制备高纯氩的系统和方法

文档序号:4799238阅读:331来源:国知局
专利名称:制备高纯氩的系统和方法
技术领域
本发明涉及一种从低温精馏车间送来的粗氩原料流制备高纯氩的系统和方法。本发明还涉及一种用于改进从空气料流中回收氩的系统和方法以及一种较现有系统和方法有效而成本又较低的方法。
背景技术
多年以来,用于精制氩的经典方法包括低回流比塔以制备粗氩和去除大量氧,接着用氢催化脱氧去除最终的痕量氧,最后以高回流比塔去除氮和过量的氢。氢的可利用性及其带来的高费用使这种方法成为一种吸引力小的技术。最近利用超级填料塔使它能将氧和氮杂质降至以蒸馏可达到的技术标准以下,同时勿需用氢进行催化脱氧。
Nguyen等在U.S.Patent 5,730,003中报导了一种用于制备高纯氩的系统,其中由低温精馏制备产生的粗氩在变压吸附装置中处理。从上塔的顶级流出的含约13%氩的富氩物流只含大约0.4ppm氮和大约87%的氧。此物流经在低回流比塔中处理,使进入真空变压吸附(VPSA)系统的原料达到98.5%氩、3ppm氮和1.5%氧。VPSA系统然后除去氩物流中的氧,结果氧杂质低于1ppm,氮杂质低于3ppm。变压吸附装置来的残留气体再循环至低温精馏装置,以便回收其中所含的氩。高纯氩在回收之前用含氧流体冷却,并接着进入低温精馏装置。一体化的VPSA过程生产高品位的氩产品,其收率高,设备费用低。无需采用高回流比塔。
Prasad等人的U.S.Patent 5,557,951涉及一种利用低温氩塔与一种固态电解质离子型或混合型传导膜相结合以制备高纯氩的方法。
Howard等人在U.S.Patent 5,469,710中公开了改进氩收率的低温空分系统,其中来自氩塔顶冷凝器的蒸汽经涡流膨胀致冷,然后进入上塔。在纯化过程中未采用吸附系统。
Howard等人的U.S.Patent 5,313,800报导了在具有侧臂塔回收氩的双塔空分系统中使氩回收最大化的方法。对精馏的一级或多级进行组分测定,测定表明对装置的工艺变化甚为敏感。然后,从这种组分测定可用模拟数字关联式计算氩料流中总氮的含量。
Chen和Cook的U.S.Patent Re 34595报导了一种纯化来自低温空分装置的氩的方法。氩物流经加热并压缩,然后渗透过一种对氧渗透有选择性的固态电解质膜。提纯的氩然后经蒸馏以去除氮。
Bianchi,Bonaquist和Victor在U.S.Patent 5,133,790中公开了一种低温精馏方法,通过双塔系统的上塔中的一定高度来降低氩、氮和氧的混合物中氮的浓度,同时将氩浓度保持在其最大值或近最大值,从而能直接从氩塔系统制备不含氮的氩。
在Kumar等人的U.S.Patent 4,477,265中用真空变压吸附方法从气体物流中回收氩,其中气体通过对氮吸附有热动力学选择性的吸附床,未被吸附的部分然后通过对残留氧有动力学选择性的第二吸附床。两床皆用真空脱附再生。进一步纯化回收的氩,如果需要,可进行催化氢化残留的氧。VSA装置的废气可循环到低温空分装置的主塔。
发明简述因此,本发明的目的是提供一种用于制备含99.9999mol%氩、小于1ppm氧和小于1ppm氮的氩产品的系统和方法。很久以来一直在寻找纯化低温空分系统中的粗氩的改进方法。经济因素和对氩更严格的纯度标准增大了对改进处理的需要,以便更完全的将氧和氮从氩产品中去除。
在空分装置中要处理的空气中的氩浓度为0.93%。在低温装置近上塔的中部氩被浓集到13%、氧为87%、氮为550ppm。此富氩物流在低回流比塔经处理产生粗氩,其氩的浓度增加至97.5%、氮为1%、氧为1.5%。本发明的一目的是提供一种新型的有效而费用低的方法和系统,从粗氩物流中去除残留的氧和氮浓度,而且勿需超级塔,并且不要求用于去除氧和氮的双VPSA系统。
本发明的方法和系统采用一座或两座氩低温蒸馏塔和单个VPSA系统用于从来自低回流比塔的流出物中除氧。氮是利用高回流比塔从粗氩物流中去除的。按照本发明的系统,来自VPSA装置的残气可循环返回回收残气中的氩含量的低温装置,从而保证较高的氩收率。VPSA系统与低温塔系统及其独特的富氩“残气”的循环的新形式的组合保证了该法比现有技术有更高的总氩收率(92%对82%)。随之带来的投资降低使本发明的方法和系统对现有工艺作出了决定性的改进。
附图简述本发明将用


,其中图1表示本发明的用于纯化来自低温分离装置的粗氩流的一个实施方案,其中利用VPSA去除氧,利用高回流比塔去除氮,并利用液柱头对VPSA原料物流加压;图2表示本发明的用于纯化来自低温分离装置的粗氩物流的另一个实施方案,其中利用VPSA去除氧,利用高回流比塔去除氮,并利用鼓风机对VPSA原料流加压;图3表示本发明的用于纯化来自低温分离装置的粗氩物流的再一个实施方案,其中利用VPSA去除氧,利用高回流比塔去除氮,并利用鼓风机对VPSA原料物流加压和将VPSA的废气循环到低温分离装置的上塔;和图4表示本发明的用于纯化来自低温分离装置来的粗氩物流的又一实施方案,其中利用VPSA去除氧,利用高回流比塔去除氮,并利用鼓风机对VPSA原料物流加压以及将VPSA装置的废气送到低温分离装置的空气原料物流之中。
各图中相当的或共同的组件用相同的数码表示。
本发明和优选实施方案的详细叙述从来自低温空分车间的物料制备高纯氩的当前方法以先前提到的U.S.Patent 5,703,003为例说明,示于图1和2,该专利在此引作参考。在这种现有技术的方法中,将按传统方式预纯化的空气送至空气压缩机的吸入口。该压缩机使其压力增至大约243Psia(磅/平方英寸表压),空气在低塔和高塔中按常规方式处理,由膨胀涡轮机提供致冷,并送入低塔。它由超级上塔分离成液态氧产品、加压气态氧产品、气态氮产品、氮废气和乏氮的富氩物流。富氩物流从超级上塔的一个中间点流出并构成低回流比塔的进料。富氩物流的组成大约是87%氧、13%氩和0.4ppm氮。低回流比塔将粗氩物流的氩浓度提高到大约97.5%,将氧浓度降低到大约1.5%,此物流从塔顶附近流出。低回流比塔的标高提供压力(约38psia),以藉助于粗氩物流中的液柱头驱动-VPSA系统。氩再沸器蒸发粗氩原料物流,将其温度升至室温,以便在VPSA装置中处理。VPSA装置去除氧,使其降至1ppm的水平。该氩再沸器、氩热交换器和粗氩冷凝器使从VPSA装置流出的纯化的氩产品物流减温并液化。这种方法的氩收率为82.7%。
为了阐明本发明,刚才叙述的方法中的现有技术水平的低温分离装置示于图1-4,此装置在本申请中除了需要对本发明的工作方式给以说明外不作详细叙述。这样,在图1-4中,低温分离装置只用方框1表示并只对理解本发明所需要的组件作出说明。
首先讨论图1,该图展现本发明的方法,以制备纯氩而不需采用现有技术中的超级上塔或超级低回流比塔。正如图1所示,按常规方式预纯化的空气经管线2送入空气压缩机3的吸入口,在其中空气压力提高并经管4送入低温分离装置1,其中按现有技术中的常规方式实现分离。低温空分装置I的低压(15-85psia)上塔11提供富氩物流99,并送入低比例塔12。富氩原料的组成约为87%氧、12.9%氩和大约550ppm氮。低回流比塔12的顶流101送到粗氩冷凝器7,即单路换热器,它在其中被低温分离装置1的高压低塔(未示)的底部得到的初级氧和氮的物流78的部分釜液完全冷凝。粗氩冷凝液含有大约1%氮和1.5%氧。冷凝液从冷凝器7经管线102分成两物流104和105。物流104作为回流流入低回流比塔12。粗氩冷凝液的剩余部分即物流105进入粗氩换热器34,其中被正在冷凝的空气物流108煮沸转化为蒸汽。粗氩冷凝器7的标高提供液柱头产生VPSA系统操作所需的压力,大约为36psia。物流106即粗氩换热器34的流出物进入氩再沸器6,其中加温至室温,以便在VPSA装置中进行处理。
VPSA系统的操作通常按U.S. Patent 5,703,003中所叙述的方法,从物流107中吸收氧。VPSA的富氩流出物产品物流129中氧浓度已降低至小于1ppm、氮浓度约为1%。然后氩再沸器6将VPSA产品物流129冷却至饱和温度,并且物流130将富氩物流转移至位于高回流比塔13底部的再沸器14。在这里氩发生液化并沿管线137转移至高回流比塔13的中间高度处。来自高回流比塔13顶部的蒸汽经管线134进入高回流比塔的氩冷凝器9。这里通过使从低温分离装置1的高压低塔(未示)的底部得到的初氧和氮物流79的部分釜液沸腾而冷凝。高回流比冷凝器9的蒸汽经管线132并入管线133中的从粗氩冷凝器7来的蒸汽,以形成物流98。物流98将釜汽返回至上塔11的中间处。在高比例氩冷凝器9中液化的氩经管线135进入分离器24。一股氩和氮为50-50的混合物的一小股物流从分离器24的顶部管线103排出。物流136中的冷凝液返回至高回流比塔13作为回流。来自VPSA装置的剩余物流127经氩再沸器6和管线128返回低回流比塔12。来自低回流比塔12的冷凝液经管线100循环返回至分离装置1的上塔11的中间处。同样,来自粗氩冷凝器7的冷凝液经管线97返回至上塔的中间处。被高回流比塔13除去氮后的高纯液氩产品从高回流比塔13的底部经管线131流出。该高纯氩产品含低于1ppm的氧和低于1ppm的氮。按此处理方法所得的氩收率为91.8%,比现有技术高9.1%。
与图1类似的一个实施方案示于图2。但是,从粗氩冷凝器7送至VPSA装置的粗氩冷凝液105被低回流比塔12的顶物流101代替。因此,在无粗氩冷凝器7提供液柱头以产生VPSA系统运行所需的压力的情况下,使用鼓风机44用来加压送入VPSA系统的原料流106。在这个实施方案中,处理粗氩物流106所需的压力由粗氩原料鼓风机44提供,而不是由粗氩原料物流105的液柱头提供。在此方案中粗氩原料物流是蒸汽而不是液体。来自VPSA系统的剩余物流127的循环在此过程中同样用作回收最大量的氩。在此实施方案中,来自分离器24的排气流103经管线132和133,98返回低温分离装置1的上塔11。由于VPSA原料105由低回流比塔12的顶物流101供给,来自粗氩冷凝器7的管线102中的冷凝液全部返回至低回流比塔。图2所示的氩收率为92.4%,约比图1高出0.6%,比当前技术高9.7%。
可采用另一些方式使高回流比塔13热集成到工艺中。可采用废弃液来代替釜液以获得高回流比塔冷凝器的热负荷,并用热流体如空气提供高回流比塔的煮沸负荷。
与图2相似的实施方案示于图3。图3中,来自VPSA系统的约含92%氩的残余物流127在氩再沸器6中冷却至饱和温度,来自再沸器的流出物在管线128中不送往低回流比塔12,而是与物流132合并,后者是高回流比冷凝器9的流出物。从而组成物流141。物流141然后与来自粗氩冷凝器7顶部的蒸汽在物流133中合并组成物流98,该物流送入高塔11,在其中回收氩。如果如图1所示采用液柱头使VPSA系统加压,而不采用鼓风机,则可以采用类似的处理流程。
本发明的另一实施方案示于图4。在这个实施方案中,将来自VPSA系统的残留物流127返送到空气压缩机3的主负荷吸入点与空气原料流2合并。
物流63从空气压缩机3的主负荷缸在压力达到约90psia的级处流出,即低温分离装置1的低塔10的压力。物流63在氩再沸器6中在经管线130送入低塔10底部之前冷却至饱和温度。然后氩的回收按通常的方式进行。如上所述,如果按图1采用液柱头加压VPSA,而不采用鼓风机,则可采用类似的处理流程。
从本发明的前面的叙述中,本领域技术人员应该理解,在不偏离本发明的精神的前提下本发明可作修改。因此,不试图将本发明的范围只限于上面阐明和叙述的具体实施例。
权利要求
1.一种用于制备高纯氩产品的方法,该方法包括(a)将原料空气物流供给低温分离装置;(b)将来自低温分离装置的低压塔的粗氩原料物流送入低回流比塔;(c)将来自低回流比塔的粗氩顶物流送入粗氩冷凝器以产生粗氩冷凝液;(d)将来自低回流比氩塔的一股顶物流的粗氩或粗氩冷凝器的粗氩冷凝液,作为粗氩压缩流体送入真空变压吸附(VPSA)系统,从粗氩压缩流体中吸附氧以产生富氧物流和残余物流;(e)将来自VPSA的富氧物流送入高回流比塔的再沸器;(f)将来自VPSA系统的富氧物流在再沸器中液化并将液化的富氧物流送入高回流比塔的中部;(g)将来自高回流比塔的顶流蒸汽送入高比例氩冷凝器,并将来自高比例氩冷凝器的蒸汽循环到低温分离装置的低压塔;(h)将氩在高比例冷凝器中液化并将液化的氩从高比例冷凝器返回高回流比塔的顶部作回流;以及(i)将氮在高回流比塔中去除并将来自高回流比塔的底部的高纯氩流体回收作为高纯氩产品。
2.权利要求1的方法,其中工序(d)的残余物流循环到低回流比氩塔的中部。
3.权利要求1的方法,其中工序(d)中送入VPSA系统的粗氩压缩流体是从粗氩冷凝器以粗氩冷凝液送来的。
4.权利要求1的方法,其中在工序(d)中送入VPSA系统的粗氩流体是从低回流比氩塔的顶物流通过压缩装置之后送入的。
5.权利要求1的方法,其中工序(d)的残余物流循环到低温分离装置上塔的中部或者循环到工序(a)的原料空气物流中。
6.权利要求1的方法,其中工序(b)的粗氩原料物流含有大约5-15%的氩,达大约88%的氧和大约1%的氮。
7.权利要求1的方法,其中工序(i)的高纯氩产品含低于1ppm的氧和低于1ppm的氮。
8.一种用于制备高纯氩产品的系统,该系统包括(a)低温空分装置,其中带有送出粗氧物流的设备;(b)低回流比塔,用于接受来自低温空分装置的粗氩物流;(c)粗氩冷凝器,用于接受来自低回流比氩塔的顶物流;(d)真空变压吸附(VPSA)装置,用于从来自低回流比塔或来自粗氩冷凝器的粗氩压缩流体中去除氧,以提供富氩物流;(e)高回流比氩塔,该塔具有接受从VPSA装置来的富氩物流的再沸器;(f)高回流比氩冷凝器,用于接受来自高回流比塔的蒸汽和用于将蒸汽从高回流比氩冷凝器返回到低温空分车间的低压塔的中部的设备;(g)分离器用于接受在高比例氩冷凝器中液化的液体的物流,该分离器具有排气设备和将流体的液化物流送入高回流比塔以作回流的设备;和(h)使高纯氩产品物流从高回流比塔流出的设备。
9.权利要求8的系统,还包括鼓风机,用以压缩由VPSA接受的粗氩流体。
10.权利要求8的系统,还包括将残余物流从VPSA装置循环到低温分离装置的上塔或循环到低温分离装置的原料空气物流中的设备。
全文摘要
本发明涉及一种用于制备高纯氩产品的方法和系统,它采用低回流比氩蒸馏塔、高回流比氩蒸馏塔和真空变压装置与低温空分装置相组合从空气原料物流中以高收率制备高纯氩。
文档编号F25J3/04GK1362608SQ0114403
公开日2002年8月7日 申请日期2001年12月27日 优先权日2000年12月29日
发明者T·C·恩古芸, 小T·J·博格曼 申请人:普莱克斯技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1