具有烟气循环的圆底、平底器皿加热装置的制作方法

文档序号:13757735阅读:353来源:国知局
具有烟气循环的圆底、平底器皿加热装置的制作方法

本发明涉及炉灶技术领域,更具体地是一种具有烟气循环的圆底、平底器皿加热装置。



背景技术:

商用灶具主要有中餐炒菜灶、大锅灶、汤灶等。一直以来,商用灶具只有很低的热效率。《中餐燃气炒菜灶》GB7824-1987和CJ/T28-1999对热效率的要求为不低于20%。《中餐燃气炒菜灶》CJ/T 28-2003取消了热效率的性能要求和试验方法。2015年1月起执行的《商用燃气灶具能效限定值及能效等级》GB30531-2014规定的中餐燃气炒菜灶能效限定值为25%。

商用灶具热效率低的原因分析如下:图1和图2分别为现有技术的烟道排烟式和间接排烟式灶具的结构示意图。参见图1,漏斗状炉膛1的底部和顶部分别安装有燃烧器2和圆底锅3,炉膛1壁面上开设的排烟口4将烟气通入排烟筒5。燃烧器2产生的烟气在炉膛1内的停留时间很短(例如,某型号中餐炒菜灶的燃烧器额定热负荷为42kW,炉膛口径400mm,炉膛深度270mm,烟气在炉膛内部的停留时间仅为0.17s)。而且由于排烟筒5具有引风作用,火焰和烟气容易偏向排烟口4一侧,致使许多烟气没有接触锅底就已经短路流进了排烟口4。烟气排放携带走了燃料燃烧总放热量的大部分。另外,炉膛1的炉壁也有散热损失。因此,燃料燃烧总放热量中仅有约20%能够传递给圆底锅3,其余80%以排烟热损失、炉壁散热损失等形式向周围环境散发而被浪费掉了。图2所示的间接排烟式灶具中圆底锅3由锅支架6支承,烟气经圆底锅3与炉膛1顶部之间的环状空隙排出到厨房内空气里,然后再由吸油烟机排放到室外。烟气在炉膛1的停留时间同样很短,而且燃烧烟气流经厨房内部空间不利于改善厨房工作条件。

值得注意的是,现有商用灶具的热效率数据是在实验室按照规定的试验方法测试得到的,但实验室测试与实际使用条件有较大差别,例如:(1)锅具温度不同:实验室测试是烧开水,温度低于100℃;实际用于炒菜时,圆底锅内有食用油(其沸点高于260℃),炒菜的温度远高于烧开水的温度。锅具温度高则烟气与锅具的传热温差小,热效率降低。(2)烟气量不同:中式烹饪习惯用猛火爆炒,烟气量相当大。烟气量大则停留时间短,热效率降低。(3)火焰状况不同:实际使用时经常出现黄焰,不完全燃烧较为严重。(4)炒菜时圆底锅经常是不加盖的,周围冷空气进入锅内可引起额外的对流热损失。(5)中式烹饪厨师习惯用抛炒,有时造成炉火空烧,又会引起额外的热损失。考虑到以上因素,现有技术的中餐炒菜灶在实际使用条件下的热效率一般低于20%。

图1和图2所示的烟道排烟式和间接排烟式炒菜灶、大锅灶、汤灶在过去和现在都普遍应用于各种酒店、宾馆、饭店、餐馆、快餐店、集体食堂(包括工厂、企业、机关、事业单位、学校、部队、社会机构、团体等各种各样单位饭堂)的厨房。据餐饮行业的统计数据,我国在用的中餐炒菜灶、大锅灶、汤灶的总数超过一亿台。通常认为,烹饪烟气是位列汽车尾气、工业废气之后的第三大空气污染源。烹饪烟气含有黑碳颗粒(PM2.5)、氮氧化物、一氧化碳、挥发性有机物、温室气体二氧化碳。另外,与图1和图2相类似的圆底或平底器皿的炉灶加热装置还广泛应用于食品工业、轻工业、中药、农副产品加工等许多的行业。这些数目庞大、分布面广、热效率低的炉灶加热装置既浪费能源,又污染环境。因此,发展新型、高效的炉灶加热装置对于我国这样一个人口众多、缺乏能源资源、同时又面临巨大环保压力的国家来说有着重要的实际意义。



技术实现要素:

本发明的目的是针对现有炉灶加热装置烟气停留时间短、热效率低等问题,提供一种能够大幅度延长烟气停留时间、并且可以强化对于圆底或平底器皿的加热效果从而获得高热效率的、结构简单、成本低廉、容易维护和使用寿命长的新型炉灶加热装置。

本发明的技术方案是:

具有烟气循环的圆底、平底器皿加热装置,包括炉膛和燃烧器,所述加热装置布置为所述燃烧器产生的已燃烟气能够在所述炉膛内部发生循环流动。

进一步地,所述炉膛内部容积与所述炉膛口径相适配的标准圆底锅的锅底容积之比大于2.5,或者,所述炉膛内部容积与所述炉膛口径相适配的标准平底锅的锅底容积之比大于2。

优选地,所述炉膛内部容积与所述炉膛口径相适配的标准圆底锅的锅底容积之比优选为大于4.5,或者,所述炉膛内部容积与所述炉膛口径相适配的标准平底锅的锅底容积之比优选为大于4。

进一步地,所述炉膛为鼓状、腰鼓状、葫芦状、圆筒状、喇叭状、倒漏斗状、长方体、正方体、或者多面体形状。

更进一步地,所述燃烧器为鼓风式燃烧器,所述燃烧器安装在所述炉膛底部中心位置,所述炉膛的下部的炉壁上还开设有排烟口,或者,所述燃烧器安装在炉膛的炉壁上,所述炉膛的炉壁上还开设有排烟口,所述排烟口位于与所述燃烧器同侧的炉壁上。

或者,所述燃烧器为大气式燃烧器,所述燃烧器安装在所述炉膛底部中心位置,所述燃烧器周围的炉膛底部壁面上开设有若干个二次空气进气口,所述炉膛的炉壁上还开设有排烟口。

或者,所述燃烧器由燃用固体燃料的炉栅构成,所述炉栅安装在所述炉膛底部中心位置,所述炉膛的炉壁设置有炉门,所述炉膛的炉壁上还开设有排烟口。

优选地,所述鼓风式燃烧器为鼓风式燃气燃烧器,所述鼓风式燃气燃烧器在额定热负荷工况下产生的已燃烟气在所述炉膛内部的停留时间大于1s。

优选地,所述加热装置还包括有排烟筒,所述炉膛的排烟口连通所述排烟筒;所述加热装置还包括有调节阀门,所述调节阀门设置在所述排烟口与所述排烟筒之间的烟道上或者设置在所述排烟筒上。

可选地,所述加热装置还包括环形烟道,所述环形烟道环饶所述炉膛,所述炉膛沿圆周均匀地开设若干个排烟口,所述若干个排烟口连通所述环形烟道,所述环形烟道连通所述排烟筒。

本发明的新型加热装置布置为燃烧器产生的已燃烟气能够在炉膛内部发生循环流动,因而可以延长已燃烟气在炉膛内部的停留时间,并且可以利用这些循环流动的已燃烟气的对流传热和辐射传热作用来加强对于圆底或者平底器皿的加热效果。由于本发明的炉灶加热装置中已燃烟气在炉膛内部有更长的停留时间更充分地将更多的已燃烟气热量传递给圆底或者平底器皿,因此,与现有技术相比较本发明的炉灶加热装置有更好的加热效果和更高的热效率。

附图说明

图1是现有技术的烟道排烟式灶具的结构示意图。

图2是现有技术的间接排烟式灶具的结构示意图。

图3是本发明实施例1的一种用于鼓风式燃烧器的炉灶加热装置的结构示意图。

图4是本发明实施例2的一种用于大气式燃烧器的炉灶加热装置的结构示意图。

图5是本发明实施例3的一种燃用固体燃料的炉灶加热装置的结构示意图。

具体实施方式

下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。

本发明中列举的数据仅仅是为了更好地说明本发明的实施例而给出的示例性数据,除非另有说明,不构成对本发明权利要求的任何限制。

实施例1

如图3所示,为本发明中一种用于鼓风式燃烧器的炉灶加热装置的结构示意图。参见图3,鼓状炉膛1的底部和顶部分别安装有燃烧器2和圆底锅3,炉膛1底部一侧炉壁上开设有排烟口4,用以将烟气通入排烟筒5。排烟口4和排烟筒5之间的烟道上还设有调节阀门7。所述装置中,燃烧器额定热负荷为20kW,炉膛口径400mm,炉膛深度270mm,二分之一炉膛深度的炉膛直径为600mm。炉膛1、燃烧器2和圆底锅3的中轴线是重合的(以下简称为中轴线)。

该装置操作时,燃烧器2产生火焰及高温烟气射流,鼓风式燃烧器的火焰及高温烟气射流具有较大的动能(火焰从燃烧器火孔喷出的速度一般达10m/s以上)。主要在火焰及高温烟气射流动能的驱动下,燃烧器2火焰产生的已燃烟气向上流动,然后沿着圆底锅3的底部向上外方向流动。这些已燃烟气流近炉膛1壁面时再向下流动,然后部分已燃烟气流入排烟口4,经排烟筒5向外排放。同时,当调节阀门7能够提供适当的局部流动阻力时,部分已燃烟气流入火焰根部负压区,并与火焰射流相混合向上流动,未进入火焰根部负压区的已燃烟气在火焰射流动量传递的影响下也会向上流动。以上过程形成了图3所示的炉膛1内部已燃烟气的循环流动。所述已燃烟气循环流动的速度分布是以中轴线为中心的轴对称分布。上述所谓“火焰根部负压区”是指火焰以高速度从燃烧器2火孔喷出时能够带动周围气体向上流动,使得火焰根部周围气体密度变得稀薄,从而形成的火焰根部负压区。该负压区能够吸引周围的已燃烟气进入火焰射流。由以上说明可见,图3所示的已燃烟气循环流动形成的驱动力是火焰射流本身所具有的动能。

本实施例中炉膛1内部含有大量高温已燃烟气能够显著地增强对于圆底锅3的加热效果,这是因为:

(1)已燃烟气与锅底接触产生对流换热,将热量传递给锅底。

(2)更重要的是,炉膛1内部的已燃烟气发出的红外辐射能可以将热量传递给锅底。根据气体辐射传热学理论,烟气辐射强度与烟气成分、烟气温度、烟气体积和密度等因素相关。

(a)烟气成分:烟气含有的二氧化碳和水蒸气具有较强的发射红外辐射能力。许多种类的燃料的氢元素含量较高,使得燃烧烟气一般含有较高浓度的水蒸气。例如,天然气燃烧烟气的水蒸气和二氧化碳浓度典型数值分别为19%和9.5%湿烟气体积。也就是说,天然气烟气中有接近三分之一的气体成分能够产生红外辐射。另外,黄焰生成的黑碳颗粒也有很强的辐射能力(包括可见光部分和红外线部分),因此当火焰出现黄焰时,烟气辐射强度显著增大。

(b)烟气温度:已燃烟气温度高于1200℃时发出的红外辐射相当强;900℃时其红外辐射仍然较强;低于600℃时其红外辐射较为微弱。

(c)烟气体积和密度:气体辐射的特性就是在整个气体体积内所有辐射性气体分子同时发出辐射,在气体体积界面处接收到的是整个气体体积内所有辐射性气体分子同时发出的红外辐射的叠加总和。因此,气体体积和密度越大,其体积界面处接收到的红外辐射强度越高。气体辐射传热学中用于反映气体体积辐射能力的一个参数是射线平均行程。射线平均行程越大表示辐射能力越大。烟气辐射为体积辐射。在图3中,圆底锅3的锅底能够接收到在炉膛1内部循环流动的已燃烟气的红外辐射能(包括直接接收的部分、以及由炉膛1壁面反射至锅底的部分)。炉膛1内部体积越大或者其所含有的烟气密度越高,则锅底接收到的红外辐射能越大。

参见图3,当大量的已燃烟气在炉膛1内部循环流动时,只要已燃烟气温度大致维持在800℃以上,则已燃烟气含有的二氧化碳和水蒸气发出的红外辐射能可以将已燃烟气热量传递给上方的锅底。如果已燃烟气含有黄焰生成的黑碳颗粒,则循环流动的已燃烟气中的黑碳颗粒辐射能亦可以将热量传递给上方的锅底。这些在炉膛1内部循环流动的已燃烟气相当于起到了一个红外加热器的作用。只要燃烧器2产生的火焰射流能量足够维持炉膛1内部温度在800℃以上,且能够驱动已燃烟气发生较为显著的循环流动,使炉膛1内部上下各处的温度分布较为均匀,则图3所示的炉灶加热装置能够利用循环流动的已燃烟气所具有的对流传热和辐射传热作用来增强对于圆底锅3的加热效果。

为了更清楚地说明本发明的有益效果,以下将现有技术图1和图2与本实施例图3进行比较分析:在图1和图2中,燃烧器2产生的烟气不可避免地会迅速地向上排出,这是高温烟气的特性,因此,燃烧器2火焰产生的已燃烟气只是一次性地、一瞬间内与圆底锅3的锅底短暂接触(实际上,在燃烧器2开中大火档位产生较大烟气量的情况下,图1和图2中许多烟气没有接触锅底就已经向上排出)。由于锅底换热面积小、烟气流动速度快,大部分烟气热量来不及传递给锅底,这些热量就随烟气排放到大气环境了。因此现有技术图1和图2的烟道排烟式和间接排烟式灶具的热效率只有20%左右。

相比较,本实施例图3是人为地、有目的地将炉灶加热装置布置为燃烧器2火焰产生的已燃烟气不能够马上向上漂流离开炉膛1,而是能够借助火焰动能来驱使已燃烟气在炉膛1内部发生循环流动(需要炉膛1的某些特定形状以及调节阀门7产生的局部流动阻力相配合),从而使已燃烟气多次地、较长时间地与锅底接触进行对流传热。更重要的是,本实施例还能够利用炉膛1内部的大量循环流动烟气的红外辐射能来加热锅底。由于本实施例已燃烟气在炉膛1内部有更长的停留时间更充分地将更多的已燃烟气热量传递给锅底,因此,与现有技术相比较本实施例的炉灶加热装置有更好的加热效果和更高的热效率。

举例来说,现有技术的某型号烟道排烟式鼓风炒菜灶的燃烧器额定热负荷为42kW;漏斗状炉膛口径400mm,深度270mm,炉膛底部直径120mm;炉膛的几何容积为0.0157m3,与该炉膛口径适配的标准圆底锅的锅底(深度110mm)占据的容积(即锅具的低于炉膛1顶部锅圈的那部分体积,以下简称为锅底容积)为0.0076m3(注:标准圆底锅指直径/深度比为0.25至0.35的圆底锅;标准平底锅指《家用燃气灶具能效限定值及能效等级》GB 30720-2014、《商用燃气灶具能效限定值及能效等级》GB 30531-2014规定的测试锅具)。炉膛内部容积等于几何容积减去锅底容积:0.0157–0.0076=0.0081m3,炉膛内部容积与锅底容积之比为0.0081/0.0076=1.07;炉膛内部面积为0.4229m2,烟气辐射的射线平均行程为:3.6x炉膛内部容积/炉膛内部面积=0.069m;额定热负荷的天然气耗气量4.378m3/h,900℃烟气量186.47m3/h,烟气在炉膛内部的停留时间为:炉膛内部容积/烟气量=0.156s;700℃烟气量154.67m3/h,烟气在炉膛内部的停留时间为0.19s。由于烟气停留时间只有零点一秒多,据此可以判断该型号鼓风炒菜灶的热效率较低。

本实施例燃烧器额定热负荷为20kW,鼓状炉膛口径400mm,炉膛深度270mm,炉膛底部直径400mm;炉膛的几何容积为0.044m3,与该炉膛口径适配的标准圆底锅的锅底(深度110mm)占据的容积为0.0076m3,炉膛的内部容积为0.0364 m3,炉膛内部容积与锅底容积之比为4.8。可见,在相同炉膛口径的情况下本实施例采用的鼓状炉膛内部容积比起上述某型号鼓风炒菜灶的漏斗状炉膛内部容积增大了0.0364/0.0081=4.5倍。

本实施例炉膛内部面积为0.73m2,烟气辐射的射线平均行程为:3.6x炉膛内部容积/炉膛内部面积=0.1795m。本实施例采用的鼓状炉膛烟气辐射的射线平均行程比起上述某型号鼓风炒菜灶的漏斗状炉膛烟气辐射的射线平均行程增大了0.1795/0.069=2.6倍。

本实施例额定热负荷的天然气耗气量为2.085m3/h,900℃烟气量88.794m3/h,烟气在炉膛内部的停留时间为:炉膛内部容积/烟气量=1.48s。本实施例的烟气停留时间比起上述某型号鼓风炒菜灶的烟气停留时间增大了1.48/0.156=9.5倍。

本实施例圆底锅的锅底面积为0.1636m2,与锅底接触的烟气温度约为1000℃,锅底温度约为300℃,传热温差为700℃,对流换热系数约为25W/m2·℃(图3中已燃烟气循环流动是由火焰动能所驱动的,流速不大,对流换热系数25W/m2·℃是合理的),则对流传热量=对流换热系数x锅底面积x传热温差=2.863kW。

本实施例鼓状炉膛内部已燃烟气平均绝对温度为1173K,烟气辐射的射线平均行程0.1795m时根据Hottel线算图得到天然气烟气黑度为0.18。由于鼓风式炒菜灶有轻微的黄焰,已燃烟气黑度估计达0.3较为合理。根据辐射强度的四次方定律,已燃烟气的辐射传热量=斯蒂芬-波尔兹曼常数x已燃烟气黑度x锅底面积x已燃烟气平均绝对温度的四次方=5.273kW。

对锅底的加热功率为:对流传热量+辐射传热量=2.863+5.273=8.136kW,热效率=加热功率/燃烧器额定热负荷=40.7%。可见,利用循环流动的已燃烟气的对流传热和辐射传热作用可增强对于锅底的加热效果,提高热效率。

上述的辐射传热量大于对流传热量。对流传热量的影响因素是对流换热系数、锅底面积和传热温差。锅底面积是是由锅具尺寸和形状确定的,传热温差取决于烟气温度,对流换热系数主要受烟气流速的影响。对于炉灶加热装置而言,这三个参数不可能有大幅度的提高。辐射传热量则不同,烟气辐射是体积辐射。在锅底面积不变的情况下,只要增加锅底下方的烟气体积,这些烟气体积内的辐射性气体和固体粒子发射的热辐射的叠加就能够大幅度地增加锅底接收到的热辐射强度,从而增加已燃烟气向锅底的传热量。

结合以上数据,进一步说明本发明与某型号鼓风炒菜灶为代表的现有技术的区别:某型号鼓风炒菜灶额定热负荷为42kW,烟气在炉膛内部的停留时间只有零点一秒多,其对于锅底的实际加热功率约为8.4kW(可满足400mm圆底锅炒菜的火力需求8kW)。当该鼓风炒菜灶开中火档位时(燃烧器热负荷降低至20kW),烟气在炉膛内部的停留时间为零点三秒多,烟气依然是一次性地、一瞬间内与锅底短暂接触,开中火时锅底的实际加热功率将降低至4.5kW左右,达不到400mm圆底锅炒菜的火力需求。

本实施例燃烧器额定热负荷为20kW,采用鼓状炉膛后大量已燃烟气在锅底下方循环流动,与锅底多次地、较长时间地接触,烟气在炉膛内部的停留时间达到1.48秒。通过循环流动的已燃烟气的对流传热和辐射传热作用,在燃烧器额定热负荷下对锅底的加热功率达到8.136kW,可以满足400mm圆底锅炒菜的火力需求。本实施例在燃烧器额定热负荷20kW的情况下获得对于锅底的加热功率8.136kW,因此热效率达40.7%,比现有技术提升一倍。

实际使用时除了炒菜之外,圆底锅亦经常用于煮、蒸、炸、炖食物。这时本实施例燃烧器可减小火力至热负荷10kW,热负荷减小时烟气量的减小使烟气在炉膛1内部的停留时间增加一倍多,达到3s。与锅底接触的烟气温度仍然较高,但烟气流速降低,对流换热系数约为15W/m2·℃,对流传热量约1.72kW。炉膛内部已燃烟气平均绝对温度降低至1073K,辐射传热量约3.69kW。对锅底的加热功率约为5.41kW,热效率达54.1%。可见,当燃烧器热负荷减小时,已燃烟气停留时间增加,热效率增加。

本实施例图3所示炉灶加热装置中已燃烟气循环流动的形成及其节能作用与炉膛1的形状、容积和内部构件、燃烧器2的类型和性能(尤其是烟气量和烟气动能)、排烟口4的位置和面积、排烟筒5的引风力以及调节阀门7产生的局部流动阻力等因素相关,进一步说明如下:

(1)炉膛1的形状、容积和内部构件:

(a)形状:采用鼓状炉膛为最佳选择,既有利于已燃烟气的循环流动,也可以增加炉膛内部容积,并且有利于炉壁将火焰和烟气热辐射反射到锅底,而且在相同炉膛内部容积时鼓状炉膛外表面散热面积最小,所需的炉壁制作材料也最少。其它炉膛形状如腰鼓状、葫芦状、圆筒状、喇叭状、倒漏斗状、长方体、正方体、多面体等也有利于已燃烟气循环流动的形成。但现有技术普遍采用的的漏斗状炉膛(图1和图2)则不利于形成已燃烟气的循环流动。

(b)容积:炉膛1内部容积越大,则可以容纳的在锅底下方循环流动的烟气量越大,对锅底的加热效果越好。因此,本发明应采用较大的炉膛内部容积,所述炉膛内部容积与所述炉膛口径相适配的标准圆底锅的锅底容积之比应大于2.5,或者,所述炉膛内部容积与所述炉膛口径相适配的标准平底锅的锅底容积之比应大于2。进一步地,所述炉膛内部容积与所述炉膛口径相适配的标准圆底锅的锅底容积之比优选为大于4.5,或者,所述炉膛内部容积与所述炉膛口径相适配的标准平底锅的锅底容积之比优选为大于4。如果炉膛内部容积与锅底容积之比只有1左右时,锅底下方的烟气量太少,即使炉膛内部发生已燃烟气的循环流动,提高热效率的效果也不明显。

(c)内部构件:在炉膛1内部设置构件如导流罩、圆环状隔板、挡板、卷边或者烟气引流器以及在燃烧器2上方放置文丘里引射管可加强已燃烟气循环流动。但商用灶具热负荷大,炉膛温度高,在炉膛内部设置构件将大为增加成本,且炉膛内部构件容易过热损坏,维护困难。因此本实施例没有设置炉膛内部构件。

(2)燃烧器2的类型和性能(尤其是烟气量和烟气动能):

本实施例图3所示炉灶加热装置采用的燃料可以是燃气(如天然气、液化石油气、煤气等)、燃油(如柴油、重油、醇基燃料等)或者其它(如煤粉、水煤浆等)。燃烧器2产生的烟气动能越大,则已燃烟气循环流动越强烈。本实施例宜选用那些火焰喷射速度高、烟气动能大的燃烧器。本实施例鼓状炉膛1的深度应该与燃烧器2的火焰长度相适配。例如,采用鼓风式燃油燃烧器时,由于燃油需要雾化,其火焰射流有较大长度,则炉膛1的深度应相应增大,可增加炉膛1内部容积,有利于增强对锅底的加热效果。有些类型的燃烧器除了图3所示的空气供给外,还需要补充二次空气。这时可以将二次空气喷射口布置在炉膛1底部燃烧器2周围,可增强已燃烟气的循环流动。

实际使用时,烟气量和烟气动能随燃烧器2的火力档位而改变,烹饪操作时最大烟气量与最小烟气量之比可达20至30。在燃烧器2开中大火档位时,本实施例可获得炉膛1内部的较为强烈的已燃烟气循环流动。如果燃烧器2火力很小(如保温火),则由烟气动能驱动的已燃烟气循环流动并不显著。在燃烧器2火力很小的情况下,本实施例可以利用炉膛1内部的温度差来产生已燃烟气的循环流动(就是燃烧器2火焰产生的新鲜的高温烟气与炉膛1内部已经存在的旧烟气的温度差)。具体来说,由于本实施例鼓状炉膛1内部的烟气分布总是温度最高的烟气位于最高的与锅底密切接触的位置而温度最低的烟气位于最低的接近排烟口4的位置,因此,燃烧器2产生的新鲜的高温烟气将向上流动到达锅底后与锅底充分地、长时间地接触,直至其大部分热量传递给锅底并降低温度后才逐渐向下流动到达排烟口4后排出,同时锅底下的位置又会被燃烧器2产生的更新鲜的高温烟气所占据。可见,在燃烧器2火力很小(保温火)的情况下,本实施例炉膛1内高温烟气有很长的换热时间将热量充分地传递给锅底,因此可以取得很高的热效率。

但是,目前普遍使用的现有技术图2的间接排烟式灶具中,无论烟气量大小,烟气都会经过圆底锅3与炉膛1顶部之间的环状空隙快速地向上飘走,烟气停留时间极短。现有技术图1的烟道式灶具中燃烧器2火力减小时烟气停留时间有一定程度增加但也差别不大。只有在本实施例图3这种布置方式的炉灶加热装置中,燃烧器2产生的热烟气不可能马上向上漂流走,在炉膛1内部的较高温度的烟气会向上流动,较低温度的烟气则向下流动,所以燃烧器2产生的高温烟气倾向于停留在锅底下,与锅底进行长时间接触,并将热量充分地传递给锅底,而那些降低温度后的烟气才趋向于从排烟口4排出。

在燃烧器2火力很小的情况下,炉膛1下部温度可低于烟气露点温度,烟气所含水蒸气将冷凝为冷凝水,使得已燃烟气的水蒸气冷凝潜热也能得到有效利用。由此可见,本实施例还可以利用包括烟气水蒸气冷凝潜热在内的燃料高位热值,天然气的低位和高位热值分别为34.5和38.3MJ/m3,利用烟气水蒸气冷凝潜热能够额外地获得约11%的热效率提升幅度。基于以上原因,本发明当用于较长时间开小火的烹饪操作(如煮、蒸、炸、炖、煲、熬、烩、焖等)可取得更高热效率。

(3)排烟口4的位置和面积:

本实施例中排烟口4设置在炉膛1底部有利于已燃烟气循环流动的形成。如果排烟口4设置在炉膛1上部,则需要排烟口4和调节阀门7有足够大的局部流动阻力才能在炉膛1内部形成已燃烟气的循环流动。排烟口4的面积应按最大排烟量设计。

(4)排烟筒5的引风力:

当使用鼓风式燃烧器时,即使排烟筒5的引风力较小,一般也是可以顺畅排烟的。较小的引风力也有利于本实施例炉膛1内部已燃烟气循环流动的形成。如果排烟筒5的引风力过大,则炉膛1内已燃烟气可发生短路流入排烟口4,不利于形成强烈的已燃烟气循环流动。

(5)调节阀门7产生的局部流动阻力:

调节阀门7的主要作用是产生适当的局部流动阻力。调节阀门7的开度要随燃烧器2火力大小来调整以达到要求的排烟量。在达到要求的排烟量的前提下,调节阀门7的开度要产生尽量大的局部流动阻力,才有利于在炉膛1内部发生已燃烟气的循环流动。例如,排烟筒5的引风力为15Pa,调节阀门7的开度约70%产生10Pa的局部流动阻力,排烟口4进口的局部流动阻力为3Pa,排烟沿程摩擦阻力为1Pa,炉膛1内部为微负压1Pa。上述条件下,如果缺少了调节阀门7开度约70%产生的10Pa局部流动阻力,则炉膛1内部将达负压11Pa,这时难以形成已燃烟气的循环流动来显著地延长已燃烟气在炉膛1内部的停留时间。需要说明的是,不设置调节阀门7而采用其它的技术手段也同样可以获得适当的局部流动阻力,或者说,调节阀门7可由其它技术手段所替代(例如,选择合适的排烟口4或烟道流通面积)。

本实施例为了取得较好的炉膛1内部已燃烟气循环流动的效果,调节阀门7应该随烟气量的大小进行适当的调整。为了简化实际操作,最好是将燃烧器2的火力调节机构与调节阀门7设计为联动的(如燃烧器2的火力调节旋钮与调节阀门7的旋轴通过机械传动),在按照烹饪需求调整燃烧器2的火力档位时能够同时自动改变调节阀门7的开度。

本发明的实施最好是能够充分理解本发明的技术原理,考虑就以上所列出的五个方面内容进行综合布置,并适当调节操作条件,更有利于取得较佳的提高热效率的效果。仅仅将炉膛制作为鼓状并在炉膛底部设置排烟口不能保证在炉膛内部发生显著的已燃烟气循环流动。大中型餐饮企业厨房排烟设施的现行设计规范要求烟囱引风力达到10Pa以上。当烟道式灶具与10Pa引风力的烟囱直接连接,但缺乏调节引风力的措施时,不管是什么形状的炉膛,炉膛内部的已燃烟气都会被烟囱引风力抽走,难以在炉膛内部形成显著的已燃烟气循环流动。

本实施例还具有其它方面的有益效果。例如,已燃烟气循环流动可将已燃烟气含有的不完全燃烧产物或可燃物返回火焰燃烧区燃尽,因此可降低污染物形成和排放。已燃烟气循环流动亦可以将已燃烟气所含的剩余氧再次循环进入高温燃烧区参与氧化反应,从而使氧化剂能够被充分地利用,可减少供给燃烧器2的空气量,降低排烟中多余的氧气和氮气携带走的热量。已燃烟气循环流动还可以降低火焰核心区温度,减少氮氧化物的形成。另外,本实施例炉膛1的炉壁布置为远离燃烧器2的火焰,可降低炉壁材料的耐热性能要求,减少炉灶的制作和维护成本,延长炉灶使用寿命。本实施例还具有良好的保温效果:参见图3,烹饪结束关闭燃烧器2后只要关闭调节阀门7,热烟气就能够全部停留在炉膛1内部,这些烟气余热可继续加热和保温锅具较长时间。相比较,现有技术图2烹饪结束后热烟气全部向上流走,不具有保温效果;图1烹饪结束后大部分热烟气经烟道排出,基本上不具有保温效果。

图3所示炉灶加热装置的炉膛1最好是使用铸钢或铸铁材料铸造成,也可以用耐火材料制作。炉膛1外壁面有保温层(图3未示出)。

本实施例中燃烧器2亦可以采用其它类型的不需要利用自然通风来补充二次空气的燃烧器或者加热器(例如红外线燃气加热器),燃烧器2也可以替换为加热器(如电加热器等)。燃烧器2所采用的燃料种类可以是燃气、燃油或其它。

虽然本实施例以圆底锅为例进行说明,图3所示的炉灶加热装置亦可用于加热其它类型的器皿。

实施例2

如图4所示,为本发明的一种用于大气式燃烧器的炉灶加热装置的结构示意图。大气式燃烧器是利用高压燃气来引入一次空气并依靠自然通风来补充二次空气的燃烧器。大气式燃烧器不需配备鼓风机,避免了鼓风机的电耗和运转噪声,常用作厨房灶具的燃烧器。

参见图4,本实施例鼓状炉膛1的底部和顶部分别安装有燃烧器2和平底锅8,燃烧器2周围有若干个二次空气进气口。炉膛1的一侧炉壁上设有排烟口4,用以将烟气通入排烟筒5。鼓状炉膛1侧壁设置有观火窗(图4未示出)。

在炉膛1内部,燃烧器2产生火焰及高温烟气射流,大气式燃烧器燃料-空气混合物从燃烧器火孔喷出的速度大约为1至3m/s。主要在火焰及高温烟气射流动能的驱动下,燃烧器2产生的已燃烟气向上流动,然后沿着平底锅8的底部向外流动,再沿锅侧壁向上流动。在上述流动过程中,烟气热量传递给锅体,烟气温度降低。这些较低温度的已燃烟气然后沿炉膛1壁面向下流动,部分已燃烟气流入排烟口4,经排烟筒5向外排放。同时,当调节阀门7能够提供适当的局部流动阻力时,部分已燃烟气流入火焰根部负压区,并与火焰射流相混合向上流动。以上过程形成了如图4所示的炉膛1内部已燃烟气的循环流动。

大气式燃烧器2补充二次空气是利用排烟筒5的引风力。改变调节阀门7的开度可以调节二次空气进气量,调整方法为:燃烧器2开大火档位时调节阀门7全开,中火时调节阀门7开一半;在上述的基础上进行微调,就是慢慢减小调节阀门7的开度,同时观察燃烧器2的火焰燃烧情况。只要火焰燃烧稳定,不出现黄焰,二次空气进口不出现倒烟,就可以继续减小调节阀门7的开度,以达到最适宜的二次空气进气量。如果燃烧器2火焰明显偏向排烟口4一侧,也应该适当减小调节阀门7开度。

平底锅的锅底容积(即锅具的低于炉膛1顶部锅圈的那部分体积)较大。本实施例炉膛1内部容积与锅底容积之比约为3。

虽然本实施例以平底锅为例进行说明,图4所示的炉灶加热装置亦可用于加热其它类型的器皿。

本实施例未提及的部分与实施例1类似,此处不再赘述。

实施例3

如图5所示,为本发明的一种燃用固体燃料的炉灶加热装置的结构示意图。参见图5,鼓状炉膛1的底部设置有炉栅9,炉膛1的一侧炉壁上设置有排烟口4,与排烟口4相对的一侧炉壁上开设有炉门10。

该装置操作过程如下:打开炉门10,将固体燃料放入炉膛1内,堆放在炉栅9上(这些固体燃料可以是煤炭或者生物质燃料如木柴、秸秆、稻草、麦草、有机废物、垃圾等)。用火种点燃堆放在炉栅9上的固体燃料,关闭炉门10。炉膛1内本来存在的空气用于固体燃料的初期燃烧。同时,外界空气经过炉栅9通入固体燃料堆(可利用强制通风如鼓风机或人工风箱鼓入外界空气,或者利用自然通风)。这些固体燃料燃烧产生的火焰及高温烟气向上流动到达锅底后向上外方向流动,再向下流动,然后部分已燃烟气经排烟口4和排烟筒5排出,部分已燃烟气在火焰及高温烟气动量传递带动下向上流动,形成已燃烟气在炉膛1内部的循环流动。

锅底被加热的机理包括对流传热和辐射传热。固体燃料燃烧时产生的已燃烟气中具有较强热辐射能力的成分包括:(1)二氧化碳;(2)水蒸气(生物质燃料有较大含湿量,其燃烧烟气一般有较高浓度的水蒸气,有时水蒸气浓度高达30至50%);(3)黄焰生成的黑碳颗粒;(4)烟气夹带的部分燃烧或正在燃烧的固体燃料碎片、粉末和焦炭微粒;(5)烟气夹带的固体燃料灰分和无机微粒。在燃烧温度下,上述五种成分都能够发射较强的红外辐射能(后三种成分还产生可见光辐射),其中以焦炭微粒的热辐射最强,黑碳颗粒次之。固体燃料燃烧烟气的黑度一般达到0.5,其热辐射强度高于以上的实施例1和2的燃气或燃油火焰烟气的热辐射强度。本实施例利用鼓状炉膛1内部循环流动的已燃烟气的辐射传热可很大幅度地增强对于锅底的加热效果,提高热效率。

本实施例的炉栅8可采用现有技术的各种炉栅形式。炉栅8有三个作用:(1)支承固体燃料堆;(2)助燃空气可经炉栅通入炉内;(3)灰渣可经炉栅排出。取决于本发明炉灶加热装置的用途,小型的或户用时可选用简单的固定炉栅(一般由若干条直径约5mm、长度约100mm的铁杆以均匀的间隔排列成。当燃用的固体燃料为煤炭时,铁条之间的间隔约5mm;燃用生物质燃料时,铁条之间的间隔约10mm)。炉栅8下方还可安装灰仓、风道等,这些为公知技术。本发明用作较大热负荷的商用炉灶加热装置时可选择机械炉排作为炉栅8。

当采用自然通风方式向炉内供给助燃空气时,改变调节阀门7的开度可调整经炉栅9流入的助燃空气进气量,调整方法与实施例2类似(本实施例的炉栅9及固体燃料堆相当于燃烧器2),当固体燃料堆燃烧旺盛、烟气量大时调节阀门7全开,烟气量中等时调节阀门开一半;在上述的基础上进行微调,就是慢慢减小调节阀门7的开度,同时观察火焰燃烧情况。只要火焰燃烧稳定,不出现大面积黄焰,炉栅9不出现倒烟,就可以继续减小调节阀门7的开度,以达到最适宜的空气供给量。

本实施例当使用强制通风通过炉栅8向炉膛1内部供应助燃空气时,最好将排烟口4设置在炉膛1底部。

生物质燃料含有较高的挥发分,主要为气相燃烧。本实施例当燃用生物质燃料且使用鼓风机强制通入助燃空气时,进一步的改进是将助燃空气分为两路:其中一路为一次空气,经炉栅8通入;另一路为二次空气,经炉膛1的炉壁喷入炉膛1内部。二次空气喷入方式应有利于图5所示已燃烟气循环流动的形成(如将二次空气喷入口布置在排烟口4上方)。

本实施例未提及的部分与以上实施例类似,此处不再赘述。

以上三个实施例中排烟口4均开设在炉膛1一侧的炉壁上,一定程度上造成了炉膛1内部已燃烟气循环流动速度分布的不对称或不均匀(虽然调节阀门7的局部流动阻力可以减轻该不对称或不均匀)。为了避免上述缺点,本发明进一步的改进是设置环形烟道,所述环形烟道环饶炉膛1,并在炉膛1的炉壁上沿圆周均匀地开设若干个排烟口,所述若干个排烟口连通环形烟道,所述环形烟道连通所述排烟筒5。

以上三个实施例中燃烧器2都是安装在炉膛底部中心位置,使被加热的锅具能够均匀受热,但其缺点是当出现溢锅、从锅具中取出食物或者从炉灶加热装置上取下锅具时,汤汁、油滴、菜片、杂物等容易掉到燃烧器2火孔,影响燃烧器性能,经常要清理和维护。火孔污损严重时需要更换燃烧器,这是商用灶具燃烧器使用寿命短的原因之一。为了避免上述缺点,本发明进一步的改进是将燃烧器2安装在炉膛1的炉壁上(燃烧器2火孔喷射方向大致为水平方向),排烟口4开设在与所述燃烧器2同侧的炉壁上,最好是位于燃烧器2的下方靠近炉膛1的底部,同样可以形成较为强烈的已燃烟气循环流动。

本发明没有涉及任何复杂精密、费用昂贵的高技术设备部件,也没有涉及先进燃烧技术。本发明针对现实情况,寻求解决实际问题,所提出的新型炉灶加热装置结构简单、切实可行。本发明必要技术特征是将炉灶加热装置布置为大量的已燃烟气能够在锅底下方发生循环流动。本发明具体实施时取决于燃料种类、燃烧器类型和参数、拟加热器皿的形状、尺寸和用途、直接或间接排烟、厨房条件等诸多因素可以有多种多样的实施方式。本发明的新型炉灶加热装置的炉膛容积较大,炉壁远离火焰,因此可降低对于炉壁材料耐热性能的要求。但炉膛外壁散热面积则相应增加,对保温层的隔热性能有较高的要求。另外,调节阀门7也有一定的耐热性能要求。调节阀门7可安装在距离排烟口4较远、烟气温度较低、阀门调节也较为方便的位置(设置在烟道或排烟筒均可)。

总体来说,本发明具有热效率高、结构简单、成本低廉、容易维护、使用寿命长的优点。

在以上三个实施例中,主要依靠对火焰燃烧情况的观察来进行调整,比较耗时费力、不够精准。本发明进一步的改进是配置PLC自动控制装置,说明如下(以图3所示装置采用鼓风式燃气燃烧器为例):在烟道安装一氧化碳传感器和氧气传感器,在调节阀门7与排烟口4之间的烟道上安装压力传感器,燃烧器2的鼓风机安装变频调速器,调节阀门7采用电控改变开度的电磁阀,安装燃气阀门开度传感器(燃气阀门开度由使用者按照烹饪火力需要进行调节)。以上的传感器连接PLC输入端,PLC输出端连接鼓风机变频调速器和调节阀门7电磁阀。PLC控制步骤为根据燃气阀门开度讯号迅速改变鼓风机转速和调节阀门7开度,然后在上述基础上进行微调:如果一氧化碳不达标则增大鼓风机转速;一氧化碳达标后如果氧气浓度高则减小鼓风机转速;调节阀门7的开度按照保持调节阀门7与排烟口4之间的烟道压力为负压1至4Pa的范围进行微调。

以上实施例给出了本发明应用于常见的燃烧器和常用的圆底锅、平底锅时的具体实施方式。这些实施例只是为了清楚地说明本发明所作的举例,而并非是对本发明实施方式的限定。由于人们使用的燃烧器种类繁多,锅具也是用途和形式多样,在不同地区有许多不同类型和不同规模的厨房设施,其炉灶加热装置的安装和使用条件差别较大。这里不可能逐一针对每种具体情况给出本发明的具体实施方式,在此不需要也不可能对本发明所有的实施方式予以穷举。

对于所属领域的普通技术人员来说,在上述实施例的基础上可以根据具体情况做出其它不同形式的变化或变动。例如,大型餐饮企业所使用的建筑物一般有专门的高度达5至10米以上的烟囱。这种情况下,若干套本发明的炉灶加热装置的排烟口4可以连通至同一个烟囱。相反的情况是,许多小型餐饮企业(如快餐店、面食店)所使用的建筑物没有专门的烟囱。这种情况下,本发明的新型炉灶加热装置可以进行简化。例如,图4中可以取消排烟筒5,将排烟口4改为开设在炉膛1顶部(平底锅8旁边),排烟口4配置调节阀门7,所述炉灶加热装置的烟气通过排烟口4直接排放到厨房内空气里。类似的根据具体情况所能作出的变化或改动对于所属领域的普通技术人员来说是显而易见的。

凡在本发明的精神和原则之内所作的任何修改、简化、替代、添加、组合、修饰、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1