一种低NOx煤粉燃烧系统及方法与流程

文档序号:11855419阅读:350来源:国知局
一种低NOx煤粉燃烧系统及方法与流程

本发明涉及一种煤粉燃烧技术,特别涉及一种适用于煤粉锅炉的煤粉燃烧技术,具体地说是一种低NOx煤粉燃烧系统及燃烧方法。



背景技术:

目前,我国现有的工业锅炉大多为燃煤锅炉,由于煤在燃烧的过程中会产生大量的NOx,面对日益严峻的环境问题,尤其是雾霾天气的影响,国家对NOx的排放要求日益严格。环保部最新发布的《锅炉大气污染物排放标准》中规定,新建燃煤工业锅炉NOx排放小于300mg/m3,重点地区锅炉排放小于200mg/m3

为了使锅炉烟气NOx浓度达到国家规定排放标准,需要对锅炉产生的NOx进行控制。现有的NOx燃烧控制手段为空气分级燃烧、燃料分级燃烧,对NOx的降低有一定的效果,但同时带来了飞灰含碳量增加、锅炉燃烧效率降低、锅炉结焦等问题,主要原因在于分段进风导致了锅炉中下部风量较小,气体动能损失大,炉内湍流强度低,风粉混合效果不好,导致部分煤粉有效反应时间缩短。



技术实现要素:

本发明的目的是针对现有的燃煤锅炉存在的锅炉烟气NOx浓度过高,不能适应环境要求的问题,设计一种能大幅度降低NOx排放浓度的低NOx煤粉燃烧系统,同时提供一种相应的燃烧方法。

本发明的技术方案之一是:

一种低NOx煤粉燃烧系统,其特征在于它包括燃烧器1、制粉给粉系统13、锅炉本体2、空气预热器3、除尘器4、主引风机5、烟气循环风机6、一次风机7、一次风管8、烟气回流管9、内一次风管10、外一次风管11和烟囱12;所述锅炉本体2、除尘器4、主引风机5、烟囱12依次相连;所述锅炉本体2由炉膛21和对流换热段22组成,炉膛21自下而上分为强还原区、还原主燃区和燃尽区;所述燃烧器1安装在炉膛21的强还原区外部,所述还原主燃区和燃尽区分别设有数个进风口;所述空气预热器3安装在对流换热段22内下部;所述一次风管8由一次风机7引出,经过空气预热器3后分别连接内一次风管10和外一次风管11,所述内一次风管11经过制粉给粉系统13后与燃烧器1对应的进风管相连,所述外一次风管11直接与燃烧器1对应的进风口相连通;所述烟气回流管9从主引风机5和烟囱12之间的管道上引出,经过烟气循环风机6、空气预热器3、制粉给粉系统13后与燃烧器1相连。

所述的除尘器为布袋除尘器。

所述的炉膛21和对流换热段22并行布置,两者之间通过一水平通道相连通。

所述的还原主燃区设有二次风进风口,燃尽区设有燃尽风进风口。

所述燃烧器包括中心点火器101、内一次风粉管102、外一次进风管103、循环烟气管104、烟气环道105、混风环106、风粉通道107、外一次风腔108、耐火层109、一次燃烧室110;所述一次燃烧室110为一圆筒形燃烧室,外壁为钢管,内壁设有耐火层109,其前端设有中心点火器101以及与中心点火器同轴并套装在外侧的内一次风粉管102;所述内一次风管10与所述内一次风粉管102相连通,所述中心点火器101与内一次风粉管102之间形成风粉通道107,所述风粉通道107与一次燃烧室110相连通;所述外一次进风管103一端与所述外一次风管11连通,另一端与外一次风腔108相连通;外一次风腔108与内一次风粉管102同轴设置,并与一次燃烧室110相连通;所述烟气环道105是设置在一次燃烧室110外围的环形通道,所述循环烟气管104是烟气进入烟气环道105的通道,所述烟气回流管9与循环烟气管104相连通;所述混风环106设置在一次燃烧室110的末端,并与烟气环道105及一次燃烧室110相连通。

所述燃烧器1呈多层分布在炉膛周围,且每层以多点切圆的形式布置。

本发明的技术方案之二是:

一种低NOx煤粉燃烧方法,其特征是:超细煤粉由内一次风粉管喷入一次燃烧室,由中心点火器进行点火燃烧,外一次进风管为一次燃烧室补入适量空气,循环烟气携带煤粉经烟气环道,在混风环处与一次燃烧室的高温燃烧产物混合,并一同喷入炉膛的强还原区参与燃烧,整个强还原区处于高温、极低氧、高惰性气体的环境,煤粉在高温贫氧的条件下反应和干馏热解形成还原性气体,将一次燃烧室及循环烟气中原有的NOx还原成N2;还原主燃区为贫氧富燃燃烧区域,外部均匀鼓入二次风,煤粉和热解生成的气氛在贫氧状态下持续将烟气中的NOx还原成N2,此区域内空气过剩系数为0.85~0.9;燃尽区内由外部均匀鼓入燃尽风及足量的空气以保证未燃尽的组分完全燃烧,燃尽区内的过量空气系数为1.15~1.2;炉膛中燃烧产生的高温烟气进入对流换热段将空气预热器中的空气和烟气进行预热到280℃~300℃,之后烟气经过除尘器进行气固分离,一部分烟气通过主引风机排放至烟囱,另一部分烟气进入烟气循环风机回流至空气预热器;循环烟气经过空气预热器、制粉给粉系统后进入循环烟气管,再进入烟气环道,一次燃烧室内的燃烧产物与上述循环烟气在混风环处进行混合后喷入炉膛的强还原区;其特征在于,所述一次燃烧室为煤粉充分燃烧区域,该区域内煤粉在富氧条件下进行完全燃烧,产生大量热量及NOx,此区域过剩空气系数为1.05~1.15。

燃烧器的一次燃烧室内设有耐火层,可防止燃烧室壁超温。

外一次风由外一次风腔沿燃烧室壁环形喷入,以对耐火层进行冷却,循环烟气进入烟气环道后能对一次燃烧室外壁进行冲刷冷却,同时有利于提高循环烟气温度。

所述的循环烟气中含氧量为3%~3.5%。

本发明的有益效果:

1、煤粉着火提前,增加了燃烧稳定性,增大了煤粉的反应区域。

2、烟气再循环提高了强还原区的气流量,增加了区域内的湍流度和扰动,同时循环烟气携带的NOx得到了进一步的还原,减少总NOx的排放。

3、燃烧器采用多点切圆布置方案,烟气与煤粉在强还原区内混合强烈,使区域内各相组分更加均匀。

4、强还原区内过量空气系数极低,有利于煤粉生成还原性气氛和干馏热解,抑制燃料型NOx的产生。

5、还原主燃区内发生贫氧反应,煤粉热解产生的气氛易产生二次还原性气氛,持续对NOx进行还原。

6、炉膛内整个反应过程中由于存在循环烟气,惰性气体的吸热有利于避免局部高温,抑制热力型NOx的产生。

综上所述,本发明能够在不影响燃烧稳定性和燃烧效率的前提下,有效的营造炉内强还原区,提高烟气在还原区内的有效停留时间,使煤粉在极低过量空气系数时保证锅炉内一定的湍流度,保证炉内不完全燃烧产物的分布场,有利于抑制和还原燃烧过程中的NOx,同时对排放的部分烟气进行循环,对烟气中携带的NOx进一步还原,实现高效的NOx减排。

附图说明

图1为本发明一种低NOx煤粉燃烧系统的结构示意图。

图2为本发明燃烧器的结构示意图。

图3为本发明燃烧器安装在锅炉本体上的结构示意图。

图4为本发明锅炉炉膛结构示意图。

图5为本发明燃烧器安装分布示意图。

图中:1-燃烧器,2-锅炉本体,3-空气预热器,4-除尘器,5-主引风机,6-烟气循环风机,7-一次风机,8-一次风管,9-烟气回流管,10-内一次风管,11-外一次风管,12-烟囱,13-制粉给粉系统,21-炉膛,22-对流换热段,101-中心点火器,102-内一次风粉管,103-外一次进风管,104-循环烟气管,105-烟气环道,106-混风环,107风粉通道,108-外一次风腔,109-耐火层,110-一次燃烧室。

具体实施方式

下面结合附图和实施例对本发明作进一步的说明。

实施例一。

如图1-5所示。

一种低NOx煤粉燃烧系统,它包括燃烧器1(如图2)、制粉给粉系统13(与现有技术相同,可直接从市场购置)、锅炉本体2、空气预热器3、除尘器4(可采用布袋式除尘器)、主引风机5、烟气循环风机6、一次风机7、一次风管8、烟气回流管9、内一次风管10、外一次风管11和烟囱12,如图1;所述锅炉本体2、除尘器4、主引风机5、烟囱12依次相连;所述锅炉本体2由炉膛21和对流换热段22组成,炉膛21和对流换热段22并行布置,两者之间通过一水平通道相连通。炉膛21自下而上分为强还原区、还原主燃区和燃尽区,还原主燃区设有二次风进风口,燃尽区设有燃尽风进风口,如图4所示;所述燃烧器1安装在炉膛21的强还原区外部,呈多层分布在炉膛周围,且每层以多点切圆的形式布置如图5,本实施例共采用三层布置。所述还原主燃区和燃尽区分别设有数个进风口;所述空气预热器3安装在对流换热段22内下部;所述一次风管8由一次风机7引出,经过空气预热器3后分别连接内一次风管10和外一次风管11,所述内一次风管11经过制粉给粉系统13后与燃烧器1对应的进风管相连,所述外一次风管11直接与燃烧器1对应的进风口相连通;所述烟气回流管9从主引风机5和烟囱12之间的管道上引出,经过烟气循环风机6、空气预热器3、制粉给粉系统13后与燃烧器1相连。所述燃烧器1如图2所示,它包括中心点火器101、内一次风粉管102、外一次进风管103、循环烟气管104、烟气环道105、混风环106、风粉通道107、外一次风腔108、耐火层109、一次燃烧室110;所述一次燃烧室110为一圆筒形燃烧室,外壁为钢管,内壁设有耐火层109,其前端设有中心点火器101以及与中心点火器同轴并套装在外侧的内一次风粉管102;所述内一次风管10与所述内一次风粉管102相连通(如图3),所述中心点火器101与内一次风粉管102之间形成风粉通道107,所述风粉通道107与一次燃烧室110相连通;所述外一次进风管103一端与所述外一次风管11连通(如图3),另一端与外一次风腔108相连通;外一次风腔108与内一次风粉管102同轴设置,并与一次燃烧室110相连通;所述烟气环道105是设置在一次燃烧室110外围的环形通道,所述循环烟气管104是烟气进入烟气环道105的通道,所述烟气回流管9与循环烟气管104相连通(如图3);所述混风环106设置在一次燃烧室110的末端,并与烟气环道105及一次燃烧室110相连通。

详述如下:

图1是本发明一种低NOx煤粉燃烧系统的结构示意图,如图所示,本发明包括燃烧器1、锅炉本体2、空气预热器3、除尘器4、主引风机5、烟气循环风机6、一次风机7、一次风管8、烟气回流管9、内一次风管10、外一次风管11、烟囱12、制粉给粉系统13。所述锅炉本体、除尘器、主引风机、烟囱依次相连;所述锅炉本体2由炉膛21和对流换热段22组成,所述燃烧器1安装在炉膛21的下部,可根据炉膛的容量设计燃烧器的布置层数,本实施例中燃烧器以三层布置,且每层以多点切圆的形式布置六台燃烧器;所述空气预热器3安装在对流换热段22内的下部,所述一次风管8由一次风机7引出,经过空气预热器3后分为内一次风管10和外一次风管11,所述内一次风管10经过制粉给粉系统13后与燃烧器1相连,所述外一次风管11直接与燃烧器1相连;所述烟气回流管9由主引风机5和烟囱12之间管道上引出,经过烟气循环风机6、空气预热器3、制粉给粉系统13后与燃烧器1相连;所述除尘器4为布袋除尘器。

图2是本发明燃烧器1的结构示意图,如图所示,燃烧器1包括中心点火器101、内一次风粉管102、外一次进风管103、循环烟气管104、烟气环道105、混风环106、风粉通道107、外一次风腔108、耐火层109、一次燃烧室110。所述一次燃烧室110为一圆筒形燃烧室,外壁为钢管,内壁设有耐火层109,所述一次燃烧室110的前端设有中心点火器101以及与中心点火器101同轴并套装在其外侧的内一次风粉管102,所述中心点火器101与内一次风粉管102之间形成的通道为风粉通道107,所述风粉通道107与一次燃烧室110相连通。所述外一次进风管103与所述外一次风腔108相连通,所述外一次风腔108与内一次风粉管102同轴设置,并与一次燃烧室110相连通。所述烟气环道105是设置在一次燃烧室101外围的环形通道,所述循环烟气管104设置在所述烟气环道105上,并与烟气环道105相连通,所述混风环106设置在一次燃烧室101的末端,并与烟气环道105及一次燃烧室110相连通。

图3是本发明中燃烧器1安装在锅炉本体2上的结构示意图,如图所示,所述燃烧器1安装在锅炉本体2的炉膛21的下部,所述内一次风管10与所述内一次风粉管102相连通,所述外一次风管11与所述外一次进风管103相连通,所述烟气回流管9与所述循环烟气管104相连通。

图4是本发明锅炉炉膛结构示意图,炉膛21由下至上分为强还原区、还原主燃区、燃尽区,燃烧器1集中安装在强还原区,在还原主燃区内设置有数个二次风的进风口,在燃尽区内设置有数个燃尽风的进风口。

实施例二。

本发明的燃烧方法和过程如下:

一种低NOx煤粉燃烧方法,超细煤粉由内一次风粉管喷入一次燃烧室,由中心点火器进行点火燃烧,外一次进风管为一次燃烧室补入适量空气,循环烟气携带煤粉经烟气环道,在混风环处与一次燃烧室的高温燃烧产物混合,并一同喷入炉膛的强还原区参与燃烧,整个强还原区处于高温、极低氧、高惰性气体的环境,煤粉在高温贫氧的条件下反应和干馏热解形成还原性气体,将一次燃烧室及循环烟气中原有的NOx还原成N2;还原主燃区为贫氧富燃燃烧区域,外部均匀鼓入二次风,煤粉和热解生成的气氛在贫氧状态下持续将烟气中的NOx还原成N2,此区域内空气过剩系数为0.85~0.9;燃尽区内由外部均匀鼓入燃尽风及足量的空气以保证未燃尽的组分完全燃烧,燃尽区内的过量空气系数为1.15~1.2;炉膛中燃烧产生的高温烟气进入对流换热段将空气预热器中的空气和烟气进行预热到280℃~300℃,之后烟气经过除尘器进行气固分离,一部分烟气通过主引风机排放至烟囱,另一部分烟气进入烟气循环风机回流至空气预热器;循环烟气经过空气预热器、制粉给粉系统后进入循环烟气管,再进入烟气环道,一次燃烧室内的燃烧产物与上述循环烟气在混风环处进行混合后喷入炉膛的强还原区;其特征在于,所述一次燃烧室为煤粉充分燃烧区域,该区域内煤粉在富氧条件下进行完全燃烧,产生大量热量及NOx,此区域过剩空气系数为1.05~1.15。

详述如下:

内一次风和外一次风均由一次风机7提供,空气通过一次风机7、一次风管8、空气预热器3后被分配为经过内一次风管10的内一次风和经过外一次风管11的外一次风;内一次风混合制粉给粉系统13提供的超细煤粉,由内一次风粉管102进入风粉通道107,在进入一次燃烧室110入口时由中心点火器101进行稳定点火燃烧;外一次风通过外一次风管11以及外一次进风管103进入外一次风腔108,外一次风腔108与一次燃烧室110相连通,两者的连接处为环形通道,外一次风补充了一次煤粉燃烧所需空气量,使得一次燃烧室内的过剩空气系数达到1.05~1.15,为富氧燃烧。

煤粉在一次燃烧室110中燃烧,产生的燃烧产物被喷入炉膛21,煤粉在炉膛21中充分燃烧,产生的高温烟气进入对流换热段22将空气预热器3中的空气和烟气预热到280℃~300℃,之后烟气经过除尘器4进行气固分离,一部分烟气通过主引风机5排放至烟囱12,另一部分烟气进入烟气循环风机6回流经过空气预热器3后变为循环烟气进入烟气回流管9,循环烟气与制粉给粉系统13提供的煤粉混合后进入循环烟气管104,再进入烟气环道105,此时烟气环道105中的烟气温度较低,对一次燃烧室外壁有冲刷冷却的作用;一次燃烧室110内的燃烧产物与上述循环烟气在混风环106处进行混合后喷入炉膛21的强还原区,本实施例中燃烧器集中安装在强还原区,以三层布置,且每层以多点切圆的形式布置六台燃烧器,如此布置有利于烟气在强还原区的混合,使得各组分在强还原区内分布更加均匀。

所述燃烧器1中一次燃烧室110内,中心点火器101点燃内一次风携带的超细煤粉,外一次风补足燃烧所需空气,使煤粉在一次燃烧室101内快速充分燃烧,着火稳定,增加了燃烧稳定性。一次燃烧室110的燃烧产物及循环烟气携带的煤粉进入炉膛21的强还原区后,由于一次燃烧室110内过剩空气系数不大,循环烟气中含氧量较低,使得煤粉在强还原区内为极度贫氧反应,生成了大量的还原性气氛,与此同时煤粉在惰性气体的条件下易发生干馏热解,生成CO、H2、CH4等气体,将一次燃烧室110中产生的NOx以及循环烟气中携带的NOx还原成N2。本发明中,循环烟气的加入一方面营造了强还原区的低氧环境,另一方面增加了喷入强还原区的气体流量,增强了该区域内的气体湍流度,使煤粉分布较为均匀,有效的改善了炉内CO等不完全燃烧产物在炉内的分布场,从而有利于烟气在还原主燃区的反应。

还原主燃区内设置数个二次风进风口,可均匀鼓入二次风,使得该区域内过剩空气系数为0.85~0.9。该区域内的反应依然为贫氧富燃反应,强还原区内的还原性气体部分被完全燃烧,部分干馏热解生成CH4等气氛,在贫氧状态下易反应生成二次还原性气氛,从而在还原主燃区内持续抑制NOx的生成,延长烟气在还原区的停留时间。

燃尽区内设置数个燃尽风进风口,可均匀鼓入燃尽风,使得该区域内空气过剩系数达到1.15~1.2。该区域内的反应为贫燃富氧反应,未燃尽的燃烧产物在此区域内进行完全燃烧,同时由于循环烟气的惰性气体吸热作用,有利于避免燃烧局部高温,降低热力型NOx的生成。

本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1