制冷剂流向转换装置制造方法

文档序号:4784226阅读:166来源:国知局
制冷剂流向转换装置制造方法
【专利摘要】本发明公开了一种制冷剂流向转换装置,它包括高压压缩机、低压压缩机、第一单向阀、第二单向阀、第一四通阀;第一四通阀的低压节点通过第六十一管道与制冷剂流向转换装置的第二连接点相连,第一四通阀的高压节点依次经过低压压缩机的出口端、低压压缩机的入口端与第六十一管道相连,制冷剂流向转换装置的第一连接点依次经过第六十三管道、高压压缩机的出口端、高压压缩机的入口端、第六十四管道、第二单向阀出口端、第二单向阀入口端与第六十一管道相连。使热泵设备,或热泵型空调制冷设备中的压缩机组能够根据需要实现单、双级压缩的自由切换。
【专利说明】制冷剂流向转换装置

【技术领域】
[0001] 本发明涉及一种制冷剂流向转换装置,属于空调制冷【技术领域】。

【背景技术】
[0002] 近年,随着经济的发展和人们生活水平的提高,热泵热水器和热泵型的空调制冷 设备在工业和民用领域获得了大规模的应用,技术水平有了很大提高,但在许多具体应用 方面仍有待改进,例如:以空气源热泵热水器为例,它用于全年为用户生产热水,在夏季 运行时,由于室外空气温度较高,压缩机单级压缩运行就可以生产出用户所需要水温的热 水和水量,并维持较高的工作性能;而在冬季运行时,由于室外空气温度较低,特别是低 于_5°C时,压缩机单级压缩运行就难以生产出用户所需要水温的热水和水量,并保证正常 运行且维持较高工作性能;此时压缩机就需要采用双级压缩运行,也就是说:对于空气源 热泵热水器而言,其压缩机或压缩机组应该能根据室外空气温度的高低变化,能够实现单 级压缩运行或双级压缩运行的自由切换;本发明 申请人:于2012年07月25日获得授权、权 利号为201010267689.6的发明权利就提出过此种方案,如本发明图5所示。该方案在工 作过程中,当电磁阀46关闭时,低压压缩机1-1、高压压缩机1-2处于并联状态,两个压缩 机中的任意一个运行,或两个压缩机同时运行时,压缩机都处于单级压缩运行状态;工作过 程中,当电磁阀46开启,且低压压缩机1-1、高压压缩机1-2都处于工作状态时,低压压缩 机1-1、高压压缩机1-2处于串联状态,低压压缩机1-1、高压压缩机1-2共同构成压缩机构 1的双级压缩运行状态,故在较低的室外空气温度下仍能够维持正常运行,且保持较高的工 作性能;但必须指出的是:上述方案在应用时,存在以下缺陷:
[0003] 1)电磁阀46线圈较大,发热严重容易引发故障,而且成本较高;
[0004] 2)当电磁阀46关闭,低压压缩机1-1、高压压缩机1-2处于并联状态,且高压压缩 机1-2正常运行,而低压压缩机1-1不运行时,在长时间的工作过程中,由于第五单向阀25 的轻微泄漏,不可避免在低压压缩机1-1出口端会逐步建立一个较高压力,而此时低压压 缩机1-1入口端是处于一个较低的高压压缩机1-2吸气压力,因此在低压压缩机1-1出口 端与入口端之间会存在较大的压力差,所以当低压压缩机1-1也需要投入并联工作时,其 压缩机电机的启动电流就会较大,容易导致低压压缩机1-1电机的损坏。
[0005] 广东美的暖通空调设备有限公司于2014年06月11日获得授权、权利号为 201320719147. 7的实用新型权利也提出了类似的方案,如本发明图6所示。如图6所示,工 作过程中,通过四通阀3的流向切换,使第一压缩机组1与第二压缩机组2实现并联连接与 串联连接,从而使第一压缩机组1与第二压缩机组2构成并联单级压缩运行和串联双级压 缩运行;从图6可知:当第一压缩机组1与第二压缩机组2构成并联单级压缩运行时,四通 阀3的第一工作口与四通阀3的进口连通,四通阀3的第二工作口与四通阀3的出口连通, 因此,当第二压缩机组2工作,而第一压缩机组1不工作时,也存在本发明图5所示方案同 样的缺陷,即:在长时间的工作过程中,由于单向阀5的轻微泄漏,不可避免在第一压缩机 组1的出气口会逐步建立一个较高压力,而此时第一压缩机组1进气口是处于一个较低的 主回气管7压力,因此在第一压缩机组1出气口与进气口之间会存在一个较大的压力差,所 以当第一压缩机组1也需要投入并联工作时,其压缩机电机的启动电流就会较大,容易导 致第一压缩机组1电机的损坏。
[0006] 另外,如图6所示,当第一压缩机组1与第二压缩机组2构成并联单级压缩运行 时,从主回气管7进入第二压缩机组2进气口的低压制冷剂蒸汽必须先经过中间冷却器 401,因为在此工况下,中间冷却器401通常不工作,因此由于中间冷却器401的存在,无疑 增加了第二压缩机组2的吸气阻力。


【发明内容】

[0007] 本发明的目的是提供一种结构简单、可靠的、能够使热泵设备,或热泵型空调制冷 设备中的压缩机实现单、双级压缩自由切换的制冷剂流向转换装置;并且该制冷剂流向转 换装置在单级压缩情况下,高压压缩机工作,而低压压缩机不工作时,能够使低压压缩机的 出口端与入口端的压力保持一致,使低压压缩机也需要投入并联工作时,其压缩机电机的 启动电流较小。
[0008] 为了克服上述技术存在的问题,本发明解决技术问题的技术方案是:
[0009] -种制冷剂流向转换装置,包括高压压缩机(1)、低压压缩机(2)、第一单向阀 (21)、第二单向阀(22);其特征是:该制冷剂流向转换装置还包括第一四通阀(70);
[0010] 所述第一四通阀(70)的低压节点(73)通过第六十一管道(61)与制冷剂流向转 换装置的第二连接点(102)相连,所述第一四通阀(70)的高压节点(71)依次经过所述低 压压缩机⑵的出口端、低压压缩机⑵的入口端与第六十一管道(61)相连,制冷剂流向 转换装置的第一连接点(101)依次经过第六十三管道(63)、所述高压压缩机(1)的出口 端、高压压缩机(1)的入口端、第六十四管道¢4)、所述第二单向阀(22)出口端、第二单向 阀(22)入口端与第六十一管道(61)相连,所述第一四通阀(70)二个换向节点中的任意 一个节点(72)依次经过所述第一单向阀(21)入口端、第一单向阀(21)出口端、第六十二 管道(62)与第六十三管道(63)相连,所述第一四通阀(70)的另一个换向节点(74)通过 第六十五管道¢5)与所述高压压缩机(1)的入口端和第二单向阀(22)出口端之间的第 六十四管道(64)相连。
[0011] 本发明与现有技术相比,其有益效果是:
[0012] 1.使热泵设备,或热泵型空调制冷设备中的压缩机能够根据需要实现单、双级压 缩的自由切换;
[0013] 2.在单级压缩情况下,高压压缩机工作,而低压压缩机不工作时,能够使低压压缩 机的出口端与入口端的压力保持一致,因此在低压压缩机也需要投入并联工作时,能够使 其电机的启动电流较小;
[0014] 3.结构简单,工作可靠,成本低廉;
[0015] 4.本发明特别适用于工业和民用领域中低温热源温度变化较大的热泵设备,或热 泵型空调制冷设备。

【专利附图】

【附图说明】
[0016] 图1是本发明实施例1结构示意图;
[0017] 图2是本发明实施例2结构示意图;
[0018] 图3是本发明实施例3结构示意图;
[0019] 图4是本发明实施例4结构示意图;
[0020] 图5是现有技术结构示意图;
[0021] 图6是现有技术结构示意图。

【具体实施方式】
[0022] 下面结合附图对本
【发明内容】
作进一步详细说明。
[0023] 实施例1
[0024] 图1所示是热泵设备,适用于工业和民用领域有供热需求的场合。
[0025] 图1所示的热泵设备包括以下组成部分:制冷剂流向转换装置100、第一换热器3、 第二换热器4、第一节流机构5、第二节流机构6、贮液器7。
[0026] 第一换热器3是一个制冷剂-水换热器,工作时,作为冷凝器,用于生产生活热 水;
[0027] 第二换热器4也是一个制冷剂-水换热器,工作时,作为蒸发器,从室外环境中的 低温热源处吸取热量;
[0028] 第一节流机构5、第二节流机构6为电子膨胀阀;
[0029] 制冷剂流向转换装置100包括以下几部分:低压压缩机2、高压压缩机1、第一四通 阀70、第一单向阀21、第二单向阀22。
[0030] 制冷剂流向转换装置100各部件的连接关系如下:第一四通阀70的低压节点73 通过第六i^一管道61与制冷剂流向转换装置100的第二连接点102相连,第一四通阀70 的高压节点71依次经过低压压缩机2的出口端、低压压缩机2的入口端与第六十一管道61 相连,制冷剂流向转换装置100的第一连接点101依次经过第六十三管道63、高压压缩机 1的出口端、高压压缩机1的入口端、第六十四管道64、第二单向阀22出口端、第二单向阀 22入口端与第六i^一管道61相连,第一四通阀70二个换向节点中的任意一个节点72依次 经过第一单向阀21入口端、第一单向阀21出口端、第六十二管道62与第六十三管道63相 连,第一四通阀70的另一个换向节点74通过第六十五管道65与高压压缩机1的入口端和 第二单向阀22出口端之间的第六十四管道64相连。
[0031] 图1所示的热泵设备各部份的连接关系如下:
[0032] 制冷剂流向转换装置100的第一连接点101依次经过第一换热器3、第四十一管道 41、贮液器7、第四十二管道42、第一节流机构5、第四十三管道43、第二换热器4、第四十四 管道44与制冷剂流向转换装置100的第二连接点102相连,第二节流机构6 -端通过第 四十五管道45与贮液器7相连,第二节流机构6另一端通过补气管46与高压压缩机1的 入口端和第二单向阀22出口端之间的第六十四管道64,或者是第六十五管道65相连。
[0033] 工作过程中,图1所示的热泵设备可以实现单级压缩运行工况和双级压缩运行工 况,各工况下的工作流程如下所述。
[0034] (1)单级压缩运行工况
[0035] 在该工况下,高压压缩机1、低压压缩机2处于并联状态。工作时,有以下运行方 案。
[0036] 1)高压压缩机1、低压压缩机2同时工作
[0037] 此时,第一四通阀70的高压节点71与第一四通阀70的换向节点72相通,第一四 通阀70的低压节点73与第一四通阀70的换向节点74相通。第一节流机构5正常工作, 第二节流机构6关闭。在该运行方案下,图1所示热泵设备的工作流程如下所述 :
[0038] 从第二换热器4出来的低温低压制冷剂气体依次经过第四十四管道44、制冷剂流 向转换装置100的第二连接点102,进入第六十一管道61被分成两路;第一路依次经过第 二单向阀22入口端、第二单向阀22出口端、第六十四管道64,进入高压压缩机1被压缩后, 再被排入第六十三管道63 ;第二路进入低压压缩机2被压缩后,再依次经过第一四通阀70 的高压节点71、第一四通阀70的换向节点72、第一单向阀21入口端、第一单向阀21出口 端、第六十二管道62,也被排入第六十三管道63;两路气体在第六十三管道63混合后,再依 次经过制冷剂流向转换装置100的第一连接点101、第一换热器3、第四十一管道41、贮液器 7、第四十二管道42、第一节流机构5、第四十三管道43,又回到第二换热器4,至此完成一次 两台压缩机同时运行的单级压缩的热泵循环。
[0039] 2)商压压缩机1工作,低压压缩机2不工作
[0040] 此时,第一四通阀70的高压节点71与第一四通阀70的换向节点74相通,第一四 通阀70的低压节点73与第一四通阀70的换向节点72相通。第一节流机构5正常工作, 第二节流机构6关闭。在该运行方案下,图1所示热泵设备的工作流程如下所述 :
[0041] 从第二换热器4出来的低温低压制冷剂气体依次经过第四十四管道44、制冷剂流 向转换装置100的第二连接点102、第六十一管道61、第二单向阀22入口端、第二单向阀 22出口端、第六十四管道64,进入高压压缩机1被压缩后,再依次经过第六十三管道63、 制冷剂流向转换装置100的第一连接点101、第一换热器3、第四十一管道41、贮液器7、第 四十二管道42、第一节流机构5、第四十三管道43,又回到第二换热器4,至此完成一次高压 压缩机1单独运行的单级压缩的热泵循环。
[0042] 在该方案下工作时,低压压缩机2的出口端和入口端的制冷剂压力保持一致,都 处于高压压缩机1的吸气压力下。
[0043] (2)双级压缩运行工况
[0044] 在该工况下,高压压缩机1、低压压缩机2都工作,且处于串联状态。工作时,第 一四通阀70的高压节点71与第一四通阀70的换向节点74相通,第一四通阀70的低压节 点73与第一四通阀70的换向节点72相通。
[0045] 第一节流机构5、第二节流机构6都正常工作,第一节流机构5用于制冷剂液体的 节流,控制通过第二换热器4的制冷剂流量;第二节流机构6用于控制双级压缩过程中的补 气量,从而对中间压力或高压压缩机1的排气温度进行控制;通常当第二节流机构6是与贮 液器7的液体空间相连时,是通过喷液的方式对双级压缩过程中的中间压力或高压压缩机 1的排气温度进行控制;当第二节流机构6是与贮液器7的气体空间相连时,是通过喷气的 方式对双级压缩过程中的中间压力或高压压缩机1的排气温度进行控制。
[0046] 在该运行工况下,图1所示热泵设备的工作流程如下所述:
[0047] 从第一换热器3出来的制冷剂液体,经过第四十一管道41进入贮液器7,被分成 两路;第一路制冷剂依次经过第四十二管道42、第一节流机构5、第四十三管道43、第二换 热器4、第四十四管道44、制冷剂流向转换装置100的第二连接点102、第六十一管道61,进 入低压压缩机2被第一级压缩后,再依次经过第一四通阀70的高压节点71、第一四通阀70 的换向节点74、第六十五管道65,进入第六十四管道64 ;第二路制冷剂依次经过第四十五 管道45、第二节流机构6、补气管46,也进入第六十四管道64 ;两路制冷剂在第六十四管道 64混合后,再进入高压压缩机1被第二级压缩,然后再依次经过第六十三管道63、制冷剂流 向转换装置100的第一连接点101,又回到第一换热器3,至此完成一次带中间补气的双级 压缩热泵循环。
[0048] 实施例2
[0049] 如图2所示,它与实施例1图1所示热泵设备的区别是:在本实施例图2所示的热 泵设备中,增加了一个第三单向阀23 ;第三单向阀23在系统中的连接方式是:第三单向阀 23的入口端与高压压缩机1的出口端相连,第三单向阀23的出口端与第六十三管道63和 第六十二管道62相连。
[0050] 工作过程中,本实施例图2所示的热泵设备除了可以实现本发明实施例1图1所 示热泵设备的所有运行工况,以及所有运行工况下的所有运行方案以外,对于单级压缩运 行工况还可以实现以下运行方案,即:高压压缩机1不工作,低压压缩机2工作的运行方案。
[0051] 在此运行方案下,第一四通阀70的高压节点71与第一四通阀70的换向节点72 相通,第一四通阀70的低压节点73与第一四通阀70的换向节点74相通。第一节流机构 5正常工作,第二节流机构6关闭。在该运行方案下,图2所示热泵设备的工作流程如下所 述:
[0052] 从第二换热器4出来的低温低压制冷剂气体依次经过第四十四管道44、制冷剂流 向转换装置1〇〇的第二连接点102、第六十一管道61,进入低压压缩机2被压缩后,再依次 经过第一四通阀70的高压节点71、第一四通阀70的换向节点72、第一单向阀21入口端、 第一单向阀21出口端、第六十二管道62、第六十三管道63、制冷剂流向转换装置100的第 一连接点101、第一换热器3、第四十一管道41、贮液器7、第四十二管道42、第一节流机构 5、第四十三管道43,又回到第二换热器4,至此完成一次低压压缩机2单独运行的单级压缩 的热泵循环。
[0053] 实施例3
[0054] 如图3所示,它与本发明实施例1图1所示热泵设备的区别是:在本实施例图3所 示的热泵设备中,增加了一个第二四通阀80和一个第三节流机构9。
[0055] 第二四通阀80和第三节流机构9在系统中的连接方式是:第二四通阀80的高压 节点81与制冷剂流向转换装置100的第一连接点101相连,第二四通阀80的低压节点83 与制冷剂流向转换装置100的第二连接点102相连,第二四通阀80两个换向节点中的任 意一个换向节点82依次通过第一换热器3、第四十一管道41、第三节流机构9、贮液器7、 第四十二管道42、第一节流机构5、第四十三管道43、第二换热器4、第四十四管道44与第 二四通阀80的另一个换向节点84相连。
[0056] 工作时,本实施例图3所示的热泵设备中的第一换热器3、第二换热器4都可以分 别扮演冷凝器和蒸发器的双重角色;当第一换热器3是冷凝器,用于生产热水,而第二换热 器4是蒸发器,用于从低温热源中吸收热量时,本实施例图3所示的热泵设备可以实现本发 明实施例1图1所示热泵设备的所有运行工况,以及所有运行工况下的所有运行方案,实现 向用户的供热;当图3所示的热泵设备中的第一换热器3是蒸发器,用于生产冷冻水,而第 二换热器4是冷凝器,用于向环境中排放冷凝热时,本实施例图3所示的热泵设备可以实现 向用户的供冷。
[0057] 图3所示的热泵设备在各运行工况下的工作流程如下所述。
[0058] (1)单级压缩运行工况(第一换热器3向用户供热)
[0059] 在该工况下,高压压缩机1、低压压缩机2处于并联状态。工作时,有以下运行方 案。
[0060] 1)商压压缩机1、低压压缩机2同时工作
[0061] 此时,第一四通阀70的高压节点71与第一四通阀70的换向节点72相通,第一四 通阀70的低压节点73与第一四通阀70的换向节点74相通;
[0062] 第二四通阀80的高压节点81与第二四通阀80的换向节点82相通,第二四通阀 80的低压节点83与第二四通阀80的换向节点84相通。
[0063] 第一节流机构5正常工作,第二节流机构6关闭,第三节流机构9全开。
[0064] 在该运行方案下,图3所示热泵设备的工作流程如下所述:
[0065] 从第二换热器4出来的低温低压制冷剂气体依次经过第四十四管道44、第二四通 阀80的换向节点84、第二四通阀80的低压节点83、制冷剂流向转换装置100的第二连接 点102,进入第六十一管道61被分成两路;第一路依次经过第二单向阀22入口端、第二单 向阀22出口端、第六十四管道64,进入高压压缩机1被压缩后,再被排入第六十三管道63 ; 第二路进入低压压缩机2被压缩后,再依次经过第一四通阀70的高压节点71、第一四通阀 70的换向节点72、第一单向阀21入口端、第一单向阀21出口端、第六十二管道62,也被排 入第六十三管道63 ;两路气体在第六十三管道63混合后,再依次经过制冷剂流向转换装置 100的第一连接点101、第二四通阀80的高压节点81、第二四通阀80的换向节点82、第一 换热器3、第四十一管道41、第三节流机构9、贮液器7、第四十二管道42、第一节流机构5、 第四十三管道43,又回到第二换热器4,至此完成一次两台压缩机同时运行的单级压缩的 热泵循环。
[0066] 2)高压压缩机1工作,低压压缩机2不工作
[0067] 此时,第一四通阀70的高压节点71与第一四通阀70的换向节点74相通,第一四 通阀70的低压节点73与第一四通阀70的换向节点72相通;
[0068] 第二四通阀80的高压节点81与第二四通阀80的换向节点82相通,第二四通阀 80的低压节点83与第二四通阀80的换向节点84相通。
[0069] 第一节流机构5正常工作,第二节流机构6关闭,第三节流机构9全开。
[0070] 在该运行方案下,图3所示热泵设备的工作流程如下所述:
[0071] 从第二换热器4出来的低温低压制冷剂气体依次经过第四十四管道44、第二四通 阀80的换向节点84、第二四通阀80的低压节点83、制冷剂流向转换装置100的第二连接 点102、第六i^一管道61、第二单向阀22入口端、第二单向阀22出口端、第六十四管道64, 进入高压压缩机1被压缩后,再依次经过第六十三管道63、制冷剂流向转换装置100的第一 连接点101、第二四通阀80的高压节点81、第二四通阀80的换向节点82、第一换热器3、第 四十一管道41、第三节流机构9、贮液器7、第四十二管道42、第一节流机构5、第四十三管道 43,又回到第二换热器4,至此完成一次高压压缩机1单独运行的单级压缩的热泵循环。
[0072] 在该方案下工作时,低压压缩机2的出口端和入口端的制冷剂压力保持一致,都 处于高压压缩机1的吸气压力下。
[0073] (2)双级压缩运行工况(第一换热器3向用户供热)
[0074] 在该工况下,高压压缩机1、低压压缩机2都工作,且处于串联状态。工作时,第 一四通阀70的高压节点71与第一四通阀70的换向节点74相通,第一四通阀70的低压节 点73与第一四通阀70的换向节点72相通;
[0075] 第二四通阀80的高压节点81与第二四通阀80的换向节点82相通,第二四通阀 80的低压节点83与第二四通阀80的换向节点84相通。
[0076] 第三节流机构9全开。
[0077] 第一节流机构5、第二节流机构6都正常工作,第一节流机构5用于制冷剂液体的 节流,控制通过第二换热器4的制冷剂流量;第二节流机构6用于控制双级压缩过程中的补 气量,从而对中间压力或高压压缩机1的排气温度进行控制;通常当第二节流机构6是与贮 液器7的液体空间相连时,是通过喷液的方式对双级压缩过程中的中间压力或高压压缩机 1的排气温度进行控制;当第二节流机构6是与贮液器7的气体空间相连时,是通过喷气的 方式对双级压缩过程中的中间压力或高压压缩机1的排气温度进行控制。
[0078] 在该运行工况下,图3所示热泵设备的工作流程如下所述:
[0079] 从第一换热器3出来的制冷剂液体,依次经过第四十一管道41、第三节流机构9, 进入贮液器7被分成两路;第一路制冷剂依次经过第四十二管道42、第一节流机构5、第 四十三管道43、第二换热器4、第四十四管道44、第二四通阀80的换向节点84、第二四通阀 80的低压节点83、制冷剂流向转换装置100的第二连接点102、第六i^一管道61,进入低压 压缩机2被第一级压缩后,再依次经过第一四通阀70的高压节点71、第一四通阀70的换向 节点74、第六十五管道65,进入第六十四管道64;第二路制冷剂依次经过第四十五管道45、 第二节流机构6、补气管46,也进入第六十四管道64 ;两路制冷剂在第六十四管道64混合 后,再进入高压压缩机1被第二级压缩,然后再依次经过第六十三管道63、制冷剂流向转换 装置100的第一连接点101、第二四通阀80的高压节点81、第二四通阀80的换向节点82, 又回到第一换热器3,至此完成一次带中间补气的双级压缩热泵循环。
[0080] (3)单级压缩运行工况(第一换热器3向用户供冷)
[0081] 在该工况下,高压压缩机1、低压压缩机2处于并联状态。工作时,有以下运行方 案。
[0082] 1)商压压缩机1、低压压缩机2同时工作
[0083] 此时,第一四通阀70的高压节点71与第一四通阀70的换向节点72相通,第一四 通阀70的低压节点73与第一四通阀70的换向节点74相通;
[0084] 第二四通阀80的高压节点81与第二四通阀80的换向节点84相通,第二四通阀 80的低压节点83与第二四通阀80的换向节点82相通。
[0085] 第一节流机构5全开,第二节流机构6关闭,第三节流机构9正常工作。
[0086] 在该运行方案下,图3所示热泵设备的工作流程如下所述:
[0087] 从第一换热器3出来的低温低压制冷剂气体依次经过第二四通阀80的换向节 点82、第二四通阀80的低压节点83、制冷剂流向转换装置100的第二连接点102,进入第 六十一管道61被分成两路;第一路依次经过第二单向阀22入口端、第二单向阀22出口端、 第六十四管道64,进入高压压缩机1被压缩后,再被排入第六十三管道63;第二路进入低压 压缩机2被压缩后,再依次经过第一四通阀70的高压节点71、第一四通阀70的换向节点 72、第一单向阀21入口端、第一单向阀21出口端、第六十二管道62,也被排入第六十三管 道63 ;两路气体在第六十三管道63混合后,再依次经过制冷剂流向转换装置100的第一连 接点101、第二四通阀80的高压节点81、第二四通阀80的换向节点84、第四十四管道44、 第二换热器4、第四十三管道43、第一节流机构5、第四十二管道42、贮液器7、第三节流机 构9、第四十一管道41,又回到第一换热器3,至此完成一次两台压缩机同时运行的单级压 缩的制冷循环。
[0088] 2)高压压缩机1工作,低压压缩机2不工作
[0089] 此时,第一四通阀70的高压节点71与第一四通阀70的换向节点74相通,第一四 通阀70的低压节点73与第一四通阀70的换向节点72相通;
[0090] 第二四通阀80的高压节点81与第二四通阀80的换向节点84相通,第二四通阀 80的低压节点83与第二四通阀80的换向节点82相通。
[0091] 第一节流机构5全开,第二节流机构6关闭,第三节流机构9正常工作。
[0092] 在该运行方案下,图3所示热泵设备的工作流程如下所述:
[0093] 从第一换热器3出来的低温低压制冷剂气体依次经过第二四通阀80的换向节点 82、第二四通阀80的低压节点83、制冷剂流向转换装置100的第二连接点102、第六i^一管 道61、第二单向阀22入口端、第二单向阀22出口端、第六十四管道64,进入高压压缩机1被 压缩后,再依次经过第六十三管道63、制冷剂流向转换装置100的第一连接点101、第二四 通阀80的高压节点81、第二四通阀80的换向节点84、第四十四管道44、第二换热器4、第 四十三管道43、第一节流机构5、第四十二管道42、贮液器7、第三节流机构9、第四十一管道 41,又回到第一换热器3,至此完成一次高压压缩机1单独运行的单级压缩的制冷循环。
[0094] 在该方案下工作时,低压压缩机2的出口端和入口端的制冷剂压力保持一致,都 处于高压压缩机1的吸气压力下。
[0095] 实施例4
[0096] 如图4所示,它与实施例3图3所示热泵设备的区别是:在本实施例图4所示的热 泵设备中,增加了一个第三单向阀23 ;第三单向阀23在系统中的连接方式是:第三单向阀 23的入口端与高压压缩机1的出口端相连,第三单向阀23的出口端与第六十三管道63和 第六十二管道62相连。
[0097] 工作过程中,本实施例图4所示的热泵设备除了可以实现本发明实施例3图3所 示热泵设备的所有运行工况,以及所有运行工况下的所有运行方案以外,对于单级压缩运 行工况还可以实现以下运行方案,即:高压压缩机1不工作,低压压缩机2工作的运行方案。
[0098] (1)高压压缩机1不工作,低压压缩机2工作的单级压缩供热运行方案
[0099] 在此运行方案下,第一四通阀70的高压节点71与第一四通阀70的换向节点72 相通,第一四通阀70的低压节点73与第一四通阀70的换向节点74相通;
[0100] 第二四通阀80的高压节点81与第二四通阀80的换向节点82相通,第二四通阀 80的低压节点83与第二四通阀80的换向节点84相通。
[0101] 第一节流机构5正常工作,第二节流机构6关闭,第三节流机构9全开。
[0102] 在该运行方案下,图4所示热泵设备的工作流程如下所述:
[0103] 从第二换热器4出来的低温低压制冷剂气体依次经过第四十四管道44、第二四通 阀80的换向节点84、第二四通阀80的低压节点83、制冷剂流向转换装置100的第二连接点 102、第六十一管道61,进入低压压缩机2被压缩后,再依次经过第一四通阀70的高压节点 71、第一四通阀70的换向节点72、第一单向阀21入口端、第一单向阀21出口端、第六十二 管道62、第六十三管道63、制冷剂流向转换装置100的第一连接点101、第二四通阀80的 高压节点81、第二四通阀80的换向节点82、第一换热器3、第四十一管道41、第三节流机构 9、贮液器7、第四十二管道42、第一节流机构5、第四十三管道43,又回到第二换热器4,至此 完成一次低压压缩机2单独运行的单级压缩的热泵循环。
[0104] (2)高压压缩机1不工作,低压压缩机2工作的单级压缩制冷运行方案
[0105] 在此运行方案下,第一四通阀70的高压节点71与第一四通阀70的换向节点72 相通,第一四通阀70的低压节点73与第一四通阀70的换向节点74相通;
[0106] 第二四通阀80的高压节点81与第二四通阀80的换向节点84相通,第二四通阀 80的低压节点83与第二四通阀80的换向节点82相通。
[0107] 第一节流机构5全开,第二节流机构6关闭,第三节流机构9正常工作。
[0108] 在该运行方案下,图4所示热泵设备的工作流程如下所述:
[0109] 从第一换热器3出来的低温低压制冷剂气体依次经过第二四通阀80的换向节点 82、第二四通阀80的低压节点83、制冷剂流向转换装置100的第二连接点102、第六i^一 管道61,进入低压压缩机2被压缩后,再依次经过第一四通阀70的高压节点71、第一四通 阀70的换向节点72、第一单向阀21入口端、第一单向阀21出口端、第六十二管道62、第 六十三管道63、制冷剂流向转换装置100的第一连接点101、第二四通阀80的高压节点81、 第二四通阀80的换向节点84、第四十四管道44、第二换热器4、第四十三管道43、第一节流 机构5、第四十二管道42、贮液器7、第三节流机构9、第四十一管道41,又回到第一换热器 3,至此完成一次低压压缩机2单独运行的单级压缩的制冷循环。
[0110] 实施例5
[0111] 对于本发明实施例1图1所示的热泵设备,通过在其系统中增加一个中间冷却器, 可以对其作进一步的改进。该中间冷却器有四个连接口,分别是:排气入口、排气出口、冷却 制冷剂入口、冷却制冷剂出口。
[0112] 该中间冷却器在图1所示的热泵设备中的连接方式是:中间冷却器的排气入口 与第六十五管道65相连;中间冷却器的排气出口与第六十四管道64相连;中间冷却器的 冷却制冷剂入口依次通过补气管46、第二节流机构6、第四十五管道45与贮液器7相连; 中间冷却器的冷却制冷剂出口可以与第六十五管道65、中间冷却器排气出口处管道,或第 六十四管道64之中的任意一处管道相连。
[0113] 中间冷却器在图1所示的热泵设备中的作用是:当图1所示的热泵设备在双级压 缩运行工况下工作,第一换热器3作为冷凝器,用于生产热水时,利用中间冷却器对低压压 缩机2的排气进行冷却。
[0114] 其工作流程分别如下所述。
[0115] 方案一:当中间冷却器的冷却制冷剂出口与第六十五管道65相连时
[0116] 其工作流程是:来自贮液器7的一部份制冷剂液体经第二节流机构6节流后,变成 中温中压的制冷剂气液两相混合物,依次通过补气管46、中间冷却器的冷却制冷剂入口,进 入中间冷却器中,与来自中间冷却器排气入口的制冷剂气体进行间接热交换;在中间冷却 器中,中温中压的制冷剂气液两相混合物吸热后,变成中温中压的制冷剂气体,再经过中间 冷却器的冷却制冷剂出口进入第六十五管道65中;与来自低压压缩机2出口端,并依次经 过第一四通阀70的高压节点71、第一四通阀70的换向节点74,也进入第六十五管道65中 的低压压缩机2排气混合后,进入中间冷却器的排气入口;来自中间冷却器排气入口的制 冷剂气体在中间冷却器中,被中温中压的制冷剂气液两相混合物冷却后,再经过中间冷却 器排气出口进入第六十四管道64中。
[0117] 方案二:当中间冷却器的冷却制冷剂出口与中间冷却器排气出口处的管道相连时
[0118] 其工作流程是:来自贮液器7的一部份制冷剂液体经第二节流机构6节流后,变成 中温中压的制冷剂气液两相混合物,依次通过补气管46、中间冷却器的冷却制冷剂入口,进 入中间冷却器中,与来自低压压缩机2出口端,并依次经过第一四通阀70的高压节点71、第 一四通阀70的换向节点74、第六十五管道65,通过中间冷却器排气入口进入中间冷却器中 的低压压缩机2的排气进行间接热交换;在中间冷却器中,中温中压的制冷剂气液两相混 合物吸热后,变成中温中压的制冷剂气体,经过中间冷却器的冷却制冷剂出口进入中间冷 却器的排气出口处管道中;而来自低压压缩机2的排气在中间冷却器中被冷却器后,通过 中间冷却器的排气出口也进入中间冷却器的排气出口处管道中;与来自中间冷却器冷却制 冷剂出口的中温中压制冷剂气体混合后,进入第六十四管道64中。
[0119] 方案三:当中间冷却器的冷却制冷剂出口与第六十四管道64相连时
[0120] 其工作流程是:来自贮液器7的一部份制冷剂液体经第二节流机构6节流后,变成 中温中压的制冷剂气液两相混合物,依次通过补气管46、中间冷却器的冷却制冷剂入口,进 入中间冷却器中,与来自低压压缩机2出口端,并依次经过第一四通阀70的高压节点71、 第一四通阀70的换向节点74、第六十五管道65,通过中间冷却器的排气入口进入中间冷 却器中的低压压缩机2排气进行间接热交换;在中间冷却器中,中温中压的制冷剂气液两 相混合物吸热后,变成中温中压的制冷剂气体,经过中间冷却器的冷却制冷剂出口进入第 六十四管道64中;而来自低压压缩机2的排气在中间冷却器中被冷却器后,依次通过中间 冷却器的排气出口、中间冷却器的排气出口处管道,也进入第六十四管道64中;与来自中 间冷却器冷却制冷剂出口的中温中压制冷剂气体混合后,再进入高压压缩机1被第二级压 缩。
[0121] 实施例5以上所述方案及工作原理也适用于实施例2、3、4。
[0122] 本发明上述所有实施例的方案中,所述的低压压缩机2、高压压缩机1中的任意一 个或全部、可以采用以下压缩机中的任意一种:涡旋压缩机、螺杆压缩机、滚动转子式压缩 机、滑片式压缩机、旋叶式压缩机、离心压缩机、数码涡旋压缩机;低压压缩机1、高压压缩 机2中的任意一个或全部、也可以是变容量压缩机(例如:变频压缩机),或定速压缩机。
[0123] 本发明上述所有实施例的方案中,所述的第一单向阀21、第二单向阀22、第三单 向阀23中的任意一个或全部都可以被具有关断功能的控制阀门所替代,如电磁阀等。
[0124] 本发明上述所有实施例的方案中,所述的第一四通阀70、第二四通80通常可采用 三花牌空调四通阀,兰柯空调四通阀,艾默生空调四通阀,开利空调四通阀,华鹭空调四通 阀,盾安空调四通阀中的任意一种。
【权利要求】
1. 一种制冷剂流向转换装置,包括高压压缩机(1)、低压压缩机(2)、第一单向阀(21)、 第二单向阀(22);其特征是:该制冷剂流向转换装置还包括第一四通阀(70); 所述第一四通阀(70)的低压节点(73)通过第六十一管道(61)与制冷剂流向转换装 置的第二连接点(102)相连,所述第一四通阀(70)的高压节点(71)依次经过所述低压压 缩机(2)的出口端、低压压缩机(2)的入口端与第六十一管道¢1)相连,制冷剂流向转换 装置的第一连接点(101)依次经过第六十三管道(63)、所述高压压缩机(1)的出口端、高压 压缩机(1)的入口端、第六十四管道(64)、所述第二单向阀(22)出口端、第二单向阀(22) 入口端与第六十一管道(61)相连,所述第一四通阀(70)二个换向节点中的任意一个节点 (72)依次经过所述第一单向阀(21)入口端、第一单向阀(21)出口端、第六十二管道(62) 与第六十三管道(63)相连,所述第一四通阀(70)的另一个换向节点(74)通过第六十五 管道(65)与所述高压压缩机(1)的入口端和第二单向阀(22)出口端之间的第六十四管道 (64)相连。
2. 根据权利要求1所述的制冷剂流向转换装置,其特征在于第三单向阀(23)的入口端 与所述高压压缩机(1)的出口端相连,所述第三单向阀(23)的出口端与第六十三管道(63) 和第六十二管道(62)相连。
3. 根据权利要求1所述的制冷剂流向转换装置,其特征在于第二四通阀(80)的高压节 点(81)与所述制冷剂流向转换装置的第一连接点(101)相连,所述第二四通阀(80)的低 压节点(83)与所述制冷剂流向转换装置的第二连接点(102)相连。
4. 根据权利要求3所述的制冷剂流向转换装置,其特征在于第三单向阀(23)的入口端 与所述高压压缩机(1)的出口端相连,所述第三单向阀(23)的出口端与第六十三管道(63) 和第六十二管道(62)相连。
5. 根据权利要求1至4中任一权利要求所述的制冷剂流向转换装置,其特征在于补 气管(46) -端与第二节流机构(6)相连,补气管(46)另一端与第六十四管道¢4)或第 六十五管道(65)相连。
6. 根据权利要求1至4中任一权利要求所述的制冷剂流向转换装置,其特征在于中间 冷却器的排气入口与第六十五管道(65)相连;所述中间冷却器的排气出口与第六十四管 道(64)相连;所述中间冷却器的冷却制冷剂入口通过补气管(46)与第二节流机构(6)相 连;所述中间冷却器的冷却制冷剂出口与第六十五管道(65)相连。
7. 根据权利要求1至4中任一权利要求所述的制冷剂流向转换装置,其特征在于中间 冷却器的排气入口与第六十五管道(65)相连;所述中间冷却器的排气出口与第六十四管 道(64)相连;所述中间冷却器的冷却制冷剂入口通过补气管(46)与第二节流机构(6)相 连;所述中间冷却器的冷却制冷剂出口与所述中间冷却器的排气出口处管道相连。
8. 根据权利要求1至4中任一权利要求所述的制冷剂流向转换装置,其特征在于中间 冷却器的排气入口与第六十五管道(65)相连;所述中间冷却器的排气出口与第六十四管 道(64)相连;所述中间冷却器的冷却制冷剂入口通过补气管(46)与第二节流机构(6)相 连;所述中间冷却器的冷却制冷剂出口与第六十四管道(64)相连。
【文档编号】F25B41/04GK104121729SQ201410382465
【公开日】2014年10月29日 申请日期:2014年7月30日 优先权日:2014年7月30日
【发明者】刘雄, 杨燕芳 申请人:刘雄
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1