒸发器,其特征在于,所述制冷剂分配器具有一个三级分配部,所述三级分配部可承接来自于所述二级分配部的所述两相制冷剂混合物,并且构造成可使所述制冷剂混合物在将其液体部分从所述三级分配部中送出之前减小动能。
19.如权利要求18所述的降膜式蒸发器,其特征在于,所述管束包括多根在所述壳体内部沿一轴向延伸的水平管子,并且具有紧邻所述分配器底侧的上部,所述一级分配部和二级分配部可在所述两相制冷剂混合物从所述二级分配部中送出然后送入所述三级分配部之前使所述两相制冷剂混合物横向于所述管束上部的大部分轴向长度和横向宽度在所述分配器内部流动。
20.如权利要求19所述的降膜式蒸发器,其特征在于,所述制冷剂混合物流经所述二级分配部的流动与所述混合物流经所述一级分配部的流动相比其压力较低且速度较高。
21.如权利要求19所述的降膜式蒸发器,其特征在于,由所述两相制冷剂混合物沿循通过所述第一和第二分配部的流动路径其横截面面积大体上相对于所述混合物最先流入之处沿一下游流动方向减小。
22.如权利要求19所述的降膜式蒸发器,其特征在于,藉助使所述制冷剂撞击在所述三级分配部的一表面上可减小所述制冷剂混合物的动能。
23.如权利要求19所述的降膜式蒸发器,其特征在于,所述一级分配部具有至少两个分支通道,所述两相制冷剂混合物从所述入口流入所述分支通道内,所述一级分配部还包括一分流器,所述分流器可根据所述至少两个分支通道的容积将通过所述分配器入口流入的两相制冷剂混合物按比例分配入所述至少两个分支通道内。
24.如权利要求19所述的降膜式蒸发器,其特征在于,它还包括一膨胀装置,所述膨胀装置设置在所述制冷剂分配器入口附近并且位于其上方,并且具有在所述两相混合物即将进入所述分配器入口之前使所述两相混合物相混合并且可减小其内的层流现象的效果。
25.如权利要求18所述的降膜式蒸发器,其特征在于,两相制冷剂混合物从所述一级分配部送入所述二级分配部内的传送以及所述两相制冷剂混合物从所述二级分配部送入所述分配容积的传送在每一种情况中均是通过多个孔来进行的,制冷剂从所述分配容积送出然后从所述分配器中传送出去而后进入所述壳体内部是通过多个孔口来进行的,所述制冷剂混合物藉其从所述一级分配部传送入所述二级分配部的那些孔中基本上没有一个孔是位于那些所述制冷剂混合物藉其从所述二级分配部中传送出去而送入所述分配容积的孔的上方,并且所述制冷剂混合物藉其从所述二级分配部中分配出去而送入所述分配容积的那些孔中基本上没有一个孔位于制冷剂藉其从所述分配器的所述分配容积中传送出去然后送入所述蒸发器内部的孔口的上方,制冷剂藉其从所述分配容积中传送出去然后送入所述蒸发器内的孔口大于所述制冷剂混合物藉其从所述一级分配部送入所述二级分配部的孔以及所述制冷剂混合物藉其从所述二级分配部送入所述分配容积的孔。
26.一种用来对一降膜式蒸发器内部的两相制冷剂进行分配的装置,它包括一入口,所述两相制冷剂混合物通过所述入口流入所述分配器;一个一级分配部,所述一级分配部可承接来自于所述入口的所述两相制冷剂混合物,并形成有一用于所述两相制冷剂混合物的流动路径,所述流动路径大体上沿着一第一流动方向取向,并且可使从其中流经的所述制冷剂的流速基本保持恒定;以及一个二级分配部,所述二级分配部可承接来自于所述一级分配部的所述两相制冷剂混合物,并且形成有一用于制冷剂的流动路径,所述流动路径大体上沿着一不同于所述第一流动方向的方向来取向。
27.如权利要求26所述的分配装置,其特征在于,所述装置具有横向尺寸和纵向尺寸,所述两相制冷剂混合物流经由所述一级分配部所形成的所述流动路径和由所述二级分配部所形成的所述流动路径的流动可将所述两相混合物大体上沿着所述分配器的长度方向并且大体上横向于所述分配器的宽度方向来定位。
28.如权利要求27所述的分配装置,其特征在于,它还包括一个三级分配部,所述三级分配部可承接来自于所述二级分配部的所述两相制冷剂混合物,并且构造成可减小其动能。
29.如权利要求28所述的分配装置,其特征在于,所述制冷剂混合物通过多个第一孔以便从所述一级分配部流入所述二级分配部并且还通过多个第二孔以便从所述二级分配部流入所述三级分配部。
30.如权利要求29所述的分配装置,其特征在于,由所述一级、二级分配部所形成的所述流动路径其横截面面积大体上沿着一下游流动方向减小,并且所述分配器形成有多个制冷剂藉其可从所述三级分配部中流出的孔口,所述孔口的尺寸和数量足够大以确保所述三级分配部内的压力与所述蒸发器内的所述分配器外部的压力基本相同,所述分配器设置在所述蒸发器内。
31.如权利要求29所述的分配装置,其特征在于,所述分配器形成有多个制冷剂藉其可从所述三级分配部中流出的孔口,所述孔口与所述多个第二孔基本上是不对齐的,所述多个第二孔大体上横向于所述分配器的宽度取向,并且被定位成可有选择地将制冷剂传送至所述三级分配部、于其内的预定位置。
32.如权利要求29所述的分配装置,其特征在于,由所述一级分配部形成的所述流动路径包括两个分支通道,每一所述分支通道其横截面大体上沿着一下游流动方向减小,并且还包括设置在所述分配器内的分流装置,以根据每一分支通道的容积将流入所述分配器的制冷剂混合物按比例分配入所述分支通道。
33.如权利要求29所述的分配装置,其特征在于,所述三级分配部形成有一分配容积和多个制冷剂藉其从其中流出的孔口,所述多个第二孔具有一定尺寸从而使所述二级分配中的压力大于所述分配容积中的压力。
34.如权利要求29所述的分配装置,其特征在于,由所述二级分配部形成的所述流动路径包括多个独立的流道,每一所述独立的流道均与所述多个第一孔中的至少其中之一以及所述多个第二孔中的至少其中之一呈流体连通。
35.如权利要求29所述的分配装置,其特征在于,它还包括用来减少流入所述分配器内的两相制冷剂混合出现层流现象的装置,所述装置大体上设置在所述混合物进入所述一级分配部的地方。
36.一种制冷剂分配器,它包括一入口;一遮盖件,所述遮盖件大体上沿其长度方向形成有多个第一孔;一个一级分配部,所述一级分配部与所述入口流体连通,并且与所述遮盖件一起形成有一其横截面面积沿下游流动方向减小的第一流动路径,所述第一流动路径与所述遮盖件所形成的多个第一孔流体连通;一个二级分配板,所述二级分配板设置在所述一级分配部的下方;一喷射板,所述喷射板形成有多个第二孔,所述喷射板和所述二级分配板相协作而形成一位于所述第一流动路径下游的第二流动路径,所述级二喷射板形成有多个第二孔,所述多个第一孔和所述多个第二孔与所述第二流动路径呈流体连通;一底板,所述底板形成有多个孔口,所述底板与所述喷射板相协作而在所述分配器内形成一分配容积,所述分配容积与所述多个孔口以及所述多个第二孔呈流体连通。
37.如权利要求36所述的制冷剂分配器,其特征在于,所述底板内的所述孔口与所述多个第二孔基本不对齐,从所述多个第二孔中流出的制冷剂撞击在其内形成有所述孔口的所述底板的表面上。
38.如权利要求37所述的分配器,其特征在于,所述第二流动路径包括多个独立的流道,每一所述独立流道均与所述多个第一孔中的至少其中之一和所述多个第二孔中的至少其中之一呈流体连通,制冷剂流经所述第一流动路径和所述多个独立流道可使所述分配器内的可用制冷剂基本上沿着所述分配器的整个长度并横向于所述分配器的整个宽度来分配。
39.如权利要求38所述的制冷剂分配器,其特征在于,所述多个第二孔相对于所述独立的流道来定位,从而可将所述制冷剂传送入所述分配容积的预先位置,并以预定量横穿过其宽度方向。
40.一种在制冷冷却器系统中使用的降膜式蒸发器,它包括一使两相制冷剂混合物流入其内的壳体;一设置在所述壳体内的管束;以及一制冷剂分配器,它设置在所述壳体内并且位于所述管束上方,从而可使从所述分配器中挤压出来的液体制冷剂淀积在其上,所述分配器具有一入口,并且形成有一流动路径,所述两相混合物在离开所述分配器之前藉助所述流动路径横向于所述管束的大体整个长度和宽度来散布,所述分配器在所述流动路径的下游形成有一与其流体连通的分配容积,所述分配容积内的压力低于所述流动路径内的压力,从所述流动路径中流出的制冷剂流入所述分配容积然后撞击在由所述分配容积所形成的表面上,从而可以减小所述制冷剂在将其液态部分从所述分配器中传送出来然后与所述管束相接触之前的动能。
41.如权利要求40所述的降膜式蒸发器,其特征在于,当所述冷却器系统工作时,所述分配容积内的压力与所述壳体内的压力基本相等。
42.如权利要求41所述的制冷剂分配器,其特征在于,所述流动路径大体上具有两个朝着所述分配器的纵向端收敛的分支,所述分支有多个大体上沿着所述流动路径的每一分支的整个长度从所述流动路径大体上延伸至所述分配器的横向缘收敛的子分支。
43.如权利要求42所述的降膜式蒸发器,其特征在于,所述分配容积具有一纵向尺寸和一横向尺寸,并且设置在所述分配器内的所述流动路径的下方,其中,所述制冷剂分配器形成有多个连通在所述流动路径和所述分配容积之间的孔,自所述流动路径流出的制冷剂撞击在其上的所述表面形成有多个孔口,所述孔口大体上大于所述孔并且不与其对齐。
44.如权利要求41所述的降膜式蒸发器,其特征在于,所述制冷剂流动路径包括两个分立的部分,第一分立分配器部分是一级分配部,第二分立分配器部分是二级分配部,所述制冷剂混合物以一第一基本恒定的速度大体上沿着所述管束的至少大部分长度轴向流动经过所述一级分配部。
45.如权利要求44所述的降膜式蒸发器,其特征在于,流经所述二级分配部的制冷剂混合物大体上横向于所述管束的宽度流动,制冷剂自所述二级分配部流出然后通过多个孔流入所述分配容积。
46.如权利要求45所述的降膜式蒸发器,其特征在于,所述孔大体上横向于所述分配器的宽度来定位,从而可以使制冷剂以大体上均匀的量横向于所述分配器的宽度流入所述分配容积。
47.如权利要求45所述的降膜式蒸发器,其特征在于,自所述二级分配部流出然后流入所述分配容积的所述制冷剂流经多个孔,所述孔相对于所述分配容积来定位以使较多量的制冷剂在横向于其宽度的各预定位置处有目的地流入所述分配容积内,从而可以使较多量的液态制冷剂淀积在所述管束上、于那些在所述分配器下纵向有较多数量的独立管子的位置上。
48.一种将两相制冷剂分配在制冷冷却器的降膜式蒸发器内的方法,它包括以下步骤将一管束设置在所述蒸发器内部的一分配器下方;将两相制冷剂从所述冷却器内的一膨胀装置送入所述分配器内;使所述两相制冷剂混合物在所述分配器内流动从而将所述混合物横向于所述分配器内的所述管束的大部分长度和宽度来定位所述混合物;减小所述分配器内的两相制冷剂混合物的动能;以及将液态制冷剂以相对较低速的液滴形式淀积在所述管束上。
49.如权利要求48所述的制冷剂分配方法,其特征在于,所述定位步骤包括以下步骤先使来自所述膨胀装置的两相制冷剂在所述分配器内部沿轴向和横向之一流动;随后,使所述两相制冷剂混合物在所述分配器内部沿轴向和横向中的另一方向流动。
50.如权利要求49所述的制冷剂分配方法,其特征在于,它还包括以下步骤当所述制冷剂混合物沿至少轴向和横向流动时使其流速基本保持恒定。
51.如权利要求49所述的制冷剂分配方法,其特征在于,所述减小步骤包括以下步骤在所述淀积步骤之前将所述制冷剂的压力大体上减小至所述蒸发器内的压力。
52.如权利要求49所述的制冷剂分配方法,其特征在于,使来自所述膨胀装置的两相制冷剂先在所述分配器内部沿轴向和横向之一流动的步骤包括以下步骤使所述两相制冷剂以一第一压力沿所述一方向流动,所述随后使所述两相制冷剂沿所述轴向和横向中的另一方向流动的步骤包括以下步骤使所述两相制冷剂以一第二压力沿所述另一方向流动,所述第二压力低于所述第一压力,但高于所述蒸发器内的压力。
53.如权利要求49所述的制冷剂分配方法,其特征在于,所述先使来自于所述膨胀装置的两相制冷剂沿轴向和横向其中之一流动的步骤包括以下步骤形成多个轴向延伸的分支通道,来自于膨胀装置的所述两相制冷剂流动经过这些分支通道;根据所述分支通道的容积将来自于所述入口的所述两相制冷剂混合物按比例分配入所述分支通道;使来自于所述膨胀装置的所述两相制冷剂沿所述轴向流动方向流动经过所述分支通道。
54.如权利要求53所述的制冷剂分配方法,其特征在于,它还包括以下步骤将所述膨胀装置定位在所述分配器上方,并且充分与其靠近,这样,因所述两相制冷剂流动经过所述膨胀装置而使所述两相制冷剂的混合具有能够减少所述两相制冷剂流入所述分配器时出现层流现象的效果。
55.如权利要求49所述的制冷剂分配方法,其特征在于,使来自于所述膨胀装置的两相制冷剂沿轴向和横向其中之一流动然后使所述两相制冷剂沿所述轴向和横向流动方向中的另一方向流动的步骤均包括以下步骤使所述两相制冷剂流动经过一其横截面大体上连续减小的流动路径。
56.如权利要求49所述的制冷剂分配方法,其特征在于,它包括以下步骤将所述制冷剂沿所述第一流动方向的流速保持在一基本恒定的第一流速的步骤,以及将所述制冷剂混合物沿所述第二流动方向的流速保持在一基本恒定的、较高的第二流速的步骤。
57.如权利要求49所述的制冷剂分配方法,其特征在于,所述制冷剂混合物在压力作用下沿所述第一流动方向、第二流动方向流入所述分配容积内,当制冷剂混合物沿所述第一方向流动并且当制冷剂混合物沿所述第二方向流动时的压力高于形成在所述分配容积内的制冷剂压力。
58.如权利要求49所述的制冷剂分配方法,其特征在于,所述淀积步骤包括使流出所述分配容积的制冷剂流过多个孔口的步骤,并且还包括以下步骤在使所述制冷剂混合物沿所述第一流动方向流动的步骤以及使所述制冷剂混合物沿所述第二流动方向流动的步骤之间,驱使所述制冷剂混合物通过多个第一孔,以及,在减小所述制冷剂低能的步骤之前,驱使所述制冷剂混合物通过多个第二孔。
59.如权利要求49所述的制冷剂分配方法,其特征在于,它还包括以下步骤在所述分配器内形成一分配容积;使所述分配容积与所述蒸发器的内部流体连通从而使所述分配容积的压力与所述蒸发器内的压力基本相等;以及在所述淀积步骤之前,使所述两相制冷剂混合物流入所述分配容积。
60.如权利要求59所述的制冷剂分配方法,其特征在于,所述减小步骤包括使制冷剂撞击在所述分配器内部的所述分配容积的一表面上的步骤。
61.如权利要求60所述的制冷剂分配方法,其特征在于,使来自所述膨胀装置的两相制冷剂混合物沿轴向、横向流动方向其中之一流动的步骤包括以下步骤使所述两相制冷剂混合物的流速基本保持恒定,随后使所述两相制冷剂混合物沿所述轴向、横向流动方向中的另一方向流动的步骤包括使所述制冷剂混合物的流速基本保持恒定的步骤。
62.如权利要求61所述的制冷剂分配方法,其特征在于,使两相制冷剂混合物沿所述轴向流动方向流动的步骤包括以下步骤使所述两相制冷剂混合物的流速基本保持恒定,并且当所述两相制冷剂混合物沿所述横向流动方向流动时使其流速变化以便能横向于所述管束的宽度来有选择地不均匀分配液态制冷剂。
63.一种在制冷剂系统内的降膜式蒸发器内、利用设置在蒸发器壳体内并且使两相混合物从一膨胀装置流入其内的制冷剂分配器,对两相制冷剂进行分配的方法,它包括以下步骤将一管束定位在所述蒸发器内;将所述分配器定位在所述管束的上方,从而使所述分配器大体上位于所述管束的顶部上方;将两相制冷剂从所述膨胀装置送入所述分配器内;在第一流动步骤中,使所述两相制冷剂沿所述第一方向流动,并且以一基本恒定的速度流过所述分配器内的第一通道;在第一流经步骤中,使所述两相混合物从所述第一流道中流出;在第二流动步骤中,使所述两相制冷剂沿一第二方向流动,并且以一基本恒定的速度流过所述分配器内的第二流道;在第二流经步骤中,使所述两相制冷剂混合物从所述第二流道中流出;将自所述分配器内的所述第二流道中送出的制冷剂的压力减小至一与蒸发器壳体内的分配器外部的压力基本相等的压力;以及将液态制冷剂淀积至所述管束的上部上。
64.如权利要求63所述的方法,其特征在于,它还包括以下步骤在所述减小步骤中使自所述第二流道输送出来的制冷剂撞击在所述分配器内的表面上以减小其动能。
65.如权利要求64所述的方法,其特征在于,所述管束、所述分配器和所述第一流道在所述蒸发器内大体上都是沿轴向取向,并且所述第二流道是横向于所述管束来取向,所述第一和第二流动步骤是藉助将所述分配器内的所述两相混合物大体上沿着所述分配器的整个长度并且横向于其整个宽度以及相应地大体上沿着所述管束上部的整个长度并且横向于所述管束上部的整个宽度来分配而完成的。
66.如权利要求65所述的方法,其特征在于,它还包括以下步骤将所述第一流道分成分支通道,每一所述分支通道其横截面面积大体上沿着一下游流动方向减小,并且可根据各分支通道的容积将来自于所述膨胀装置的两相制冷剂混合物按比例分配入所述多个分支通道内。
67.如权利要求60所述的方法,其特征在于,它还包括以下步骤将所述第二流道分成多个独立的流道,每一所述独立流道均与所述多个分支通道的至少其中之一呈流体连通,并且其横截面面积沿着一下游流动方向从所述制冷剂混合物进入其内的位置开始减小。
68.如权利要求66所述的方法,其特征在于,它还包括以下步骤将自所述第一流道流出然后流入所述第二流道的两相制冷剂混合物的压力减小至一压力,该压力低于所述两相混合物流入所述分配器时的压力但它高于制冷剂从所述分配器中输送出来然后送入所述蒸发器壳体内时的压力。
69.如权利要求65所述的方法,其特征在于,它还包括以下步骤在制冷剂混合物进入所述分配器之前,藉助将所述膨胀装置设置在所述分配器的入口附近并且位于其正上方,来减少所述制冷剂混合物内的层流现象。
全文摘要
利用一设置在蒸发器壳体(32)内的制冷剂分配器(50)将两相制冷剂混合物有效地分配在降膜式蒸发器(20),所述制冷剂分配器位于蒸发器管束(52)的上方并且可在制冷剂从分配器(50)送出之前使所述两相制冷剂混合物在其内部沿着管束(52)的整个长度并且横向于其整个宽度流动。
文档编号F28D3/04GK1343295SQ00804839
公开日2002年4月3日 申请日期2000年2月4日 优先权日1999年3月12日
发明者J·P·哈特菲尔德, S·A·莫伊肯斯, J·W·拉森 申请人:美国标准公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1