通过低温蒸馏分离空气的方法

文档序号:4798846阅读:166来源:国知局
专利名称:通过低温蒸馏分离空气的方法
技术领域
本发明涉及一种通过低温蒸馏分离空气的方法,具体涉及一种用于供应两种压力和/或两种纯度的氧的方法和i殳备。
技术背景某些工业场合要求同时大量供应不同压力的单一纯度的氧,乃至供应 不同压力的几乎为纯的氧和不纯的氧。而且,某些工业应用要求大量不同压力的不纯的氧煤的气化、油渣 的气化、铁矿石的直接熔融还原、煤向高炉内的喷射、非铁金属的冶金等 等。如"The Making, Shaping and Treating of Steel (钢的制造、成型和处 理)",AISE, 1985中所述,钢生产单元通常包括几个具有不同的氧需求 的部件。高炉消耗富氧空气,该富氧空气通常通过使压缩空气与中压 (P<10bar)的、在某些情况下为低纯度的氧混合生成。低纯度氧的纯度 在80到97%之间。相反,转炉和电弧炉消耗具有99到99.8%之间的高纯 度的高压氧(喷射入转炉时为P>15bar,典型地在安装于转炉上游的气体 緩冲罐中为P>25bar)。为了供应这两种氧品质,经常会提供两个用于通 过空气蒸馏生产氧的单元,生产中压氧的一个为例如在US-A-4022030和 EP-A-0531182中描述的类型的混合塔单元,生产高纯度氧的一个通常为传 统的双塔单元。所有提及的纯度为摩尔百分比,压力为绝对压力。发明内容本发明旨在解决下列问题有时客户对高压氧的需求增加而不再需要 中压氧(或不再需要那么多的中压氧/或可以利用减少的量(或甚至为零) 的中压氧运转[高炉通常就是这样l)。本发明的目的是无需借助第二空气 分离单元或来自于存储罐的低温液氧的气化而使客户满意。本发明的一个目的在于提供一种在包括塔系统的空气分离单元中通过 低温蒸馏分离空气的方法,其中i) 根据第一步骤a) 使所有用于蒸馏的空气在主压缩机中压缩;b) 将至少在主压缩机中压缩、净化并在交换管路中冷却的第一空 气流传送到双塔的中压塔;c) 在中压塔中将该空气流分离成富氮流和富氧流;d) 将来自于中压塔的富氮流和富氧流直接或间接地传送到双塔的 低压塔;e) 从低压皿取富氮流并在交换管路中加热;f) 从低压塔提取液氧流,将该液氧流加压至高压并^f吏其在交换管 路中气化以形成第 一 高压富氧气流;g) 使在主压缩机中压缩的空气的至少一部分液化,该至少一部分 空气可选地至少在第二压缩机中被再次压缩,并将液化的部分 传送到双塔中;以及h) 也生产第二富氧气流,但压力比第一富氧气流低;ii) 根据第二步骤a) 通过调整设定空气液化压力的主压缩机和可选地第二压缩机 的叶片来增加该空气液化压力;b) 减少第二富氧气流的生产,可选地减少到零;以及c) 增加第一富氧气流的提取。 根据其他可选的方面- 通过从低压塔提取液体流并在使该液体流于交换管路中气化之 前将该液体流加压到较低压力来生产第二富氧气流;通过从被供给空气的混合塔或低压塔提取气流来生产第二富氧气流;至少一个第二压缩机压缩所有用于空气分离单元的空气;至少一个第二压缩机仅压缩用于空气分离单元的空气的一部分;在第二步骤期间,传送到第二压缩机的流增加; 在第二压缩机中压缩的空气的一部分在与该第二压缩机相联的涡轮中膨胀然后被传送到双塔中,且在第二步骤期间膨胀的流 相对于在第 一步骤期间膨胀的流减少;在第二步骤期间,传送到第二压缩机中的流相对于笫一步骤期 间相同的流保持不变;在第二步骤中传送到驱动第二压缩机的涡轮的气体量相对于在 第一步骤期间传送的气体量增加;第一富氧流的纯度高于98.5%,第二富氧流的纯度低于98%; 在第一步骤期间,从双塔中提取富氧液体流作为最终产品,在 第二步骤期间,该富氧液体流的提取减少,可选地减少到零; 第一和第二富氧流的总量在第一步骤和第二步骤之间基本不变;在第一步骤期间,空气流在涡轮中膨胀并被传送到双塔中,在 第二步骤期间,或者该膨胀的流排放到大气中,或者该膨胀的 流的一部分被传送到双塔中,而剩余部分排放到大气中; 在第二步骤期间,将来自于备用压缩机的压缩空气传送到双塔中;被处理的空气的一部分来自高炉鼓风机; 在第一步骤期间,通过加压液体的气化来生产加压的氮流和/或 加压的氩流,在第二步骤期间,减少或停止此流的生产; 在第一步骤期间,生产液氮流和/或液氩流作为最终产品,在第 二步骤期间,减少或停止此生产;以及- 第一和第二富氧流具有相同或不同的纯度。本发明的另外一个方面为提供一种供应高压氧流的方法,其中,根据 第一步骤,两个空气分离单元均供应高压氧,根据第二步骤,两个空气分 离单元中的第一单元供应相对于根据第一步骤供应的高压氧增加的高压氧流,第二单元供应减少的、或甚至为零的流;至少第一单元如上所述运行, 并且除了其初始的高压氧生产之外,还供应在第一步骤期间由第二单元生 产的高压氧的量的至少50%。根据本发明的其他方面,作出以下规定-在第二步骤期间,第二单元的空气压缩机将压缩空气传送到第一单元;-没有空气增压器由发动机驱动。


图1、 2和3示出能够根据本发明的方法而运转的空气分离单元;以及 图4示出包括至少一个根据本发明运转的空气分离单元的一组空气分 离单元。
具体实施方式
图1中所示的空气蒸馏设备主要包括空气压缩机l;通过吸附作用 去除压缩空气中的水和C02的单元2,此单元包括两个吸附柱2A、 2B, 其中一个处于吸附操作,同时另一个处于再生过程中;包括膨胀涡轮4并 可选地包括增压器5的涡轮增压器组件3,所述增压器5的轴与涡轮4的 轴相联;构成设备的热交换管路的热交换器6;包括中压塔8的双蒸馏塔7, 在所述中压塔8之上安装有低压塔9,所述双蒸馏塔具有使来自于塔8的 顶部蒸汽(氮)与来自于塔9的底部液体(氧)热交换接触的再沸器/冷凝 器10;液氧罐ll,其底部与液氧泵12连接;和液氮罐13,其底部与液氮 泵14连接。此设备用于通过管道15供应预定高压力的气态氧,该高压力可以在几巴和几十巴之间(在本文中所讨论的压力为绝对压力)。为此,通过管道16从塔9的底部提取并存储在罐11中的液氧通过泵 12在液态下升至高压,然后在此高压下在交换器8的通道17中气化并被 再力口热。此气化和此再加热、以及从双塔提取的其他流体的再加热和可选地气 化所需的热量由待蒸馏的空气在下迷条件下供应。通过压缩机l将所有要被蒸馏的空气压缩到高于塔8的中压并低于氧 的高压的压力。然后,在18中预冷却并在19中冷却到大约环境温度的空 气在吸附柱中的一个例如2A中净化,并由增压器5全部增压到高压,所 述增压器5由涡轮4驱动。空气然后在交换器6的热端被引入并整体冷却到一中间温度。在这个 温度下, 一部分空气继续冷却且在交换器的通道20内液化,然后在膨胀阀 21中膨胀至低压且在一中间位置引入塔9。空气的其余部分或多余空气在 涡轮4中膨胀至中压然后通过管道22直接传送到塔8的底部。此外,在图1中看到的是用于呈现为"尖塔"型、即生产低压氮的双 塔设备的一般管道用于在升高的位置向塔9内分别注入膨胀的"富液" (富氧空气)、膨胀的"下部贫液"(不純的氮)和膨胀的"上部贫液" (几乎为纯氮)的管道23到25,这三种流体分别在塔8的底部、中间位 置和顶部提取;以及用于从塔9的顶部提取气态氮的管道28和用于从下部 贫液的注入位置排放残余气体(不纯的氮)的管道27。低压氮在交换器6 的通道28中被再加热然后通过管道29排出,而在交换器的通道30中被再 加热后的残余气体在通过管道31排出之前用于使吸附柱(在讨论的示例中 为吸附柱2B)再生。从图1中还可看出,在中间位置从低压,取的一部分液氧36在膨胀 阀32中膨胀后存储到罐13并由泵14加压,且液氧的生产通过管道33(中 等纯度)和/或34 (高纯度)供应。中等纯度液氧的一部分在泵14中加压 后在交换器6中气化。泵14的出口压力比泵12的出口压力低。因此,根据第一步骤,所述单元生产高纯度和高压的氧流15以及中等纯度和中压的氧流115。根据第二步骤,或者关闭阀32且不再提取中压氧,或者减少中压氧流。 在此情况下,流16的提取增加且更多来自于泵12的高纯度和高压力的氧 在交换器6中气化。为了使此增加的流气化,压缩机l的出口压力以及压 缩空气流通过调整压缩机1的叶片来增加。当没有液氧生产时,流16和 36的总量在第一步骤和第二步骤之间保持不变,因为在压缩机l中的压缩 空气流在这两个步骤之间基本保持不变。当有液氧生产时,或者流16和 36的总量在第一步骤和第二步骤之间保持不变,或者可以通过减少甚至消 除液氧的生产来在第二步骤期间生产更大的总量。当液体的生产减少时, 来自于Claude涡轮4的空气的一部分在与残余气体27混合之后排放到大 气中。图2中示出的设备用于生产两种压力和两种纯度的气态氧。该设备主 要包括双蒸馏塔41,主热交换管路42,过冷器43,单个空气压缩机44, 空气增压鼓风机45,膨胀涡轮46 (该膨胀涡轮的轮安装在与增压器45相 同的轴上),由电动机48驱动的附加的鼓风机47,和液氧泵49。通常双 塔由在大约6bar下运转的中压塔50和安装于该中压塔上方的在稍高于大 气压力下运转的低压塔51构成,在后者的底部具有再沸器/冷凝器52,该 再沸器/冷凝器52使来自于低压塔底部的液氧与来自于中压塔顶部的氮热 交换接触。当在第一步骤中运行时,设备的空气压缩机44直接将所有的空气压缩 至约为23bar的第一高压,此空气的第一流如上文所述那样在通道53、涡 轮46和膨胀阀54中处理且然后被传送到塔50的底部。另 一方面,此空气的剩余部分通过串联安装的两个鼓风机分两步增压 直接与涡轮46相联的第一鼓风机70,和直接与第二膨胀涡轮72相联的第 二鼓风机71。在70中增压的空气全部进入鼓风机71,然后进入交换管路 42的通道56中,此空气的一部分在高于温度Tl的温度T2下离开交换管 路以在涡轮72中膨胀。涡轮72的处于中压的出口和涡轮46的出口一样连 接到塔50的底部。没有在涡轮72中膨胀的处于最高压力的空气在通道56中继续冷却并液化,直到交换管路的冷端,然后在膨胀阀57和57A中膨 胀,且在两个塔50和51之间分配。术语"增压器,,或"鼓风机"在此理解为单轮压缩机,由于被处理的 气流和压缩比,其能量消耗显著低于该设备的主压缩机44的能量消耗,例 如约为后者的2-3%。这种鼓风机的压缩比一般低于2。在此讨论的鼓风机 在其出口均包括未示出的水或大气冷却器。从塔51的底部提取的液氧通过泵49升至高压,然后在经由生产管道 59作为高压和高纯度气态氧流从设备排放之前,在交换管路的通道58中 气化并,皮再加热。从塔51在中间位置处提取的液氧通过泵70升至中压,然后在经由生 产管道59作为中压和中等纯度的气态氧流从设备排放之前,在交换管路的 通道58中气化并,皮再加热。此外,在图2的设备中示出的是双塔设备的通常的管道和装置利用 其膨胀阀61将从塔50的底部获得的"富液"(富氧空气)传输到塔51 的管道60,利用其膨胀阀83将从塔50的顶部提取的"贫液"(或多或少 的纯氮)传输到塔51顶部的管道62,以及,从塔51的底部伸出/分接出 (piqu6e )的用于生产液氧的管道64,从管道62伸出的用于生产液氮的管 道65,和从塔51的顶部伸出的用于提取不纯的氮的管道66,所述不纯的 氮形成设备的残余气体,此不纯的氮在通过管道68排出之前在过冷器43 中、然后在交换管路的通道67中被再加热。根据第二步骤,或者不再提取中压氧,或者中压氧流减小。在此情况 下,从低压塔底部的液氧流的提取增加且更多来自于泵49的高纯度和高压 力的氧在交换器6中气化。为了使此增加的流气化,压缩机l的出口压力 以及压缩空气流通过调整压缩机1的叶片来增加。可选地或附加地,空气 流通过鼓风机70、 71来调整。当没有液氧生产且压缩机44中的压缩空气流在两个步骤之间基本保 持不变时,流59和72的总量在第一和第二步骤之间不变。另一方面,当 压缩的流在第二步骤期间增加时,气态的氧化产品的总量会增加。液氧生产的减少或消除也允许气态产品的更多变化。当液体的生产减少时,来自于涡轮46、72中的至少一个的空气的至少一部分将在第二步骤期间在与残 余气体66混合之后排放到大气中。在图3中,大气压力下的空气流在主压缩机1中4皮压缩到约15bar。 该空气然后在被净化以去除杂质(未示出)之前可选地冷却。净化后的空 气分成两部分。空气的一部分3蜂皮送到增压器5,在其中3皮压缩到17到 20bar之间的压力,然后,在被传送到空气分离单元的主交换管路9的热 端之前,该增压的空气通过水冷却器7冷却。增压的空气ll在离开交换管 路并分成两小部分之前冷却到中间温度。很明显,流ll的一小部分可以继 续冷却直到交换管路9的冷端,在那里它将以液化后的形式出现。 一小部 分13被传送到涡轮17,剩余部分一一即一小部分15——被传送到涡轮19。 两个涡轮具有相同的进气温度和压力及相同的排放温度和压力,但是很明 显这些温度和压力可以彼此接近而不是相同。由涡轮输出的两个流混合在 一起以形成空气流21,该空气流的一部分121被传送到双塔,剩余部分122 传送到混合塔300。流122构成流21的一部分或者在后者为两相流的情况 下可选地构成气流21的气态部分的一小部分。很明显可以将全部流21传 送到中压塔100并从其中提取气态部分122以传送到混合塔,在此情况下 中压塔代替了分相器。中压塔的压力和混合塔的压力可以不相同。作为一 种变型,涡轮19可以为在低压塔的压力下传输的鼓风涡轮。在15bar下的空气的另一部分2 (其构成该空气的剩余部分)在交换 管路中冷却到高于涡轮17、 19的进气温度的中间温度,在第二增压器23 中压缩到大约30bar并在一较高温度下再次引入交换管路9以便继续冷却。因此,大约30bar的空气37在交换管路中液化且液氧25在交换管路 中气化,液体的气化温度接近于第二增压器23的进气温度。液化的空气离 开交换管路且被传送到塔系统。第一增压器5与涡轮17、 19中的一个相联,且第二增压器23与涡轮 19、 17中的另一个相联。空气分离单元的塔系统由与具有尖塔的低压塔200热联接的中压塔100、混合塔300和可选的氩塔(未示出)形成。低压塔并不一定要具有尖 塔。中压塔在5.5bar的压力下运转,但也可以在更高的压力下运转。 来自于两个涡轮17、 19的空气121为传送到中压塔100底部的流。 液化的空气37在阀39中或者可选地在一涡轮中膨胀并,皮传送到塔系统。富液51、下部贫液53和上部贫液55在阀内膨胀及过冷步骤之后,从 中压塔100传送到低压塔200。现在将根据第一步骤来描述单元的运转。液氧由泵500加压并作为加压液体25传送到交换管路9。液体501的 一部分可以作为液体产品存储。其他的液体,不论加压与否都可以在交换 管路中气化。可选地,从中压,取气态氮并也在交换管路9中冷却。 氮33被从低压塔的顶部提取出并在用于过冷回流液体之后,在交换管 路中被加热。剩余的氮27被从低压塔的较低位置提取出并在用于过冷回流液体之 后,在交换管路9中被加热。可选地,该塔可以通过处理从低压塔200中提取的流51来生产氩。如 果有氩塔的话,流52为从氩塔传送来的底部液体。混合塔300在顶部被供给从低压塔200在中间位置提取且由泵600加 压的富氧液体35,在底部被供给来自于涡轮17、 19的气态空气流122。混 合塔主要在中压下运转。从混合塔的顶部提取气态氧流137,然后在交换管路9中加热,从底 部提取液体流41并使其在阀中膨胀后传送到低压塔。可以从塔300提取一 被传送到低压塔的中间流。第二步骤和第一步骤不同之处在于来自混合塔中的氧的生产减少甚至消除。在此情况下,来自于低压塔底部的液氧流35的提取增加且更多来自 于泵600的高纯度和高压力的氧在交换器9中气化以形成流125。为了使此增加的流气化,压缩机1的出口压力以及压缩空气流通过调整压缩才几1的叶片来增加。可选地或附加地,空气流和它的压力通过冷增压器23来调 整。从而,可以通过调整压缩机1和/或冷增压器23的叶片来改变第二步 骤中空气37的压力。根据第二步骤的变型一_在该变型中混合塔不生产氧,不再将空气 122传送到混合塔的底部。将不再供给液氧且其运转停止。将多余的空气 传送到双塔中。增压器23将空气2压缩到更高压力,这使得能够通过增加 在低压塔底部的提取以便在泵500中给更大的流加压来使更多的液氧气 化。所生产的唯一富氧气体为中压和中等纯度的氧。根据第二步骤的另一变型,将较少的空气122传送到混合塔的底部。 后者接收较少的液氧35且它的运转变慢。多余的空气被传送到双塔。增压器23将空气2压缩到更高压力,这使得能够通过增加在低压塔底 部的提取以便在泵500中给更大的流加压来使更多的液氧气化。单元生产比第一步骤更多的中压和中等纯度的氧25,但继续生产减少 量的低纯度和低压的氧137。当没有液氧501的生产且在压缩机l中压缩的空气流在两个步骤之间 保持基本不变时,流125和137的总量在第一和第二步骤之间不变。另一 方面,如果在第二步骤期间压缩的流增加,则气态的氧化产品的总量会增 加。液氧501的生产的减少或甚至消除也允许气态产品的更多变化。当液 体的生产减小时,来自于涡轮17、 19中至少一个的空气的至少一部分将在 第二步骤期间在与残余气体27混合之后排放到大气中。在第二步骤期间,期望改变传送到涡轮17、 19的空气量的比例,以便 如果在增压器23中增压的流增加,则驱动该增压器的涡轮19接收来自于 冷增压器23的百分比增加的空气,而涡轮17显然接收百分比减少的空气。这里,增压器由空气涡轮驱动,但是容易理解,该增压器可以由氮涡 轮、蒸汽涡轮或现场存在的任何其他涡轮驱动。本发明使得特别能够解决当两个空气分离单元生产高压氧时出现的问 题。当单元中的一个不再生产或生产得较少时,另一个可根据本发明运转以中压氧的生产为代价来增加高压氧的生产。可选地,所需要的附加的氧 气可以从已经停止运转或以减小的速率运转的单元的空气压缩机或空气增 压器送到另一个单元。特别地,本发明允许另一个单元最多供应以前来自于所述已经停止运转或以减小的速率运转的单元的产品的50%。很明显,可以在第一步骤和可选地在第二步骤期间通过将单股的氧流 泵送到泵中并使该氧流的一部分膨胀来生产两种压力的氧。在此情况下, 很明显流具有同样的纯度。单元也可以通过泵送的氮和泵送的氩的气化来生产加压的氮和/或氩。 也可以设想在第二步骤期间相对于第 一 步骤期间的生产降低或停止加压的 氮和/或氩的生产。在第一步骤期间,单元也可以生产液氮作为最终产品。在此情况下, 可以设想在第二步骤期间减小或停止液体的生产。图4示出两个空气分离单元ASU 1和ASU 2,其中至少第一 ASU 1 根据本发明运转。这两个单元由它们各自的压缩机C1、 C2供给空气。当 单元ASU 2减少它的高纯度氧15的生产时,ASU l开始根据第二步骤运 转以生产更多高压氧15。为此,可将已净化或未净化的空气从压缩机C2 传送到单元ASU1。
权利要求
1.一种在包括塔系统的空气分离单元中通过低温蒸馏分离空气的方法,其中i)根据第一步骤a)使所有用于蒸馏的空气在主压缩机(1、44)中压缩;b)将至少在主压缩机中压缩、净化并在交换管路(6、42、9)中冷却的第一空气流传送到双塔的中压塔(8、50、100);c)在中压塔中将该空气流分离成富氮流和富氧流;d)将来自于中压塔的富氮流和富氧流直接或间接地传送到双塔的低压塔(9、51、200);e)从低压塔提取富氮流并在交换管路中加热;f)从低压塔提取液氧流,将该液氧流加压至高压并使其在交换管路中气化以形成第一高压富氧气流(15、59、125);g)使在主压缩机中压缩的空气的至少一部分液化,该空气可选地至少在第二压缩机中被再次压缩,并将液化的部分传送到双塔;以及h)也生产第二富氧气流(115、72、137),但是压力比第一富氧气流低;ii)根据第二步骤a)通过调整设定空气液化压力的主压缩机和可选地第二压缩机的叶片来增加该空气液化压力;b)减少第二富氧气流的生产,可选地减少到零;以及c)增加第一富氧气流的提取。
2. 根据权利要求1所述的方法,其特征在于,通过从低压,取液 体流(36)并在使该液体流于交换管路中气化之前将该液体流加压到较低 压力来生产所述第二富氧气流。
3. 根据权利要求1所述的方法,其特征在于,通过从被供给空气的混合塔(300)或低压,取气流来生产所述第二富氧气流。
4. 根据前述权利要求中的一项所述的方法,其特征在于,至少一个 第二压缩机(5)压缩所有用于所述空气分离单元的空气。
5. 根据权利要求1到3中的一项所述的方法,其特征在于,至少一 个第二压缩机(70、 71、 23)仅压缩用于所述空气分离单元的空气的一部 分。
6. 根据权利要求5所述的方法,其特征在于,在第二步骤期间,传 送到所述第二压缩机(70、 71、 23)的流增加。
7. 根据权利要求6所述的方法,其特征在于,在所述第二压缩机(70、 71、 23)中压缩的空气的一部分在涡轮中膨胀然后^皮传送到双塔中,且在 第二步骤期间膨胀的流(15)相对于在第一步骤期间膨胀的流减少。
8. 根据权利要求1到5中的一项所述的方法,其特征在于,在第二 步骤期间,传送到所述第二压缩机(70、 71、 23)的流相对于第一步骤期 间相同的流保持不变。
9. 根据权利要求8所述的方法,其特征在于,在第二步骤中传送到 驱动所述第二压缩机(70、 71、 23)的涡轮(19、 46、 72)中的气体量相对于第一步骤期间传送的气体量增加。
10. 根据前述权利要求中的一项所述的方法,其特征在于,第一富氧 流(15、 59、 125)的纯度高于98.5%,第二富氧流(115、 72、 137)的纯 度低于98%。
11. 根据前述权利要求中的一项所述的方法,其特征在于,在第一步 骤期间,从双塔中提取富氧液体流(34、 501)作为最终产品,并且在第二 步骤期间,该富氧液体流的提取减少,可选地减少到零。
12. 根据前述权利要求中的一项所述的方法,其特征在于,第一和第 二富氧流的总量在第一步骤和第二步骤之间基本不变。
13. 根据前述权利要求中的一项所述的方法,其特征在于,在第一步 骤期间,空气流在涡轮U、 46、 72、 19)中膨胀且被传送到双塔,在第二 步骤期间,或者该膨胀的流排放到大气中,或者该膨胀的流的一部分被传送到双塔,而剩余部分排放到大气中。
14. 根据前述权利要求中的一项所述的方法,其特征在于,在第二步 骤期间,将来自于备用压缩机的压缩空气传送到双塔。
15. 根据前述权利要求中的一项所述的方法,其特征在于,被处理的 空气的一部分来自于高炉鼓风机。
16. 根据前述权利要求中的一项所述的方法,其特征在于,在第一步 骤期间,通过加压液体的气化来生产加压的氮流和/或加压的氩流,在第二 步骤期间,减少或停止该流的生产。
17. 根据前述权利要求中的一项所述的方法,其特征在于,在第一步 骤期间,生产液氮流和/或液氩流作为最终产品,在第二步骤期间,减少或 停止该生产。
18. 根据前述权利要求中的一项所述的方法,其特征在于,第一和第 二富氧流具有相同的纯度或不同的纯度。
19. 根据权利要求1到3或8到18中的一项所述的方法,其特征在于, 所述主压缩机使所有的空气达到空气液化压力。
20. —种用于供应高压氧流的方法,其中,才艮据第一步骤,两个空气 分离单元(ASU1、 ASU2)均供应高压氧(15),根据第二步骤,两个空 气分离单元中的第一单元(ASU 1)供应相对于根据第一步骤供应的高压 氧增加的高压氧流,第二单元供应减少的、或甚至为零的流;至少第一单 元根据前述权利要求中的一项的方法运转,并且除了其初始的高压氧生产 之外,还供应在第一步骤期间由第二单元生产的高压氧的量的至少50%。
21. 根据权利要求20所述的方法,其特征在于,在第二步骤期间,所 述第二单元的空气压缩机(C2)将压缩空气传送到所述第一单元。
全文摘要
本发明涉及一种通过低温蒸馏分离空气的方法。根据空气分离单元中的第一步骤,所有用于蒸馏的空气在主压缩机(1)中压缩,至少在主压缩机中压缩、净化并在热交换管路(6)中冷却的第一空气流被传送到双塔的中压塔(8),所述空气流在中压塔中被分离成富氮流和富氧流,从低压塔提取液氧流(16),所述流被加压到高压并在热交换管路中气化,以便形成第一高压富氧气流,在主压缩机中压缩的空气的至少一部分(24)液化且该液化部分被传送到双塔中,并且也生产第二富氧气流(115),但是压力比第一富氧气流低;在第二步骤中,通过调整设定空气液化压力的主压缩机(1)的叶片而增加该空气液化压力,第二富氧气流的生产减少且第一富氧气流的提取增加。
文档编号F25J3/04GK101331374SQ200680047399
公开日2008年12月24日 申请日期2006年12月14日 优先权日2005年12月15日
发明者A·吉亚尔, O·德卡耶, P·勒博, R·杜贝蒂尔-格勒尼耶 申请人:乔治洛德方法研究和开发液化空气有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1