通过低温分离空气生产氧产物的方法和设备的制作方法

文档序号:4793874阅读:157来源:国知局
专利名称:通过低温分离空气生产氧产物的方法和设备的制作方法
技术领域
本发明涉及通过低温分离空气生产氧产物的方法和设备。
背景技术
例如Hausen/Linde低温技术1985年第2版第4章(第281 337页)就公开了低温分离空气的方法和装置。可以将本发明的蒸馏塔系统设计成双塔系统(例如传统型Linde双塔系统),也可设计成三塔或多塔系统。系统除了具有氮氧分离塔之外,还可以具有用于获取高纯产物和/或者其他空气成分尤其是惰性气体的其他装置,例如获取氩气和/或者氪-氩。低压塔具有比高压塔更低的工作压力。为了产生在物质交换区段中上升的蒸汽, 低压塔具有ー个塔底蒸发器,称作主冷凝器,将其设计成冷凝器-蒸发器形式,也就是与低压塔蒸发的塔底液间接进行热交换的方式液化气态加热流体,例如高压塔的塔顶氮气。通常将主冷凝器直接布置在低压塔之内(内侧主冷凝器);也可代之以将其安置在低压塔之外的独立容器之中,并且利用管道将其与低压塔相连(外侧主冷凝器)。每个“冷凝器-蒸发器”均包括由液化通道以及蒸发通道构成的液化室和蒸发室,在液化室中冷凝第一流体流,在蒸发室中蒸发第二流体流,这两股流体流间接进行热交換。通过相互间存在热交换关系的通道构成蒸发室和液化室。可以将主冷凝器设计成降膜蒸发器或者浸没式蒸发器(Badverdampfer)。本发明涉及将主冷凝器设计成浸没式蒸发器的空分方法,所述浸没式蒸发器(有时也称作循环蒸发器或者热虹吸蒸发器)中的热交換器模块在待蒸发流体的液浴槽之中,利用热虹吸效应使得待蒸发流体自下而上流过蒸发通道,然后在上方作为两相混合物重新流出。余下的液体在热交換器模块之外流回到液浴槽之中。(所述浸没式蒸发器的蒸发室不仅包括蒸发通道,而且也包括热交換器模块周围的外围空间)。而降膜蒸发器则相反,需要采取附加措施使得经过蒸发通道的液体翻转。也可以使用这两个或更多并列布置的浸没式蒸发器作为主蒸发器,然后将其蒸发侧和液化侧并联。可以将这些浸没式蒸发器中的每ー个或者构成主蒸发器的唯一一个浸没式蒸发器设计成单层或多层型式。“多层浸没式蒸发器”具有这两个或多个上下叠置的层,分别通过换热段实现这些层。可以通过ー个独立的热交換器模块实现每ー个层,或者通过同一个热交換器模块的分段构成至少两个层或所有层。不仅可以在蒸发侧、而且也可以在液化侧将这些层串联或并联。多层浸没式蒸发器的ー种特殊实施方案是“级联式蒸发器”,这里是在蒸发侧将层串联,也就是未蒸发的液体从上ー层流向下ー层。同样优选在液化侧将级联式蒸发器串联,例如通过同一个热交換器模块中经过所有层的液化通道。也可以将级联式蒸发器的层在液化侧并联。“主热交換器”可以由ー个或多个并联和/或者串联的换热段构成,例如可以由ー个或多个片式热交換器模块构成。
Hausen/Linde的所述专题文章已公开了采用单层浸没式蒸发器的エ艺过程。DE1152432、DE 1949609A、TO 01/92798 A2、EP 1287302B1 和 DE 102007 003 437 Al 均公开
了采用多层浸没式蒸发器的此类方法。

发明内容
本发明的目的在于提供一种尤其能在负荷快速变化时允许系统稳定运行的方法和相应的设备。负荷变化是ー种运行情况,设备这时处在从氧产物的第一产量变化到第二产量的不稳定过渡阶段。当“负荷提高”时,第二产量高于第一产量;当“负荷减小”时,第二产量低于第一产量。
该目的是通过利用用于分离氮氧分离的蒸馏塔系统通过低温分离空气可变以可变方式生产生氧产物的方法实现的,所述蒸馏塔系统具有皆包括物质交换区段的高压塔
(6)和低压塔(7),其中-将进料空气流(1,3,5)在主热交換器(2)中冷却下来,并导入高压塔(6)中,-将氧富集的产物流(28)从低压塔(7)的下部排出,在主热交換器(2)中加热,并作为氧产物(29)获得,-将从低压塔(7)的最下面的物质交换区段(32)流出的液体导入作浸没式蒸发器和冷凝器-蒸发器构造的主冷凝器(8)中,并在主冷凝器中部分蒸发,及-将未蒸发的液体从主冷凝器(8)导入塔底(35)中,该方法的特征在干,-在低压塔(7)的最下面的物质交换区段(32)的下端与主冷凝器(8)之间设置有用于储存液体的液体缓冲装置(33),-在负荷减小期间将液体从主冷凝器的塔底(32)导入液体缓冲装置(33)中并在此储存,在此情况下增加了液体缓冲装置(33)的储存内容物,及-在负荷提高期间将至少一部分储存在液体缓冲装置(33)中的液体导入(34)主冷凝器⑶中,在此情况下減少了液体缓冲装置(33)的储存内容物。根据本发明的另ー个方面,其还提供通过低温分离空气生产氧产物的设备,其-具有用于氮氧分离的蒸馏塔系统,所述蒸馏塔系统具有皆包括物质交换区段的高压塔(6)和低压塔(7),-具有用于冷却进料空气流(1,3,5)的主热交換器(2),-具有用于将经冷却的进料空气流导入高压塔(6)中的装置,-具有用于从低压塔(7)的下部排出氧富集的产物流(28)并将其导入主热交換器
(2)中的装置,-具有用于获得作为氧产物(29)的经加热的产物流的氧产物管路,-具有作为浸没式蒸发器和冷凝器-蒸发器构造的主冷凝器(8),-具有用于将从低压塔(7)的最下面的物质交换区段(32)流出的液体导入主冷凝器⑶中的装置,及-具有用于收集来自主冷凝器(8)的未蒸发的液体的塔底(35),该设备的特征在于-设置在低压塔(7)的最下面的物质交换区段(32)的下端与主冷凝器(8)之间的液体缓冲装置(33),-用于将液体导入液体缓冲装置(33)中的装置,-用于将至少一部分储存在液体缓冲装置(33)中的液体导入(34)主冷凝器(8)中的装置,及-调节装置,其设计为在负荷减小期间将液体从主冷凝器的塔底(32)导入液体缓冲装置(33)中并在此储存,在此情况下增加了液体缓装置(33)的储存内容物,并且在负荷提高期间将至少一部分储存在液体缓冲装置(33)中的液体导入(34)主冷凝器(8)中,在此情况下減少了液体缓冲装置(33)的储存内容物。根据本发明所述,将ー个液体缓冲装置布置在主冷凝器上方,这可以在该方法的稳态运行过程中注入适当的液体,例如从低压塔最下方物质交换区段中流出的一部分回流液体。例如可在稳态运行过程中缓慢注入液体缓冲装置,从而在负荷提高的非稳态运行情况下有缓冲的液体可供使用。根据本发明所述,尤其可在负荷减小期间将液体从主冷凝器 的塔底送入液体缓冲装置之中,并且提高液体缓冲装置的储存内容物,也就是送入液体缓冲装置之中的液体多于从中排出的液体。而在负荷提高期间则将液体从液体缓冲装置送入到主冷凝器之中,并且减小液体缓冲装置的储存内容物,也就是从液体缓冲装置中排出的液体多于送入其中的液体。与降膜蒸发器相比,浸没式蒸发器的主要优点是不需要外部液体循环。此类从塔底到缓冲装置的人工液体循环方式咋ー看似乎不合理,但是本发明却发现此类技术的好处相当大,对得起所増加的额外费用。此外本发明所述的系统在负荷减小过程中也有好处,可以在此类情况下将从低压塔的上部物质交换区段中流出的比较多的低纯度液体至少部分截留在缓冲装置之中,从而防止或者减小塔底液的杂质污染。在非稳态运行条件下,譬如当负荷变化时,主冷凝器上的热交换效率通常会减小,本发明发现原因在于蒸发侧缺乏液体,现在可以利用本发明的方法从缓冲装置补充缺乏的液体,因此即使在极端的运行条件下,例如当出现每分钟负荷变化速率大于百分之一的快速负荷变化时,设备也能特别稳定地运行并且没有故障。将液体缓冲装置适当布置在低压塔最下面的物质交换区段下方和主冷凝器上方,使得液体可以在自然重力作用下从缓冲装置流入到主冷凝器的蒸发室或者其最上ー层之中。例如可以通过布置在塔壁上的一个或者多个塔盘(例如环形塔盘),或者通过ー个或多个升气管塔盘构成液体缓冲装置。通常通过液浴槽构成单层浸没式蒸发器的“塔底”。若为多层浸没式蒸发器,通常使用最下面的液浴槽作为塔底。也可代之以通过主冷凝器下方的独立空间构成塔底。也可以在稳态运行情况下采用从塔底到液体缓冲装置的液体循环方式,这时无需増大储存内容物;在此类情况下,浸没式蒸发器中并不常见的此类循环可用于在蒸发器高度范围内平衡蒸发液体中的纯度差异。尤其可以在多层浸没式蒸发器中实现特别稳定的运行。根据本发明所述方法的另ー种实施方案,利用液体泵将液体从主冷凝器的塔底送入到液体缓冲装置之中。由于液体缓冲装置在主冷凝器上方,但是塔底却在其下方或者在下端,因此必须升高塔底液才能到达液体缓冲装置。原则上可以使用任何一种用于升高液体的方法,尤其可使用液体泵。本发明特别适宜用于多层浸没式蒸发器,如果将主冷凝器设计成级联式蒸发器,则最为有益。采用从塔底到缓冲装置的液体循环方式不仅可以防止缺乏液体,而且还可平衡不同层(蒸发级)的蒸发侧上的浓度差异。级联式蒸发器的每ー个蒸发级均可起到部分蒸发作用,也就是说,氧浓度以及蒸发温度自上而下逐渐増大。但在液化侧到处都有液化温度实际上恒定的氮在流动,因此级联式蒸发器的上方蒸发级基本上以比下方蒸发级更大的温度差工作。当负荷变化时,这就会使得上方蒸发级中更加缺乏液体,因为这些蒸发级转化的热量多于下方蒸发级。根据本发明的该实施方案所述,现在将从最下方蒸发级流出到塔底中的纯净液体重新向上送入缓冲装置之中,然后从这里送往最上方的蒸发级,该蒸发级可在这里平衡比较低的纯度,总体上可在级联式蒸发器的高度范围内在蒸发侧产生比较平缓的浓度分布,同时可抵消级联式蒸发器运行过程中的两种负面效应,即负荷变化时缺乏液体以及主冷凝器高度范围内并非所需的浓度差异。如果氧富集的产物流具有98%以下例如90至95%的氧浓度,则特别适宜使用本 发明的方法。(如果没有其他说明,则这里和以下所述的所有百分值均为摩尔量)。尤其可以利用两种运行模式执行本方法,在第一种运行模式下送入液体缓冲装置中的液体多于从中排出的液体,在第二种运行模式下从液体缓冲装置中排出的液体多于送入其中的液体。例如第一种运行模式相当于负荷不变的稳态运行,第二种运行模式相当于负荷变化情况,例如从具有第一产量的第一稳态运行エ况变为具有更高第二产量的第二稳态运行エ况的过渡期间提高负荷。


图I所示为根据本发明的空气分离设备的示意图。
具体实施例方式以下将依据示意图中所示的实施例,对本发明以及本发明的其他细节进行详细解释。经过压缩和净化的进料空气I以大约5. 5巴的压カ流入主热交換器2的热端,并分为第一股空气流3和第二股空气流4。可以通过管路5分出一部分干燥空气I作为仪表空气或者供应给其他压缩空气设备。在主热交換器2中将第一股空气流3大致冷却到露点,然后通过管路5送入高压塔6之中,高压塔是用于分离氮氧的蒸馏塔系统的一部分,该系统包括一个低压塔7和ー个设计成级联式蒸发器的主冷凝器8。这些塔中的工作压カ(分别在塔顶上)高压塔6中约为5. 2巴,低压塔7中约为I. 3巴。在主热交換器2中将第二股空气流4仅仅冷却到中间温度,并且在中间温度下送入利用发电机10对其进行制动的涡流膨胀机9,在这里使其做功减压到大致低压塔的压力,通过管路11重新送回到主热交換器2,最終在某一中间部位通过管路12送入低压塔7。将高压塔6的塔顶氮气13 —部分14送入主冷凝器8的液化室,在主热交換器2中将剩余部分15大致加热到环境温度,最終通过管路16作为气态氮压缩产物(PGAN)排出。
将主冷凝器8中产生的液态氮17的第一部分18作为回流送入高压塔6的塔顶,将第二部分19在逆流式过冷器23中冷却下来,然后通过管路20作为回流送入低压塔7的塔顶。必要时可以将第三部分21作为液态氮产物(LIN)排出。将高压塔6的氧富集的塔底液24同样在逆流式过冷器23中冷却,然后在某一中间部位通过管路25送入到低压塔7之中。从低压塔7的塔顶排出气态氮26,在逆流式过冷器23和主热交換器2中将其加热,然后通过管路27排出,例如在图中没有绘出的空气浄化装置中将其用作再生气体。从低压塔7的下部(这里直接在主冷凝器8上方)排出氧富集的产物流28,在主 热交換器2中将其大致加热到环境温度,然后通过管路29获得氧产物(GOX)。可以通过管路30、31、33和泵32从主冷凝器8的塔底35获得一部分液体作为液体产物(LOX),例如用于充注液体储罐以备应急供应之用。作为替代或补充方案,除了取出气态产物之外,也可以通过内部压缩方式获得压カ氧产物,方法是对一部分液态氧31施加压力,然后在主热交換器2中使其蒸发或者假蒸发。根据本发明所述,有ー个环形塔盘形式的液体缓冲装置33直接位于低压塔7最下面的物质交换区段32下方。在设备稳态运行过程中,可以将从最下面的物质交换区段32流出的一部分液体充入该液体缓冲装置之中。在负荷提高的情况下通过管路34将液体从缓冲装置33定向送入主冷凝器8之中,而且是送入其最上层的液浴槽之中。任何情况下均可在负荷减小时通过液体泵36和管路37将液体从塔底36送入液体缓冲装置33之中。
权利要求
1.利用用于氮氧分离的蒸馏塔系统通过低温分离空气以可变方式生产氧产物的方法,所述蒸馏塔系统具有皆包括物质交换区段的高压塔(6)和低压塔(7),其中 -将进料空气流(1,3,5)在主热交換器(2)中冷却,并导入高压塔(6)中, -将氧富集的产物流(28)从低压塔(7)的下部排出,在主热交換器(2)中加热,并作为氧产物(29)获得, -将从低压塔(7)的最下面的物质交换区段(32)流出的液体导入作为浸没式蒸发器和冷凝器-蒸发器构造的主冷凝器(8)中,并在主冷凝器中部分蒸发,及 -将未蒸发的液体从主冷凝器(8)导入塔底(35)中,该方法的特征在干, -在低压塔(7)的最下面的物质交换区段(32)的下端与主冷凝器(8)之间设置有用于储存液体的液体缓冲装置(33), -在负荷减小期间将液体从主冷凝器的塔底(32)导入液体缓冲装置(33)中并在此储存,在此情况下増加了液体缓冲装置(33)的储存内容物,及 -在负荷提高期间将至少一部分储存在液体缓冲装置(33)中的液体导入(34)主冷凝器(8)中,在此情况下減少了液体缓冲装置(33)的储存内容物。
2.根据权利要求I的方法,其特征在于,利用液体泵(36)将液体从主冷凝器的塔底(35)导入液体缓冲装置(33)中。
3.根据权利要求2的方法,其特征在于,主冷凝器(8)作为多层浸没式蒸发器,尤其是作为级联式蒸发器构造。
4.根据权利要求3的方法,其特征在于,氧富集的产物流(28)的氧浓度小于98%。
5.通过低温分离空气生产氧产物的设备,其 -具有用于氮氧分离的蒸馏塔系统,所述蒸馏塔系统具有皆包括物质交换区段的高压塔(6)和低压塔(7), -具有用于冷却进料空气流(1,3,5)的主热交換器(2), -具有用于将经冷却的进料空气流导入高压塔(6)中的装置, -具有用于从低压塔(7)的下部排出氧富集的产物流(28)并将其导入主热交換器(2)中的装置, -具有用于获得作为氧产物(29)的经加热的产物流的氧产物管路, -具有作为浸没式蒸发器和冷凝器-蒸发器构造的主冷凝器(8), -具有用于将从低压塔(7)的最下面的物质交换区段(32)流出的液体导入主冷凝器(8)中的装置,及 -具有用于收集来自主冷凝器(8)的未蒸发的液体的塔底(35),该设备的特征在于-设置在低压塔(7)的最下面的物质交换区段(32)的下端与主冷凝器(8)之间的液体缓冲装置(33), -用于将液体导入液体缓冲装置(33)中的装置, -用于将至少一部分储存在液体缓冲装置(33)中的液体导入(34)主冷凝器(8)中的装置,及 -调节装置,其设计为在负荷减小期间将液体从主冷凝器的塔底(32)导入液体缓冲装置(33)中并在此储存,在此情况下増加了液体缓冲装置(33)的储存内容物,并且在负荷提高期间将至少一部分储存在液体缓冲装置(33)中的液体导入(34)主冷凝器(8)中,在此情况下減少了液体缓冲装置(33)的储存内容物。
6.根据权利要求5的设备,其具有用于将液体从主冷凝器的塔底(35)输送到液体缓冲装置(33)中的液体泵(36)。
7.根据权利要求6的设备,其特征在于,主冷凝器(8)作为多层浸没式蒸发器,尤其是作为级联式蒸发器构造。
全文摘要
利用氮氧分离蒸馏塔系统通过低温分离空气生产氧产物的方法和设备,蒸馏塔系统具有皆包括物质交换区段的高压塔(6)和低压塔(7)。将进料空气流(1,3,5)在主热交换器(2)中冷却,导入高压塔(6)。将氧富集的产物流(28)从低压塔(7)下部排出,在主热交换器(2)中加热,作为氧产物(29)获得。将从低压塔(7)最下面的物质交换区段(32)流出的液体导入主冷凝器(8)。在低压塔(7)最下面的物质交换区段(32)下端与主冷凝器(8)之间设置有液体缓冲装置(33)。在负荷减小期间将液体导入液体缓冲装置(33)并在此储存。在负荷提高期间将储存在液体缓冲装置(33)中的液体导入(34)主冷凝器(8)。
文档编号F25J3/04GK102692114SQ20121012015
公开日2012年9月26日 申请日期2012年3月21日 优先权日2011年3月22日
发明者A·阿列克谢耶夫, G·德姆斯基, G·蓬普尔 申请人:林德股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1