具有声控除霜模式的变速压缩机控制的制作方法

文档序号:12511186阅读:202来源:国知局
具有声控除霜模式的变速压缩机控制的制作方法与工艺

本申请要求于2015年8月27日提交的美国实用新型申请第14/837991号的优先权,并且要求于2014年8月29日提交的美国临时申请第62/044,023号的权益。上面引用的申请的全部公开内容通过引入并入本文中。

技术领域

本公开内容涉及加热通风和空气/调节(HVAC),并且更具体地涉及变速压缩机的控制。



背景技术:

这里提供的背景描述是出于一般性地呈现本公开内容的上下文的目的。到该背景技术部分中描述的程度的目前指定的发明人的工作以及提交时可以不另外作为现有技术限定的描述的方面,既不明确地也不隐含地被承认为针对本公开内容的现有技术。

在图1中,示出了制冷系统的功能框图。制冷系统包括压缩机102、冷凝器104、膨胀阀106和蒸发器108。压缩机102接收呈蒸汽形式的制冷剂并且压缩制冷剂,以蒸汽形式向冷凝器104提供加压制冷剂。压缩机102包括电动马达,并且可以是涡旋压缩机或往复式压缩机。

加压制冷剂的全部或一部分在冷凝器104内转化成液体形式。冷凝器104将热量从制冷剂传递出去,从而冷却制冷剂。当制冷剂蒸汽被冷却到小于饱和温度的温度时,制冷剂转变成液体(或液化)制冷剂。冷凝器104可以包括:电风扇,其增加离开制冷剂的热传递速率。

冷凝器104经由膨胀阀106将制冷剂提供给蒸发器108。膨胀阀106控制制冷剂被供应到蒸发器108的流量。膨胀阀106可以包括恒温膨胀阀或者可以由例如系统控制器130电子地控制。由膨胀阀106引起的压降可以使液化制冷剂的一部分转变回蒸汽形式。以这种方式,蒸发器108可以接收制冷剂蒸汽和液化制冷剂的混合物。

制冷剂在蒸发器108中吸收热量。液体制冷剂在被加热到大于制冷剂的饱和温度的温度时转变为蒸汽形式。蒸发器108可以包括增加到制冷剂的热传递速率的电风扇。从流过蒸发器108的空气中除去热量,并且所得到的冷却空气通过建筑物循环。

公用设施120为制冷系统提供电力。仅作为示例,公用设施120可以以大约230伏特(V)均方根(RMS)或以另一合适的电压提供单相交流(AC)电力。在各种实现中,公用设施120可以在例如50Hz或60Hz的线路频率下提供大约400伏特RMS或480伏特RMS的三相功率。公用设施120可以经由AC线路向系统控制器130提供AC电力。AC电力也可以经由AC线路被提供给驱动控制器132。在其他实现中,公用设施120可以提供直流(DC)电力。

系统控制器130控制制冷系统。仅作为示例,系统控制器130可以基于由各种传感器(未示出)测量的用户输入和/或参数来控制制冷系统。传感器可以包括压力传感器、温度传感器、电流传感器、电压传感器等。传感器还可以包括通过串行数据总线或其他合适的数据总线来自驱动控制器132的反馈信息,如马达电流或扭矩。

用户接口134向系统控制器130提供用户输入。用户接口134可以另外地或替代地向驱动控制器132提供用户输入。用户输入例如可以包括期望的温度、关于风扇(例如,蒸发器风扇)的操作的请求和/或其他合适的输入。系统控制器130可以控制冷凝器104的风扇、蒸发器108的风扇和/或膨胀阀106的操作。在各种实现中,驱动控制器132可以替代地控制冷凝器风扇。

驱动控制器132可以基于来自系统控制器130的命令来控制压缩机102。仅作为示例,系统控制器130可以指示驱动控制器132以一定速度操作压缩机马达。

在图2中,示出了驱动控制器132的简化示意图。驱动控制器132包括控制驱动电路204的控制逻辑200。驱动电路204在压缩机102的马达208的相上产生电势和电流。马达208包括第一绕组212-1、第二绕组212-2和第三绕组212-3,分别被称为绕组A、绕组B和绕组C。虽然以Y配置示出,但是马达208也可以使用三角形配置来布线。

驱动电路204包括:输入桥220,其将输入的AC电压转换成在DC总线224上输出的DC电压。DC总线224为逆变器级228供电,该逆变器级228切换DC总线以向马达208的绕组212施加电势。该示例中的输入桥220包括整流二极管232-1、232-2和232-3以及整流二极管236-1、236-2和236-3。在该示例中,输入的AC电力是三相的,因此使用3对整流二极管。在其他实现中,输入桥220可以包括受控整流器。

DC总线224可以包括一个或更多个电容器240以去除电压纹波。虽然在该示例中未示出,但是输入桥220还可以包括主动地和/或被动地改善输入桥220的功率因数的功率因数校正部件。

可以存在用于浪涌限制和电感的附加部件244。浪涌限制可以包括可以在正常操作期间被绕过的电阻器。在起动期间,电阻器不被绕过,因此当电容器240首次被充电时,减少从AC线路带走的电流量。串联放置的电感器还可以限制浪涌电流并且可以被配置成不被绕过,以便电感器可以在正常操作期间限制故障电流。另外,电感器可以使DC总线224的电压平滑。另外或可替选地,浪涌控制可以在正线路224中实现或者可以在三相AC线路与输入桥220之间实现。

逆变器级228包括开关250-1、250-2、250-3、254-1、254-2和254-3。存在三对开关250和254,其中每对开关与马达绕组212中之一对应。每对开关250和254的连接点处的节点附接到马达绕组212中的对应的一个。开关250和254可以包括晶体管,并且在一些实现中可以是绝缘栅双极结型晶体管(IGBT)。如图所示,开关250和254可以是N沟道,但是在其他实现中可以是P沟道或者N沟道与P沟道的组合。跨开关250和254中的每一个是反向并连的二极管。具体地,二极管258-1、258-2、258-3、262-1、262-2和262-3分别连接到开关250-1、250-2、250-3、254-1、254-2和254-3。在各种实现中,反向并联二极管可以包括在具有一个或更多个IGBT的单个封装内。

开关250和254的控制端子由控制逻辑200操纵。控制逻辑200与图1的系统控制器130连接。控制逻辑200还可以测量来自逆变器级228和/或马达208的电流和电压。例如,可以测量或计算来自马达的绕组212的反电动势(BEMF)。控制逻辑200可以使用脉冲宽度调制来控制开关250和254以将变化的电压施加到马达208的绕组212。开关250和254通常可以被相反地控制,即,当开关250-1被接通时,开关254-1将被关断,反之,当开关250-1被关断时,开关254-1将被接通。



技术实现要素:

一种用于压缩机的马达的驱动控制器包括:驱动电路,其向马达的绕组施加电压;速度控制模块,其控制驱动电路以使马达以请求速度旋转;速度确定模块,其生成请求速度;以及除霜模块,其响应于除霜命令而启用除霜模式。当除霜模式被启用时,除霜模块使速度确定模块:(i)将请求速度从速度需求斜降到除霜速度;以及(ii)将请求速度在除霜速度处保持预定时间段。

在其他特征中,在预定时间段期满时,除霜模块使速度确定模块将请求速度斜升到速度需求。在其他特征中,从系统控制器接收除霜命令。在其他特征中,系统控制器向驱动控制器提供速度需求。在其他特征中,当除霜模式被启用时,系统控制器致动与压缩机对应的换向阀。

在其他特征中,根据编程值来设置除霜速度。在其他特征中,编程值与被选择以在压缩机中产生低水平的可听噪声的速度对应。在其他特征中,除霜速度被设置为(i)编程值和(ii)下阈值中的较大者。在其他特征中,下阈值为1500rpm,预定时间段为60秒,除霜模块使速度确定模块以500rpm/秒的斜坡速率将请求速度从速度需求斜降到除霜速度,并且除霜模块使速度确定模块以500rpm/秒的斜坡速率将请求速度斜升到速度需求。

在其他特征中,驱动控制器包括存储用于压缩机的操作包络的包络确定模块。在其他特征中,操作包络指定用于改变压缩机的操作条件的可接受速度的范围。在其他特征中,包络确定模块确定与压缩机的当前操作条件对应的最小速度。在其他特征中,除霜速度被设置为(i)编程值和(ii)最小速度中的较大者。在其他特征中,操作条件包括(i)与压缩机流体连通的冷凝器处的制冷剂压力和(ii)与压缩机流体连通的蒸发器处的制冷剂压力。

一种操作用于压缩机的马达的驱动控制器的方法包括:向马达的绕组施加电压;控制电压以使马达以请求速度旋转;响应于除霜命令选择性地启用除霜模式;以及在除霜模式被启用时,(i)将请求速度从速度需求斜降到除霜速度并且(ii)将请求速度在除霜速度处保持预定时间段。

在其他特征中,该方法还包括:在预定时间段期满时,将请求速度斜升到速度需求。在其他特征中,从系统控制器接收除霜命令。在其他特征中,该方法还包括从系统控制器接收速度需求。在其他特征中,当除霜模式被启用时,系统控制器致动与压缩机对应的换向阀。

在其他特征中,该方法还包括根据编程值设置除霜速度。在其他特征中,编程值与被选择以在压缩机中产生低水平的可听噪声的速度对应。在其他特征中,设置除霜速度包括将除霜速度设置为(i)编程值和(ii)下阈值中的较大者。在其他特征中,下阈值为1500rpm,预定时间段为60秒,以500rpm/秒的斜坡速率执行请求速度从速度需求到除霜速度的斜降,并且以500rpm/秒的斜坡速率执行请求速度到速度需求的斜升。

在其他特征中,该方法还包括存储用于压缩机的操作包络。在其他特征中,操作范围指定用于改变压缩机的操作条件的可接受速度的范围。在其他特征中,该方法还包括根据压缩机的当前操作条件从所存储的操作包络确定最小速度。在其他特征中,设置除霜速度包括将除霜速度设置为(i)编程值和(ii)最小速度中的较大者。在其他特征中,操作条件包括(i)与压缩机流体连通的冷凝器处的制冷剂压力和(ii)与压缩机流体连通的蒸发器处的制冷剂压力。

一种用于压缩机的马达的驱动控制器包括:驱动电路,其向马达的绕组施加电压;速度控制模块,其控制驱动电路以使马达以请求速度旋转;速度确定模块,其生成请求速度;以及锁定转子保护模块,其识别锁定转子状态,并且响应于识别锁定转子状态来指示速度确定模块对马达断电。锁定转子保护模块在从马达起动时开始的预定时间间隔期满时获取马达的估计速度。锁定转子保护模块响应于估计速度低于阈值速度来识别锁定转子状态。阈值速度基于请求速度。

在其他特征中,阈值速度是请求速度的预定百分比。在其他特征中,预定百分比是20%。在其他特征中,阈值速度和预定时间间隔被编程,以便马达起动时压缩机中的液体制冷剂的存在不被识别为锁定转子状态。在其他特征中,锁定转子保护模块响应于识别锁定转子状态来启动压缩机的加热。在其他特征中,锁定转子保护模块响应于识别锁定转子状态来使计数器递增。

在其他特征中,锁定转子保护模块允许马达在识别锁定转子状态后的预定延迟之后自动重新启动。在其他特征中,锁定转子保护模块防止马达响应于计数器达到预定阈值而自动重新启动。在其他特征中,锁定转子保护模块响应于估计速度大于阈值速度来清除计数器。

在其他特征中,驱动控制器还包括:起动模块,其通过以下方式来启动马达:(i)使速度确定模块将请求速度从零斜升到预定的停留速度;以及(ii)使速度确定模块将请求速度在预定停留速度处保持预定停留时间段。在其他特征中,锁定转子保护模块在(i)预定时间间隔期满或(ii)预定停留时间段开始中的较早者时获取马达的估计速度。在其他特征中,预定时间间隔为12秒,预定停留速度为3600rpm,预定停留时间段为120秒,速度确定模块以1000rpm/秒将请求速度从零斜升到预定停留速度,并且阈值速度是请求速度的20%。

一种操作用于压缩机的马达的驱动控制器的方法包括:向马达的绕组施加电压;控制电压以使马达以请求速度旋转;在从马达起动时开始的预定时间间隔期满时获取马达的估计速度;响应于估计速度低于阈值速度来选择性地识别锁定转子状态;以及响应于识别锁定转子状态使马达断电。阈值速度基于请求速度。

在其他特征中,阈值速度是请求速度的预定百分比。在其他特征中,预定百分比是20%。在其他特征中,阈值速度和预定时间间隔被编程,以便马达起动时压缩机中的液体制冷剂的存在不被识别为锁定转子状态。在其他特征中,该方法还包括响应于识别锁定转子状态来开始加热压缩机。在其他特征中,该方法还包括响应于识别锁定转子状态而使计数器递增。在其他特征中,该方法还包括在识别锁定转子状态后的预定延迟之后自动重新启动马达。在其他特征中,该方法还包括响应于计数器达到预定阈值来阻止马达的自动重新启动。

在其他特征中,该方法还包括响应于估计速度大于阈值速度来清除计数器。在其他特征中,该方法还包括通过以下方式来启动马达:(i)将请求速度从零斜升到预定停留速度;以及(ii)将请求速度在预定停留速度处保持预定停留时间段。在其他特征中,获取包括在(i)预定时间间隔期满或(ii)预定停留时间段开始中较早者时获取马达的估计速度。在其他特征中,预定时间间隔为12秒,预定停留速度为3600rpm,预定停留时间段为120秒,以1000rpm/秒执行请求速度从零到预定停留速度的斜升,并且阈值速度是请求速度的20%。

一种用于压缩机的马达的驱动控制器包括:驱动电路,其向马达的绕组施加电压;速度控制模块,其控制驱动电路以使马达以请求速度旋转;速度确定模块,其基于来自系统控制器的速度需求来生成请求速度;以及丢失转子控制模块,其识别丢失转子状态,并且响应于识别丢失转子状态来指示速度确定模块将请求速度设置为低于速度需求的超驰速度。丢失转子控制模块响应于速度误差与自适应阈值的比较来识别丢失转子状态。速度误差基于马达的请求速度与估计速度之间的差。在第一系统状态期间,自适应阈值等于第一阈值。在第二系统状态期间,自适应阈值等于第二阈值。

在其他特征中,第一系统状态与请求速度的动态时段对应。在其他特征中,第二系统状态与请求速度的稳定时段对应。在其他特征中,第一系统状态和第二系统状态是相互排斥的。在其他特征中,第一阈值大于第二阈值。在其他特征中,丢失转子控制模块响应于在先前预定时间段内请求速度的变化小于预定量来识别第一系统状态。在其他特征中,预定量基于请求速度的百分比,第一阈值为百分之三十,并且第二阈值为百分之二十。

在其他特征中,丢失转子控制模块响应于速度误差低于自适应阈值来重置检测器定时器。在其他特征中,丢失转子控制模块响应于检测器定时器超过预定阈值时段来识别丢失转子状态。在其他特征中,丢失转子控制模块响应于丢失转子状态的每个附加识别将超驰速度减小预定增量。在其他特征中,丢失转子控制模块响应于超驰速度降低到最小操作速度以下而禁用马达。

在其他特征中,驱动控制器还包括:包络确定模块,其基于(i)与压缩机流体连通的冷凝器处的制冷剂压力和(ii)与压缩机流体连通的蒸发器处的制冷剂压力来确定最小操作速度。在其他特征中,当速度确定模块将请求速度设置为超驰速度时,丢失转子控制模块针对每个预定停留时间段将超驰速度增加预定增量,在该预定停留时间段期间没有识别丢失转子状态。在其他特征中,响应于超驰速度达到速度需求,丢失转子控制模块指示速度确定模块基于速度需求恢复请求速度的生成。

一种操作用于压缩机的马达的驱动控制器的方法包括:向马达的绕组施加电压;控制电压以使马达以请求速度旋转;基于来自系统控制器的速度需求来生成请求速度;响应于速度误差与自适应阈值的比较来选择性地识别丢失转子状态;以及响应于识别丢失转子状态将请求速度设置为低于速度需求的超驰速度。速度误差基于马达的请求速度与估计速度之间的差。在第一系统状态期间,自适应阈值等于第一阈值。在第二系统状态期间,自适应阈值等于第二阈值。

在其他特征中,第一系统状态与请求速度的动态时段对应。在其他特征中,第二系统状态与请求速度的稳定时段对应。在其他特征中,第一系统状态和第二系统状态是相互排斥的。在其他特征中,第一阈值大于第二阈值。在其他特征中,该方法还包括响应于在先前预定时间段内请求速度的变化小于预定量来识别第一系统状态。

在其他特征中,预定量基于请求速度的百分比,第一阈值为百分之三十,并且第二阈值为百分之二十。在其他特征中,该方法还包括响应于速度误差低于自适应阈值来重置检测器定时器。在其他特征中,响应于检测器定时器超过预定阈值时段来识别丢失转子状态。在其他特征中,该方法还包括响应于丢失转子状态的每个附加识别将超驰速度减小预定增量。

在其他特征中,该方法还包括响应于超驰速度降低到最小操作速度以下而禁用马达。在其他特征中,该方法还包括基于(i)与压缩机流体连通的冷凝器处的制冷剂压力和(ii)与压缩机流体连通的蒸发器处的制冷剂压力来确定最小操作速度。在其他特征中,该方法还包括:当请求速度被设置为超驰速度时,针对每个预定停留时间段将超驰速度增加预定增量,在该预定停留时间段期间没有识别丢失转子状态。在其他特征中,该方法还包括响应于超驰速度达到速度需求来基于速度需求恢复请求速度的生成。

根据详细描述、权利要求和附图,本公开内容的另外适用领域将变得显见。详细描述和具体示例仅旨在说明的目的,并且不旨在限制本公开内容的范围。

附图说明

根据详细描述和附图将更充分地理解本公开内容。

图1是根据现有技术的制冷系统的框图。

图2是根据现有技术的驱动控制器的简化示意图。

图3A是根据本公开内容的原理的示例加热、通风、空气调节或制冷(HVAC/R)系统的框图。

图3B是图3A的热泵实现的框图。

图4是用于驱动控制器的操作状态的简化示例集的状态机图。

图5是驱动控制器的高级功能框图。

图6是控制系统的示例实现的功能框图。

图7是用于压缩机的示例性操作包络。

图8是示出了软启动压缩机马达的示例操作的流程图。

图9是示出了锁定转子检测的示例操作的流程图。

图10是示出了丢失转子检测的示例操作的流程图。

图11是示出了除霜模式的示例操作的流程图。

图12是示出了受控关闭的示例操作的流程图。

在附图中,附图标记可以重新使用以识别相似和/或相同的元件。

具体实施方式

图3A示出了由系统控制器300控制的加热、通风、空气调节或制冷(HVAC/R)系统。HVAC/R系统可以包括具有压缩机304的制冷回路。在各种实现中,曲轴箱加热器308与压缩机304集成或者被集成在压缩机304内以防止制冷剂迁移,防止制冷剂冷凝,并且保持压缩机304中的润滑剂的润滑特性。曲轴箱加热器308可以由系统控制器300或驱动控制器312控制。另外或可替选地,可以通过使电流通过压缩机304的定子来执行加热。

压缩机304由驱动控制器312根据来自系统控制器300的命令来操作。系统控制器300可以被称为原始设备制造商(OEM)控制器,而驱动控制器312可以由OEM的供应商生产。压缩机304和驱动控制器312可以由OEM购买并且与系统控制器300集成。

如上所述,压缩机304压缩制冷剂并且将压缩的制冷剂输送到冷凝器314。冷凝器风扇318将空气吹过冷凝器314以便于制冷剂与环境空气之间的热传递。来自冷凝器314的制冷剂通过膨胀阀322被输送到蒸发器326。蒸发器风扇330将空气吹过蒸发器326以便于制冷剂与周围空气之间的热传递。蒸发器风扇330还可以用于使经调节的空气循环通过由制冷回路调节的空间。

系统控制器300可以控制膨胀阀、蒸发器风扇330和冷凝器风扇318的操作。蒸发器风扇330也可以被称为循环鼓风机。在各种实现中,可以测量制冷剂和/或空气的温度和压力。在所示的示例中,冷凝器压力传感器334测量冷凝器314处的制冷剂压力,并且蒸发器压力传感器338测量蒸发器326处的制冷剂压力。这些压力可以在蒸发器326与冷凝器314的中间位置处、出口处、和/或入口处测量。

虽然示出为被提供给系统控制器300,但是这些压力可以替代地由驱动控制器312来测量。驱动控制器312然后可以使用双向通信接口向系统控制器300提供压力数据,该双向通信接口可以包括数字或模拟接口。在图3A中,系统控制器300接收冷凝器和蒸发器压力并且将压力数据提供给驱动控制器312。

压缩机304具有接收制冷剂的吸入口和排出更高压力的制冷剂的排出口。排出口处的制冷剂的温度由压缩机排出温度传感器342测量并且被提供给驱动控制器312。然后,该压缩机排出温度可以提供给系统控制器300。可替换地,压缩机排出温度可以通过系统控制器来测量并且被提供给驱动控制器312。

系统控制器300和驱动控制器312可以单独地或一起监视压缩机排出温度,以确保压缩机排出温度不超过阈值,如275华氏度。如果超过该阈值,则可以使压缩机304断电或者可以采取其他补救措施。

系统控制器300可以控制另外的部件,如另外的制冷剂回路。因此,系统控制器300可以与操作第二压缩机364的第二驱动控制器360连接。在各种实现中,第二压缩机364可以与第一制冷剂回路中的压缩机304一起操作。例如,压缩机304和第二压缩机364可以并联或串联(其可以被称为串联配置)放置。

在各种实现中,安装了系统控制器300的建筑物的用户可以如经由恒温器或图形用户界面与系统控制器300交互,以使系统控制器编程有温度设定点、操作时间等。

驱动控制器312还可以提供用户接口,该用户接口例如可以使得安装承包商能够根据系统控制器300的参数将驱动控制器312配置为与压缩机304一起工作。仅作为示例,下面描述的阈值中的一些或全部可以由安装承包商指定。这些阈值中的一些或全部可以具有如果安装承包商不覆写它们则将被使用的默认值。另外,一些或所有值可以由系统控制器300编程到驱动器控制器312中,或者可以根据需要从系统控制器300提供。

在图3B中,示出了与图3A的系统类似的系统。在热泵配置中,调节空间可以被加热以及被冷却。换向阀380(有时称为四通阀)控制压缩机304的排出口是连接到冷凝器314还是连接到蒸发器326。类似地,换向阀380将压缩机304的吸入口连接到与冷凝器314和蒸发器326的对面。

当换向阀380根据图3A和图1中所描述的使制冷剂的流动方向反向时,切换冷凝器314和蒸发器326的作用。换句话说,当制冷剂的流动反向时,标记为冷凝器314的热交换器用作蒸发器,而标记为蒸发器326的热交换器用作冷凝器。在各种实现中,另外的膨胀阀、旁通阀、过滤干燥器等可以用于热泵系统中。

当热泵系统在加热模式下操作时,冷凝器314试图从环境空气收集热量以加热制冷剂。在低温下,冷凝器314的外部上的凝结物可以开始冻结并且可以防止与制冷剂的充分的热传递。因此,系统控制器300可以启动除霜循环,其中,系统控制器300致动换向阀380以引导制冷剂在正常空气调节方向上的流动。这将在蒸发器326处收集热量并且在冷凝器314处释放热量以熔化冷冻的冷凝物。

系统控制器300还经由驱动控制器312控制压缩机304的起动、关闭和正常操作。在正常操作期间,系统控制器300可以如通过使用模拟信号(如电压电平)或数字命令来指示驱动控制器312应该使压缩机304以什么速度运行。然后,驱动控制器312操作压缩机304以实现来自系统控制器300的速度需求。

系统控制器300可以控制换向阀380的操作,并且还可以控制冷凝器风扇318和蒸发器风扇330的操作。冷凝器风扇318和蒸发器风扇330可以是单速风扇,或者可以在各种实现中使得能够选择固定数目的不同离散速度。不同速度的数目例如可以是两个或三个。

在图4中,状态机图示出了驱动控制器312操作并示出用于从一个状态转换到另一个状态的触发条件的示例状态的简化集。驱动控制器312起动进入空闲状态400。

取决于环境温度和自压缩机的上次操作以来的时间,可以请求加热以保持压缩机温暖。这例如可以防止压缩机中的润滑剂变得太冷(其可能不利地影响润滑特性),并且防止制冷剂迁移。当请求加热时,驱动控制器312转换到状态404,该状态404是同时加热(通常是底部槽的加热)的空闲状态。例如,可以用曲轴箱加热器或者通过使电流通过压缩机的定子来执行加热。

在空闲状态400中,压缩机马达不通电,并且没有电力提供给压缩马达。在状态404中,可以通过在不使马达旋转的情况下使电流通过马达来加热马达。当不再需要加热时,驱动控制器312转换回空闲状态400。在状态400或状态404中,当从系统控制器300接收到开始运行马达的命令时,驱动控制器312转变到状态408。

在状态408中,驱动控制器312测试输入电力的相,以例如确定相中之一是否丢失或者相的电压是否不平衡。在该测试成功结束时,驱动控制器312转变到状态412。在故障时,驱动控制器312转变到状态416。

状态416是跳闸状态,其中,停止对马达的通电。例如,尽管在图4中未示出,但是在经过预定量的时间之后,驱动控制器312可以在跳闸之后自动转换回状态400或状态404。

一些跳闸条件可以防止马达启动直到人工干预被执行为止,这被称为马达锁定。在这样的情况下,驱动控制器312保持在状态416下,直到人工干预例如从驱动控制器312移除电力被执行为止。在重新施加电力时,驱动控制器在空闲状态400下启动。

在状态412下,驱动控制器312执行布线反转测试。该测试确定AC线路是否已经准确地连接至驱动控制器312。例如,当没有以期望的顺序检测到AC线路的相上的峰值电压时,驱动控制器312可以检测到AC电力的相中的两个相已经反转。在其他实现方式中,可以通过将所测量的扭矩分布与期望的扭矩分布进行比较来检测倒相。当布线反转测试失败时,驱动控制器312转移至状态416。同时,在测试成功时,驱动控制器312转移至状态420。

在状态420下,驱动控制器312开始对马达的软启动。一旦马达已经达到全速,则驱动控制器312转移至状态424。如果在执行软启动的同时检测到锁定转子状态或者确定了短循环问题或者压缩机正在其操作包络之外操作,则驱动控制器312转移至跳闸状态416。短循环指的是压缩机304在太短的间隔内接通和关断太多次。

在状态424下,驱动控制器312基于由系统控制器300提供的速度来在正常运行模式下操作马达。响应于检测到压缩机在其操作包络之外操作,或者如果转子的准确估计丢失,则驱动控制器312转移至跳闸状态416。

响应于来自系统控制器300的除霜命令,驱动控制器312转移至状态428。在状态428下,驱动控制器312基于预定值和/或由系统控制器300指定的值来执行除霜操作。如果确定压缩机304在其操作包络之外操作,则驱动控制器312转移至跳闸状态416。同时,如果除霜循环完成,则驱动控制器312转移回至正常运行状态424。在各种实现方式中,响应于来自系统控制器300的提前终止除霜请求,驱动控制器312可以从除霜状态428转移回至正常运行状态424。

响应于来自系统控制器300的关闭命令,驱动控制器312从状态424转移至状态432,其中,驱动控制器发起对马达的受控关闭。响应于确定压缩机正在其操作包络之外操作,驱动控制器312转移至跳闸状态416;否则,在关闭完成时,驱动控制器312返回至空闲状态400。

在图5中,驱动控制器312的高级功能框图包括控制系统504和驱动电路508。控制系统504与系统控制器300连接并且控制系统504控制驱动电路508内的开关。仅作为示例,可以与图2的驱动电路204类似地实现驱动电路508。驱动电路508包括由控制系统504致动的开关,该控制系统504选择性地将基于输入AC线路电源的电压施加至压缩机304的马达512。

在图6中,示出了控制系统504的示例实现的功能框图。控制系统504包括与系统控制器300通信的通信模块520。在图6的示例中,通信模块接收排出管线温度并且可以向系统控制器300提供排出管线温度。如果排出管线温度超过阈值,则通信模块可以生成使控制系统504对马达512断电的故障信号。

在正常操作下,通信模块520向速度确定模块524发送速度需求。速度需求是从系统控制器300接收的,并且速度需求指示系统控制器300想要马达512旋转的速度。在各种实现方式中,通信模块520可以通过将速度需求设置为零值来命令速度确定模块524对马达512断电。该零值可以指示故障状态,如过高的排出管线温度或接收到来自系统控制器300的关闭请求。类似地,系统控制器300可以简单地向通信模块520发送零的速度需求,以指示期望使马达512断电。

通信模块520可以从系统控制器300接收测量的数据,所述测量的数据包括诸如冷凝器压力和蒸发器压力的压力。这些压力被提供至包络确定模块528,包络确定模块528基于压力来确定可接受的速度极限范围。在图7中更详细地描述示例包络。如果请求速度落在由包络确定模块528指定的速度极限之外,则速度确定模块524可以将请求速度限制在速度极限内以及/或者速度确定模块524可以发送故障信号。

速度确定模块524生成的请求速度被提供至速度控制模块532。速度控制模块532致动驱动电路508以使马达512在请求速度下旋转。速度估计模块536估计马达512的速度,并且将该估计的速度提供至速度控制模块532。速度估计模块536可以基于在驱动电路508处测量的反电动势(BEMF)来估计速度。在其他实现方式中,速度可以被测量(例如通过使用霍尔效应传感器)并且被提供至速度控制模块532。

速度控制模块532控制驱动电路508的开关,以使请求速度与估计的速度之间的误差最小化。在正常操作下,速度确定模块524将输出来自系统控制器300的速度需求作为请求速度。然而,在各种模式下,速度确定模块可以将替选速度用作为请求速度。

例如,启动模块540可以提供对马达512的软启动。代替立即尝试以全速运行马达512,启动模块540可以逐渐地斜升请求速度,直到达到目标速度为止。下面在图8中更详细地论述所述软启动。

除霜模块544使得系统控制器300指定除霜模式。除霜模块544可以在除霜模式期间生成请求速度,并且可以根据噪声与除霜所需的时间的权衡来设置由除霜模块544生成的速度。例如,预定速度可以被实验确定为具有由压缩机304生成的最低噪声。然而,较高的速度可以使得除霜处理更快地完成。

因此,系统控制器300可以命令除霜模块544执行高速除霜或低噪声除霜。在这两个因素之间可能存在达成不同平衡的速度,并且作为代替,系统控制器300可以指定这些可替选速度中的一个速度。可替选地,系统控制器300可以指定除霜的期望时间,除霜模块544可以根据该期望时间来确定相应的速度。下面在图11中更详细地描述除霜模块544的操作。

关闭模块548允许对压缩机的受控关闭。这可以减少由于排出口处的高压制冷剂造成的压缩机304的反向旋转、压缩机轴承磨损以及烦扰噪声。因此,关闭模块548可以在将请求速度削减为零之前使请求速度斜降。下面在图12中更详细地描述所述受控关闭。

锁定转子保护模块552确定是否防止压缩机304旋转。这被称为锁定转子状态并且使得锁定转子保护模块552命令速度确定模块524对马达512断电。

锁定转子保护模块552可以检测易发生于启动马达512时的锁定转子状态。如果阻塞物随后阻碍压缩机304旋转,则这可以通过丢失转子控制模块556来估计。丢失转子控制模块556检测何时所估计的速度下降至远低于请求速度。

在某些情况下,减小请求速度可以使得马达512实现请求速度,从而重新获得对马达512的闭环控制(有时被称为找到转子、捕获转子或旋转启动)。丢失转子控制模块556因此可以向速度确定模块524提供超驰速度。

超驰速度由速度确定模块524作为请求速度输出,并且可以减小超驰速度直到马达512可以在请求速度下旋转为止。然后,丢失转子控制模块556可以增加超驰速度直到不再需要超驰速度为止,并且在没有来自丢失转子控制模块556的输入的情况下,速度确定模块524可以正常输出请求速度。

在图7中,示出了压缩机304的示例性操作包络。X轴是以磅每平方英寸计(psig)的蒸发器压力,所述蒸发器压力直接对应于蒸发器温度。Y轴是以psig表示的冷凝器压力,所述冷凝器压力直接对应于冷凝器温度。以华氏度和摄氏度二者显示冷凝器温度和蒸发器温度。

包络包括由蒸发器压力和冷凝器压力限定的各个区域,并且每个区域具有压缩机可以可靠操作的相应速度范围。取决于驱动控制器312,这些范围中的一些范围或全部范围可能需要被进一步限制。例如,低功耗驱动控制器可能不允许在较高压力下的最高速度操作。

此外,当环境温度增加至高于标称值(例如95°F)或者当所供给的AC电压跌落至低于标称值时,可能需要对驱动控制器降额。换言之,随着环境温度升高,可用的速度范围可能在每个区域中的一些部分或所有部分中收缩。类似地,随着供给电压减小,速度范围可能在一端或两端收缩。

由虚线勾勒的两个区域可以由压缩机实现,但是原始设备制造商可能需要测试来确定适用于压缩机在那些区域中操作的适当约束。例如,约束可以包括某些过热值和过冷值。

在图8中,呈现了软启动的示例操作。在600处控制开始,其中,清除计数。在604处控制继续,其中,将请求速度以预定斜坡速率斜变至停留速度。仅作为示例,停留速度可以是3600rpm,并且斜坡速率可以是1,000rpm/秒。这些值中的两个值可以在安装时被编程并且可以例如由系统控制器300修改。

在608处,控制等待预定延迟,例如1秒。在612处控制继续并且确定扭矩需求是否大于阈值。如果是,则控制转移至616;否则控制转移至620。仅作为示例,可以将阈值表示为最大扭矩的百分比,如最大扭矩的90%。如果扭矩需求大于该阈值,则在616处意外状态已经出现并且设置启动警报。此外,使追踪连续启动警报的数目的计数递增。

在各种实现方式中,在624处,控制开始加热压缩机的底部槽。如上所述,作为示例,这可以利用定子加热或曲轴箱加热器来执行。如果液体制冷剂存在于压缩机中,则扭矩可以大大增加。加热可以足以使制冷剂沸腾并且允许压缩机以正常扭矩水平启动。

在628处,控制使请求速度以预定斜坡速率斜降至零。例如,斜坡速率可以是1,000rpm/秒。该斜坡速率可以与604处的斜坡速率相同,或者该斜坡速率可以与604处的斜坡速率分开配置。在632处,控制在进行至636之前等待延迟。作为示例,延迟为1秒,所述延迟可以与608中的延迟相同或独立于608中的延迟而设置。

在636处,控制确定计数是否已经达到阈值。如果是,则控制转移至640,其中,马达被锁定。换言之,在马达将重新启动之前需要人工干预。另外,停止任何压缩机加热。然后控制结束。在一个示例中,636处的阈值是3。如果在636处没有达到阈值,则控制转移至644。在644处,对重新启动延迟定时。仅作为示例,重新启动延迟可以是10秒。在646处控制继续,其中,停止压缩机加热。然后控制返回至604。

返回至620,清除启动警报,并且在648处控制继续。在648处,控制等待停留时间。该停留时间例如可以是120秒。然后在652处控制继续,其中,控制使请求速度以预定斜坡速率朝速度需求斜变。仅作为示例,斜坡速率可以是200rpm/秒。然后控制结束。

在上文中,可以利用预定义分辨率将各种参数设置在预定义范围内。仅作为示例,可以以0.1rpm为单位将604处的停留速度设置在1,500rpm与7,200rpm之间。可以将604处的斜坡速率设置为从每1,000rpm 0.5秒(等同于2000rpm/秒)至高达2.5秒/1,000rpm。可以将648处的停留时间设置在120秒与300秒之间。可以将636处的阈值设置为从零至三。

在各种实现方式中,604处的斜坡速率可以在斜坡的持续时间上呈现不同值。仅作为示例,可以将从0rpm至高达300rpm的斜坡速率固定在某一值,例如1000rpm/秒。然后可以以配置的斜坡速率执行从300rpm至高达停留速度的斜升,在图8中所述配置的斜坡速率示出为1,000/秒。

一旦软启动已经完成,则马达正在正常运行状态下(状态424或图4)操作。当从系统控制器300接收到新的速度需求时,控制系统504可以使请求速度以预定速率斜升或斜降,以达到新的速度需求。相比于减速,可以针对加速来分开设置预定速率。仅作为示例,可以将加速率设置在5秒/1,000rpm与1,000秒/1,000rpm之间。类似地,在一个示例中,可以将减速率设置为从5秒/1,000rpm至1,000秒/1,000rpm。

由于640处的马达锁定所需的人工干预可以由驱动控制器312的电力循环来提供、通过关断和接通驱动控制器312来执行。人工干预还可以包括:通过通信总线如MODBUS通信总线发送的重置命令、向驱动控制器上的具体输入端提供的重置信号或者由用户接口如驱动控制器上的小键盘发起的重置。

在图9中,描述了锁定转子检测的示例操作。当马达在700处启动时,控制开始,其中,重置计数。在704处,启动定时器以测量自马达启动序列开始以来的时间量。在708处,将定时器与阈值进行比较。如果定时器超过阈值,则控制转移至712;否则,控制转移至716。仅作为示例,阈值可以是12秒。

在716处,如果软启动过程的停留时间(例如,图8中的648)已经开始,则控制转移至712;否则控制返回至708。在712处,控制确定所估计的马达速度是否小于请求速度的20%。如果是,则控制转移至720;否则控制转移至724。如果所估计的速度远小于请求速度,则可能是转子被锁定并且不能旋转。

锁定转子的该确定被延迟直到已经过了阈值时间段(708)或者软启动的停留时间已经开始(716)为止,以允许解决启动不规则性而不引起误跳闸。例如,在压缩机包含必须被处理(排出)的液体的带液(flood)启动情况下,初始扭矩量可能高于正常量,因此初始速度可能低于正常速度。另外,在启动开始时,可能存在马达遇到的液体段塞(slug),所述液体段塞可能来自制冷剂管线的一部分。

然而,一旦到达712,所估计的速度应当更接近于请求速度,因此,如果所估计的速度达不到请求速度,则锁定转子状态被标记。虽然将请求速度的20%示为阈值,但是还可以使用可以权衡错误肯定的可能性与错误否定的可能性的其他阈值。错误肯定是转子没有被锁定但是由于一些启动不规则性(如压缩机中大量的液体)而仅更慢地操作。换言之,可以将慢启动但可操作的马达启动分布检测为锁定转子。错误否定是指马达不能自由旋转但未被检测为锁定转子或未被及时检测到的情况。

在720处,已经检测到锁定转子状态,因此马达被禁用。同时,在724处,在没有检测到锁定转子状态的情况下,马达已经启动,因此重置计数并且清除锁定转子警报。然后控制结束。

在728处,将锁定转子警报设置为指示马达被禁用的原因,并且使计数递增。在732处,控制确定计数是否已经达到阈值。如果是,则在736处锁定马达,以便不执行另外的自动重新启动。在锁定马达之后,控制结束。

同时,如果在732处计数还没有达到阈值,则控制转移至740。该阈值可以是可调节的,例如从1至10,并且在图9的示例中,该阈值被设置为10。在740处,控制可以开始加热压缩机的底部槽。如上所述,作为示例,这可以利用定子加热或曲轴箱加热器来执行。存在于压缩机中的液体制冷剂可以呈现为锁定转子状态。因此,加热可以使制冷剂沸腾并且允许压缩机启动。

在进行至744之前,控制等待延迟时段。在一些实现方式中,可以将延迟时段设置在30秒与300秒之间,并且在图9的示例中将延迟时段设置为35秒。在744处,控制停止加热并且开始重新启动压缩机马达。然后控制返回至704。

在图10中,描述了丢失转子检测的示例操作。如图4所示,可以在正常运行(状态424)期间执行丢失转子检测,但是可以在诸如软启动(状态420)和受控关闭(状态432)的过渡操作期间暂停丢失转子检测。丢失转子检测系统检测在主动速度控制期间速度误差大于期望速度误差的状态。例如,这可能是由于在运行时锁定转子或使转子停转而造成的。

为了避免在正常操作期间的烦扰跳闸,可以使用多个极限。例如,与其中请求速度不改变的静态时段相比,在其中请求速度改变的动态时段期间,两个极限可以引起更大的期望速度误差。这些极限可以允许完成带液启动(在软启动处理结束之后),并且即使在正常操作期间可以允许压缩机处理小的液体段塞。仅作为示例,液体段塞可以由在系统管道系统中冷凝的隔离的制冷剂或者对膨胀阀的不适当调节或因膨胀阀的故障而产生。

在800处例如在软启动结束时,控制开始。控制重置检测器定时器,并且启动检测器定时器运行。控制还重置停留定时器,并且阻止停留定时器运行。在804处控制继续并且确定对请求速度的稳定性的测量。例如,可以通过在进行的时间段内确定最高请求速度与最低请求速度之间的差来测量稳定性。在仅一个示例中,该时段为10秒。

该时段可以取决于压缩机中的驱动器从请求速度的变化中恢复所花费的时间来调节。如果驱动控制器和马达在例如请求速度的变化的2秒内返回至稳定状态,则可以将804处的先前时段改变为更接近于2秒的值。

在808处,控制将差与阈值进行比较。如果差大于阈值,则使用动态阈值,并且控制转移至812;否则使用稳定阈值,并且控制转移至816。可以将阈值表示为百分比——也就是说,差占最高请求速度或较低请求速度的百分比。在一个示例中,阈值为2%。

在812处,控制将速度误差与第一阈值进行比较。如果速度误差大于第一阈值,则控制转移至820;否则控制转移至824。速度误差是请求速度与估计的速度之间的差。可以将阈值表示为通过将所估计的速度与请求速度之间的差除以请求速度而计算的百分比。在一个示例中,阈值为30%。

在816处,控制将速度误差与第二阈值进行比较。第二阈值通常将小于第一阈值,这是因为816是在稳定操作状态期间估计的。如果在816处速度误差大于第二阈值,则控制转移至820;否则控制转移至824。在一个示例中,第二阈值是20%。

在820处,控制确定检测器定时器是否已经超过阈值。如果是,则控制转移至828;否则控制转移至832。例如,阈值时间段可以是4秒。在824处,不存在意外的速度误差,因此重置检测器定时器(并且再次开始运行)。然后在832处控制继续。换言之,因为检测器定时器在824处被重置,所以仅当在阈值时间段内已经存在过度的速度误差时,在820处检测器定时器将超过阈值。

在828处,丢失转子警报被设置成指示存在大于期望的速度误差,并且检测器定时器和停留定时器二者被重置并且开始运行。在836处控制继续,其中,将超驰速度减小第一增量,以尝试重新同步对转子的运动的控制。仅作为示例,第一增量可以是200rpm。

在各种实现方式中,一旦在828处已经设置了丢失转子警报,则可以减小820处的阈值时段。以这种方式,由于丢失转子状态持续,因此超驰速度被更频繁地减小。例如,可以将阈值从4秒减少至1秒,以便一旦已经设置了丢失转子警报并且转子尚未恢复,则超驰速度每秒减小一次。

在840处控制继续,其中,根据压缩机操作包络来确定最小速度。在844处,控制确定新的超驰速度是否小于所确定的最小速度。如果是,则控制转移至848;否则控制返回至804。在848处,禁用马达以避免在包络之外操作。马达可以在延迟时段如60秒之后自动重新启动。因此,控制在延迟时段之后返回至804。

在832处,控制确定停留定时器是否大于阈值。如果是,则控制转移至852;否则控制返回至804。停留定时器用于使马达逐渐恢复回至最初请求速度。在转子已经丢失并且超驰速度已经减小之后,超驰速度然后缓慢地增加回至请求速度。在其中没有检测到丢失转子状态的每个停留定时器阈值时段之后执行一次增量增加。仅作为示例,阈值可以是10秒。

在852处,控制重置检测器定时器,并且启动检测器定时器运行,并且还重置并启动停留定时器。在856处,控制使超驰速度增加第二增量。在各种实现方式中,第二增量可以与836处的第一增量相同或独立。在一个示例中,第二增量也是200rpm。

在860处控制继续,其中,如果超驰速度再次等于速度需求,则转子已经成功恢复,并且控制转移至864。否则,控制返回至804。在864处,清除丢失转子警报,并且重置并停止停留定时器。然后控制返回至804。

在图11中,示出了除霜模式的示例操作。在900处控制开始,例如当从系统控制器300接收到除霜命令时。在900处,控制确定是否启用包络检测。如果是,则控制转移至904;否则控制转移至908。

在904处,控制确定编程用户除霜速度是否小于阈值。如果是,则控制转移至912;否则控制转移至916。在912处,将用户除霜速度增加至等于阈值,并且在916处控制继续。仅作为示例,阈值可以是1,500rpm。在各种实现方式中,可以利用0.1rpm的分辨率将阈值设置在从1,500rpm至7,200rpm的范围内。用户除霜速度可以被编程为对应于压缩机304产生的噪声水平处于最小时的速度。

在916处,控制根据可以基于冷凝器压力和蒸发器压力确定的操作包络来确定最小速度。在920处,控制确定用户除霜速度是否小于最小包络速度。如果是,则控制转移至924;否则控制转移至908。在924处,控制使请求速度以预定斜坡速率斜变至所确定的最小包络速度。仅作为示例,斜坡速率可以是500rpm/秒。还可以将斜坡速率表示为2秒/1,000rpm,并且可以将斜坡速率设置在从0.5秒/1,000rpm至20秒/1,000rpm的范围内。然后在928处控制继续。

在908处,控制使请求速度以预定斜坡速率斜变至用户除霜速度。仅作为示例,斜坡速率可以与924处的斜坡速率相同。然后在928处控制继续。在928处,控制等待保持时间用于完成除霜。仅作为示例,保持时间可以是60秒,并且可以被设置在从30秒至300秒的范围内。

然后在932处控制继续,其中,控制使请求速度以指定的斜坡速率斜变回至来自除霜循环之前的速度需求。在各种实现方式中,该斜坡速率可以不同于924处或908处的速率。在一个示例中,可以将该斜坡速率设置在0.5秒/1,000rpm与20秒/1,000rpm的速率之间。然后控制结束。

在图12中,示出了示例受控关闭过程。响应于来自系统控制器300的关闭命令,控制在1000处开始。如果包络保护被启用,则控制转移至1004;否则控制转移至1008。在1004处,控制确定速度需求(也就是说,速度需求乘以0.7)的70%是否将在操作包络内。如果是,则控制转移至1012;否则控制转移至1016。

在1012处,控制使请求速度斜降至速度需求的70%。仅作为示例,斜坡速率可以是200rpm/秒。然后在1016处控制继续。在1016处,控制等待例如120秒或180秒的停留时间。在各种实现方式中,可以将停留时间设置在30秒与300秒之间。

在等待了停留时间之后,在1020处控制继续,其中,如果关闭命令仍然存在,则控制在1024处继续;否则控制转移至1028。在1028处,控制使请求速度斜变回至速度需求,然后控制结束。在1024处,控制使请求速度斜降至最小包络速度。然后,在1032处控制禁用马达,并且在1036处等待延迟时段。仅作为示例,延迟时段可以是10秒。在延迟时段之后,控制结束,这使驱动控制器返回至空闲状态(图4中的400)。

在1008处,控制确定估计的速度是否大于阈值。如果是,则控制转移至1040;否则控制转移至1044。例如,阈值可以是3600rpm。在1040处,控制使请求速度斜变至停留速度。仅作为示例,斜坡速率可以是200rpm/秒。然后在1044处控制继续。在1044处,控制等待停留时间,所述停留时间可以与1016处的停留时间相同。在停留时间期满之后,在1048处控制继续。在1048处,如果关闭命令仍然存在,则控制转移至1032;否则控制转移至1028。

前面的描述在本质上仅是说明性的并且决不意在限制本公开内容、其应用或用途。本公开内容的广泛教导可以以各种形式来实现。因此,尽管本公开内容包括具体示例,但是由于其它修改根据对附图、说明书和所附权利要求的研究而将变得明显,因此本公开内容的真实范围不应当被如此限制。应当理解的是,可以在不改变本公开内容的原理的情况下以不同的顺序(或同时)执行方法中的一个或多个步骤。此外,尽管以上将实施方式中的每一个实施方式描述为具有某些特征,但是可以以其他实施方式中的任何实施方式的特征和/或与其他实施方式中的任何实施方式的特征组合来实现关于本公开内容中的任何实施方式所描述的那些特征中的任何一个或更多个特征,即使没有明确描述该组合。换言之,所描述的实施方式不是相互排斥的,并且一个或更多个实施方式的彼此交换保持在本公开的范围内。

使用各种术语来描述元件之间(例如,在模块、电路元件、半导体层等之间)的空间关系和功能关系,所述术语包括“连接”、“接合”、“耦接”、“相邻”、“紧挨着”、“在顶部”、“上方”、“下方”以及“布置”。除非明确地描述为“直接”,否则当在以上公开内容中描述第一元件与第二元件之间的关系时,该关系可以是其中在第一元件与第二元件之间不存在其他中间元件的直接关系,但是也可以是其中在第一元件与第二元件之间存在(在空间上或功能上)一个或更多个中间元件的间接关系。如本文所使用的那样,短语“A、B和C中的至少一个”应该被解释为使用非排他性逻辑或来意指逻辑(A或B或C),并且不应被解释为意指“A中的至少一个、B中的至少一个和C中的至少一个”。

在包括下面定义的本申请中,术语“模块”或术语“控制器”可以替换为术语“电路”。术语“模块”可以指的是以下器件的一部分或者包括以下器件:专用集成电路(ASIC);数字、模拟或混合的模拟/数字分立电路;数字、模拟或混合的模拟/数字集成电路;组合逻辑电路;现场可编程门阵列(FPGA);执行代码的(共享的、专用的或群组的)处理器电路;存储由处理器电路执行的代码的(共享的、专用的或群组的)存储器电路;提供描述的功能的其它适合的硬件部件;或上面中的一些或全部的组合如片上系统。

模块可以包括一个或更多个接口电路。在一些示例中,接口电路可以包括连接至局域网(LAN)、因特网、广域网(WAN)或前述的组合的有线或无线接口。本公开内容的任何给定的模块的功能可以分布在经由接口电路被连接的多个模块之中。例如,多个模块可以允许负载平衡。在另一示例中,服务器(也被称为远端或云)模块可以代表客户端模块完成一些功能。

上面所使用的术语代码可以包括软件、固件和/或微代码,并且可以涉及程序、例程、功能、类、数据结构和/或对象。术语共享处理器电路包括执行来自多个模块中的一些或全部代码的单个处理器电路。术语群组处理器电路包括结合附加处理器电路而执行来自一个或更多个模块中的一些或全部代码的处理器电路。参照多个处理器电路包括在分立的管芯上的多个处理器电路、在单个管芯上的多个处理器电路、单个处理器电路的多个核、单个处理器电路的多个线程或者上述的组合。术语共享的存储器电路包括存储来自多个模块中的一些代码或全部代码的单个存储器电路。术语群组存储器电路包括结合附加存储器而存储来自一个或更多个模块中的一些或全部代码的存储器电路。

术语存储器电路是术语计算机可读介质的子集。如在此使用的术语计算机可读介质不包括通过介质(例如在载波上)传播的暂态电信号或暂态电磁信号;因此,可以认为术语计算机可读介质是有形的且非暂态的。非暂态、有形的计算机可读介质的非限定性示例是非易失性存储器电路(例如快闪存储器电路、可擦除可编程只读存储器电路或掩膜只读存储器电路)、易失性存储器电路(例如静态随机存取存储器电路或动态随机存取存储器电路)、磁存储介质(例如模拟或数字磁带或硬盘驱动)以及光学存储介质(例如,CD、DVD或蓝光光碟)。

可以由专用计算机来部分地或全部实现在本申请中所描述的设备和方法,该专用计算机是通过将通用计算机配置成执行计算机程序中实现的一个或更多个特定功能而创建的。上文所描述的功能框和流程图元素充当软件规格说明,其可以通过熟练的技术人员或程序员的常规工作来编译成计算机程序。

计算机程序包括存储在至少一个非暂态、有形的计算机可读介质上的处理器可执行指令。计算机程序还可以包括或依赖于存储的数据。计算机程序可以包括与专用计算机的硬件进行交互的基本输入输出系统(BIOS)、与专用计算机的特定装置交互的装置驱动器、一个或更多个操作系统、用户应用程序、后台服务、后台应用程序等。

计算机程序可以包括:(i)要被解析的描述性文本,例如HTML(超文本标记语言)或XML(可扩展标记语言),(ii)汇编代码,(iii)由编译器从源代码生成的对象代码,(iv)用于由解释器执行的源代码,(v)用于由即时编译器编译和执行的源代码等。仅作为示例,可以使用根据包括以下语言的语法来编写源代码:C、C++、C#、Objective C、Haskell、Go、SQL、R、Lisp、Fortran、Perl、Pascal、Curl、OCaml、HTML5、Ada、ASP(动态服务器网页)、PHP、Scala、Eiffel、Smalltalk、Erlang、Ruby、VisualLua以及

除非使用短语“用于……的装置”清楚地列举元件,或者在使用短语“用于……的操作”或“用于……的步骤”的方法权利要求的情况下,否则在权利要求中列出的元件都不意在作为在35U.S.C.§112(f)的意义内的装置加功能元件。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1