一种渐变浸润性毛细芯平板回路热管蒸发器的制作方法

文档序号:23425736发布日期:2020-12-25 11:55阅读:123来源:国知局
一种渐变浸润性毛细芯平板回路热管蒸发器的制作方法

本发明涉及相变换热领域,特别涉及一种高效紧凑平板回路热管蒸发器。



背景技术:

环路热管利用其蒸发器中毛细芯产生的毛细力驱动内部工质循环,使液态工质在其蒸发器中气化吸热、气态工质冷凝器中液化放热,从而实现热量的传输,是一种高效的两相换热设备。其中,平板蒸发器环路热管无需转接工装,可直接与平面热源耦合以降低接触热阻,显著提高系统传热效率,在航空航天、空调制冷、电力、电子产品散热等领域具有大量应用。

环路热管的传热性能受到蒸发器传热极限以及毛细极限的制约。理想的环路热管毛细芯需能同时满足以下条件:可提供较大毛细力、内部流动阻力小、表面结构可实现高换热系数和换热极限。目前平板蒸发器环路热管毛细芯多采用烧结金属、多孔陶瓷等材料,制作成本较高。此外,由于单一孔径毛细芯无法同时实现大毛细力和小流动阻力,大大限制了环路热管性能。复合结构双孔径毛细芯同时具有大孔径孔隙使流动阻力降低,以及小孔径孔隙使毛细力增加,有效提高环路热管整体性能。然而,复合结构毛细芯制作过程复杂,成本巨大,难以形成大规模生产,无法满足日益增加的市场需求。



技术实现要素:

本发明的目的是:为了提高平板蒸发器环路热管传热极限和传热效率,降低制作成本,提出一种渐变浸润性毛细芯平板环路热管蒸发器。该平板环路热管蒸发器采用金属丝网作为毛细芯,通过不同程度表面浸润性处理使液态工质在每层丝网上的接触角呈现渐变效果。该渐变浸润性毛细芯不仅能够提高工质蒸发面的临界热流密度,提高蒸发器的传热极限,同时可以降低液体工质在丝网内部的流动阻力,有效提高环路热管整体的毛细极限。此外,金属丝网毛细芯与金属外壳采用焊接密封,在保证密封性的同时加强导热,避免气态工质由蒸汽槽道向储液器逆流的问题。

本发明一种渐变浸润性毛细芯平板环路热管蒸发器,包括:储液器盖板1、工质入口管2、渐变浸润性丝网毛细芯3、蒸发器底板4、蒸汽槽道凸台5、蒸汽出口管6。

所述的渐变浸润性毛细芯平板环路热管蒸发器中,储液器盖板1侧边焊接工质入口管2,蒸发器底板4侧边焊接蒸汽出口管6;液器盖板1与蒸发器底板4之间填装渐变浸润性丝网毛细芯3,四周采用焊接密封;液器盖板1与渐变浸润性丝网毛细芯3所形成的腔体为储液器;蒸发器底板4上表面有蒸汽槽道凸台5,并与渐变浸润性丝网毛细芯3下表面紧贴形成蒸汽槽道;蒸汽槽道凸台5长度小于蒸发器底板4内腔长度,从而在蒸汽出口管6一侧形成蒸汽收集腔;储液器盖板1与蒸发器底板4采用焊接密封。

所述渐变浸润性毛细芯平板环路热管蒸发器的具体工作过程如下:

该蒸发器底板4与工作面热源耦合在一起,液态工质由工质入口管2以一定压力、流量进入储液器,在渐变浸润性丝网毛细芯3的抽吸作用下到达毛细芯下表面蒸发或沸腾,形成的气态工质通过蒸汽槽道汇集至蒸汽收集腔,从蒸汽出口管7中流出蒸发器,带着热量进入环路热管气体管线,实现热量转移。

本发明与现有平板环路热管蒸发器比较,其优点在于:

1.所有接口均采用焊接密封,在保证蒸发器整体密封性的同时,有效避免了工质通过毛细芯与蒸发器外壳间隙进入蒸发腔体,解决平板环路热管工质逆流的问题。

2.采用不锈钢储液器盖板与紫铜蒸发器底板,在保证换热强度的前提下,提升了整体刚度,同时降低了储液器对环境的漏热。

3.采用金属丝网作为毛细芯材料,并利用化学刻蚀的方法对其进行浸润性处理,避免高温烧结带来的高成本。

4.采用渐变浸润性毛细芯,降低液态工质流过毛细芯内部多孔结构时的流动阻力,同时提高毛细芯蒸发面的临界热流密度,同时提高平板环路热管较高的毛细极限和传热极限。

附图说明

图1位本发明渐变浸润性毛细芯平板环路热管蒸发器外观示意图;

图中标号:储液器盖板1、工质入口管2、渐变浸润性丝网毛细芯3、蒸发器底板4、蒸汽槽道凸台5、蒸汽出口管6。

具体实施方式

结合附图,以下对本发明的结构原理进一步详细描述。

本发明所述的渐变浸润性毛细芯平板环路热管蒸发器,参照附图1,本发明主要有别于常规蒸发器的结构包括:

渐变浸润性丝网毛细芯3。

参照附图1,举例展示了根据本发明思路设计的可用于渐变浸润性毛细芯平板环路热管蒸发器。如图所示,该蒸发器外形尺寸50*50*19mm;储液器尺寸40*40*4mm;储液器盖板右侧焊接工质入口管,内径2mm、外径3mm、长12mm;毛细芯采用16张640#不锈钢丝网,线径0.5mm叠加,整体尺寸为44*44*8mm。利用化学刻蚀的方法将丝网进行不同时长的表面亲水处理,使其浸润特性发生不同程度变化,并按照液体工质(水)在其表面的接触角由小到大逐层叠加,具体表现工质(水)为毛细芯最上层接触角为65°,往下每层毛细芯接触角以3°递减,毛细芯最下层(蒸发表面)接触角为20°。丝网毛细芯侧壁采用环氧树脂固定。蒸发器底尺寸为50*50*12mm,内部放置毛细芯空腔尺寸为44*44*10mm。蒸发器底板内部底面机械加工10个横向凸台,与毛细芯底面形成蒸汽槽道,尺寸为2*2*39mm,其左侧距离蒸发器左侧内壁4mm,形成蒸汽收集腔、右侧与蒸发器底板右侧内壁连为一体。蒸发器底板左侧焊接工质出口管,内径2mm、外径3mm、长12mm。储液器盖板、毛细芯以及蒸发器底板采用紧密配合。储液器盖板材料为316不锈钢,蒸发器底板材料为紫铜。储液器盖板下表面内缘与不锈钢丝网毛细芯上表面采用激光焊密封,蒸发器底板与蒸发器盖板接缝采用钎焊密封。

本发明的实施效果在于,通过对金属丝网利用化学刻蚀的方法对其进行表面浸润性处理,通过多张丝网叠加的方式形成渐变浸润性平板环路热管毛细芯,具体表现为工质在毛细芯上表面上浸润性低、毛细芯蒸发面浸润性高,降低毛细芯内部压降的同时提高蒸发器传热极限。通过激光焊的方式,将毛细芯与储液器盖板底面密封,解决了液体工质泄漏至蒸汽槽道,解决平板蒸发器环路热管工质逆流的问题。

以上显示和描述了发明的基本原理和主要特征和发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。



技术特征:

1.一种渐变浸润性毛细芯平板环路热管蒸发器,包括储液器盖板(1)、工质入口管(2)、渐变浸润性丝网毛细芯(3)、蒸发器底板(4)、蒸汽槽道凸台(5)、蒸汽出口管(6),其特征在于:

所述渐变浸润性毛细芯平板环路热管蒸发器中的储液器盖板(1)侧边焊接工质入口管(2),蒸发器底板(4)侧边焊接蒸汽出口管(6);液器盖板(1)与蒸发器底板(4)之间填装渐变浸润性丝网毛细芯(3),四周采用焊接密封,液器盖板(1)与渐变浸润性丝网毛细芯(3)所形成的腔体为储液器;蒸发器底板(4)上表面有蒸汽槽道凸台(5),并与渐变浸润性丝网毛细芯(3)下表面紧贴形成蒸汽槽道;蒸汽槽道凸台(5)长度小于蒸发器底板(4)内腔长度,从而在蒸汽出口管(6)一侧形成蒸汽收集腔;储液器盖板(1)与蒸发器底板(4)采用焊接密封。所述的渐变浸润性毛细芯平板环路热管蒸发器工作时,液体工质由工质入口管(2)进入储液器后润湿渐变浸润性丝网毛细芯(3),并在其下表面蒸发或沸腾,形成的蒸汽通过蒸汽槽道进入蒸汽收集腔,并由蒸汽出口管(6)排出。

2.根据权利要求1所述的一种渐变浸润性毛细芯平板环路热管蒸发器,其特征在于:所述储液器盖板(1)为不锈钢材料盖板,内部凹腔为液体工质的储液器。

3.根据权利要求1所述的一种渐变浸润性毛细芯平板环路热管蒸发器,其特征在于:所述工质入口管(2)和蒸汽出口管(6)为不锈钢管或铜管。

4.根据权利要求1所述的一种渐变浸润性毛细芯平板环路热管蒸发器,其特征在于:所述渐变浸润性丝网毛细芯(3)为多层不锈钢丝网叠加形成,通过化学刻蚀的表面处理方式,使液体工质在其表面接触角由储液器至蒸发面呈现逐渐减小的趋势。

5.根据权利要求1所述的一种渐变浸润性毛细芯平板环路热管蒸发器,其特征在于:所述蒸发器底板(4)和蒸汽槽道凸台(5)采用紫铜材料制作。


技术总结
本发明公开了一种渐变浸润性毛细芯平板环路热管蒸发器,该平板环路热管蒸发器采用上下盖板焊接结构,上盖板侧边焊接液体工质进口管,底板侧边焊接气体工质出口管,蒸发器内部采用金属丝网毛细芯,并利用化学刻蚀的方法使其表面润湿特性呈现渐变式,实现平板环路热管性能改善。本发明的有益效果在于:毛细芯采用常规多孔介质金属丝网,可有效降低环路热管毛细芯制作成本;毛细芯表面润湿特性呈现渐变式,具体表现为液体工质在毛细芯多孔表面上的接触角由储液器侧至蒸发面侧逐渐递减,可同时实现液体工质通过毛细芯时的流动阻力降低、环路热管整体传热极限提高。

技术研发人员:李南茜;谢荣建;刘琪;吴亦农
受保护的技术使用者:中国科学院上海技术物理研究所
技术研发日:2020.09.15
技术公布日:2020.12.25
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1