一种新型自然冷源制冷系统的制作方法

文档序号:11603208阅读:443来源:国知局
一种新型自然冷源制冷系统的制造方法与工艺

本实用新型涉及一种制冷系统,特别是涉及一种应用于数据中心的节能型的制冷系统。



背景技术:

数据中心能耗一般是数据中心中服务器、交换机、存储等IT设备、制冷空调设备、配电电池等辅助设备总体的能耗。IT设备和空调系统能耗占据数据中心总体能耗的90%左右,作为数据中心辅助设备的空调系统能耗占据40%左右,仅次于IT设备耗能。制冷主机在其中占据核心位置,因此提高制冷主机能效可以有效降低数据中心能耗。

目前常用的免费冷源主要是冬季或春秋季的室外空气。因此,如果可能的话,数据中心的选址应该在天气比较寒冷或低温时间比较长的地区。在中国,北方地区都是非常适合采用免费制冷技术。

针对数据中心全年制冷应用特点,在北方寒冷地区将风冷冷水机组与自然冷源进行结合,可以在冬季、秋季使用免费的自然冷源(环境温度)进行制冷,从而在高效电制冷基础上实现全年能效比的综合提高。

综合目前自然冷源利用情况,目前最为成熟可靠的自然冷源利用方案有如下两种方式:

1、乙二醇方案

针对全年制冷运行需求自然冷源与机械制冷进行结合,形成3种模式(自然冷源模式、混合制冷模式、压缩制冷模式)。其中通过电动三通阀进行切换模式切换,在夏季电动三通阀将自然冷源盘管封闭,依靠压缩机制冷提供冷源;过渡季节电动三通阀在0%到100%进行控制,将自然冷源盘管激活,但此时环境温度不足够低,无法实现完全提供冷量,压缩机必须辅助运行;冬季时环境温度足够低,则电动三通阀全部打开,压缩机关闭,则自然冷源盘管提供全部冷量。

为了确保在冬季系统可以可靠运行,则循环系统需要加注防冻液,一般按照当地气象条件下最低温度再降低5度进行浓度配比;防冻液对于管路系统具有一定的腐蚀性,并且粘度高于纯水增加水泵功耗,换热特性比纯水差,需要配置更多的末端换热设备;整个系统需要加注大量的防冻液,维护量巨大,且安全存在隐患。

2、纯水方案

纯水方案与乙二醇方案最根本的区别是解决了整个管路系统充注防冻液进行防冻的弊端,将自然冷源系统与管路系统进行分离,采用中间换热器进行换热,自然冷源循环系统充注防冻液,由循环泵提供动力循环;纯水方案有效的减少防冻液充注数量和维护难度,但管路系统使用纯水循环,暴露在室外部分和备份机组都存在冬季防冻问题,需要在机组增加伴热方案进行解决;此外使用中间换热器进行二次换热,存在传热温差,自然冷源利用效率下降,且中间换热器成本高,对清洁度要求高,从而增大了维护工作量。



技术实现要素:

发明目的:针对现有技术中存在的问题,本实用新型提供一种新型自然冷源制冷系统,该制冷系统不需要进行专门的防冻处理,能够降低成本,提高换热效率和维护的便捷性。

技术方案:为实现上述目的,本实用新型采用如下技术方案:

一种新型自然冷源制冷系统,包括冷凝器、储液器、制冷剂循环泵、电子膨胀阀、蒸发器和制冷压缩机;蒸发器、压缩机、冷凝器、储液器、制冷剂循环泵和电子膨胀阀通过管路依次相连构成循环回路,蒸发器与冷凝器之间通过第一旁通管路相连,储液器与电子膨胀阀之间通过第二旁通管路相连;所述制冷压缩机、冷凝器、储液器、电子膨胀阀和蒸发器组成风冷冷水机组制冷循环系统,所述冷凝器、储液器、制冷剂循环泵和蒸发器组成自然冷源制冷循环系统。

在具体实施方案中,所述储液器与电子膨胀阀之间的管路上设有用于切换制冷剂循环泵所在管路及第二旁通管路的阀件;所述制冷压缩机与冷凝器之间的管路,以及蒸发器与冷凝器之间的管路上分别设有控制管路导通或关断的阀件。

在具体实施方案中,所述制冷剂循环泵通过第三旁通管路与蒸发器相连,该管路上设有控制管路导通或关断的阀件。

优选地,所述制冷压缩机采用单台或多台定频或变频压缩机。

优选地,所述制冷剂循环泵使用定频或变频驱动,采用单泵或双泵备份方式。

优选地,所述冷凝器的风机采用变速或变频调节风机。

有益效果:本实用新型提供的新型自然冷源制冷系统通过控制切换可以实现3种运行模式:电制冷模式、自然冷源模式和混合模式(电制冷与自然冷源结合)。电制冷模式与传统自然冷源风冷冷水机组制冷循环相同,但对比传统自然冷源利用方法,冷凝器不包含自然冷源盘管,从而降低冷凝器风侧阻力损失,在同样制冷和能效效果下可以选择更小功率风机,从而降低运行功率,提高效率,因为换热器减少一半,从而降低材料成本。自然冷源模式下,制冷剂循环泵代替压缩机提供制冷系统循环动力,与传统纯水方案相比,省去中间换热器的换热损失,省去自然冷源系统管路和防冻液。混合模式下,在环境温度20度即可以进入混合模式,与传统方案需要对比冷冻回水温度高于环境温度才能进入混合模式,按照目前数据中心常用的回水16度进行考虑,其进入混合模式至少也是15度,从而可以实现自然冷源的充分利用。

与现有技术相比,本实用新型的新型自然冷源制冷系统采用制冷剂作为循环介质,具有乙二醇方案和纯水方案的优势,系统不需要进行专门的防冻处理,自然冷源直接换热,效率高,整个管路循环系统采用纯水,保证末端系统换热效率和维护便捷性;还省略了自然冷源盘管,由冷凝器提供自然冷源;省去中间换热器,从而降低成本和维护复杂性。

附图说明

图1为本实用新型实施例1的系统原理图。

图2为本实用新型实施例2的系统原理图。

图3为本实用新型实施例3的系统原理图。

图4为本实用新型实施例4的系统原理图。

图中,1-冷凝器,2-储液器,3-制冷剂循环泵,4a、4b-第四阀件,4b-单向阀,5-电子膨胀阀,6-蒸发器,7-制冷压缩机,8-第一阀件,8a-第三阀件,9-第二阀件。

具体实施方式

下面结合具体实施例,进一步阐明本实用新型,应理解这些实施例仅用于说明本实用新型而不用于限制本实用新型的范围,在阅读了本实用新型之后,本领域技术人员对本实用新型的各种等价形式的修改均落于本申请所附权利要求所限定的范围。

实施例1

如图1所示,本实用新型实施例公开的一种新型自然冷源制冷系统,包括冷凝器1、储液器2、制冷剂循环泵3、电子膨胀阀5、蒸发器6和制冷压缩机7;蒸发器6、压缩机7、冷凝器1、储液器2、制冷剂循环泵3和电子膨胀阀5通过管路依次相连构成循环回路,蒸发器6与冷凝器1之间通过第一旁通管路相连;储液器2与电子膨胀阀5之间通过第二旁通管路相连。制冷压缩机7、冷凝器1、储液器2、电子膨胀阀5和蒸发器6组成风冷冷水机组制冷循环系统,冷凝器1、储液器2、制冷剂循环泵3和蒸发器6组成自然冷源制冷循环系统。第一旁通管路上设有第一阀件8(可以是电动二通阀或电磁阀),制冷压缩机7与冷凝器1之间的管路上设有第二阀件9(可以是单向阀或电动关断阀)。储液器2通过电动三通阀4(通过驱动电机旋转,可以实现A-AB和A-B流向导通)分别与制冷剂循环泵3所在管路及第二旁通管路相连。

压缩机可以使用不同的类型,其中包括涡旋压缩机、螺杆压缩机、离心式压缩机等,其中使用带有润滑油循环压缩机时,需要在制冷系统配置油分离器,并设置可靠的回油系统;在使用无油润滑压缩机时(磁悬浮离心压缩机)不需要配置油分离器。为了提高机组在部分负荷效率,可以对压缩机使用变频,从而获得更好的效率;压缩机可以为单台也可以为多台组合。

制冷剂循环泵3是自然冷源系统驱动动力,为提高自然冷源效率和工况调节能力,可对制冷剂循环泵3使用变频驱动,为提高系统可靠性,可以采用双泵备份方式,从而实现1用1备。

冷凝器1可以使用不同形式,做为自然冷源和冷凝换热的核心部件,冷凝器1可以使用铜管铝翅片、微通道等不同结构形式,为了适应负荷调节,风机可以使用变速和变频调节。

蒸发器6可以使用不同形式,包括满液式、降膜式、干式、套管式等,其中在使用满液式和降膜式蒸发器6时,可以设置液位检测信号,从而控制制冷剂循环泵3的运行频率或者电子膨胀阀5的开度,从而达到制冷负荷变化的控制。

本实施例的制冷系统通过切换控制实现电制冷模式、自然冷源模式和混合模式3中运行模式的具体工作流程如下:

1、自然冷源模式:电动三通阀4A-AB流向导通,制冷压缩机7不工作,第二阀件9关断,第一阀件8打开。制冷剂循环流向为:制冷剂循环泵3-电子膨胀阀5-蒸发器6-第一阀件8-冷凝器1-储液器2-电动三通阀4(A-AB流向)-制冷剂循环泵3。

2、混合制冷模式:电动三通阀4A-AB流向导通,制冷压缩机7工作,第一阀件8关断,第二阀件9打开。制冷剂循环流向为:制冷压缩机7-第二阀件9-冷凝器1-储液器2-电动三通阀4(A-AB流向)-制冷剂循环泵3-电子膨胀阀5-蒸发器6-制冷压缩机7。

3、电制冷模式:电动三通阀4A-B流向导通,制冷剂循环泵3不工作,制冷压缩机7工作,第一阀件8关断,第二阀件9打开。制冷剂循环流向为:制冷压缩机7-第二阀件9-冷凝器1-储液器2-电动三通阀4(A-B流向)-电子膨胀阀5-蒸发器6-制冷压缩机7。

实施例2

如图2所示,本实用新型实施例公开的一种新型自然冷源制冷系统,与实施例1中的区别是,制冷剂循环泵3通过第三旁通管路与蒸发器6相连,该管路上设有第三阀件8a,制冷系统工作在自然冷源模式时,通过控制制冷剂循环泵3的运行频率实现制冷剂液体的节流。与本实施例对应的3种运行模式的工作流程如下:

1、自然冷源模式:电动三通阀4A-AB流向导通,制冷压缩机7不工作,第二阀件9关断,第一阀件8打开,电子节流阀关断,第三阀件8a打开。制冷剂循环流向为:制冷剂循环泵3-第三阀件8a-蒸发器6-第一阀件8-冷凝器1-储液器2-电动三通阀4(A-AB流向)-制冷剂循环泵3。

2、混合制冷模式:电动三通阀4A-AB流向导通,制冷压缩机7工作,第一阀件8关断,第二阀件9打开,第三阀件8a关断。制冷剂循环流向为:制冷压缩机7-第二阀件9-冷凝器1-储液器2-电动三通阀4(A-AB流向)-制冷剂循环泵3-电子膨胀阀5-蒸发器6-制冷压缩机7。

3、电制冷模式:电动三通阀4A-B流向导通,制冷剂循环泵3不工作,制冷压缩机7工作,第一阀件8关断,第二阀件9打开,第三阀件8a关断。制冷剂循环流向为:制冷压缩机7-第二阀件9-冷凝器1-储液器2-电动三通阀4(A-B流向)-电子膨胀阀5-蒸发器6-制冷压缩机7。

实施例3

如图3所示,本实用新型实施例公开的一种新型自然冷源制冷系统,与实施例1中的区别是,储液器2与电子膨胀阀5之间的制冷剂泵所在管路和第二旁通管路上分别设第四阀件4a、4b(可以是单向阀或电动关断阀),通过控制这两个阀件切换控制实现两个管路的导通与关断。与本实施例对应的3种运行模式的工作流程如下:

1、自然冷源模式:制冷压缩机7不工作,第二阀件9关断,第一阀件8打开,阀件4a关断,阀件4b打开。制冷剂循环流向为:制冷剂循环泵3-阀件4b-电子膨胀阀5-蒸发器6-第一阀件8-冷凝器1-储液器2-制冷剂循环泵3。

2、混合制冷模式:制冷压缩机7工作,第一阀件8关断,第二阀件9打开,阀件4a关断,阀件4b打开。制冷剂循环流向为:制冷压缩机7-第二阀件9-冷凝器1-储液器2-制冷剂循环泵3-阀件4b-电子膨胀阀5-蒸发器6-制冷压缩机7。

3、电制冷模式:电动三通阀4A-B流向导通,制冷剂循环泵3不工作,制冷压缩机7工作,第一阀件8关断,第二阀件9打开,阀件4a打开,阀件4b关闭。制冷剂循环流向为:制冷压缩机7-第二阀件9-冷凝器1-储液器2-阀件4a-电子膨胀阀5-蒸发器6-制冷压缩机7。

实施例4

如图4所示,本实用新型实施例公开的一种新型自然冷源制冷系统,与实施例3中的区别是,制冷剂循环泵3通过第三旁通管路与蒸发器6相连,该管路上设有第三阀件8a,制冷系统工作在自然冷源模式时,通过控制制冷剂循环泵3的运行频率实现制冷剂液体的节流。与本实施例对应的3种运行模式的工作流程如下:

1、自然冷源模式:制冷压缩机7不工作,第二阀件9关断,第一阀件8打开,电子节流阀关断,第三阀件8a打开,阀件4a关断,阀件4b打开。制冷剂循环流向为:制冷剂循环泵3-阀件4b-第三阀件8a-蒸发器6-第一阀件8-冷凝器1-储液器2-制冷剂循环泵3。

2、混合制冷模式:制冷压缩机7工作,第一阀件8关断,第二阀件9打开,第三阀件8a关断,阀件4a关断,阀件4b打开。制冷剂循环流向为:制冷压缩机7-第二阀件9-冷凝器1-储液器2-制冷剂循环泵3-阀件4b-电子膨胀阀5-蒸发器6-制冷压缩机7。

3、电制冷模式:制冷剂循环泵3不工作,制冷压缩机7工作,第一阀件8关断,第二阀件9打开,第三阀件8a关断,阀件4a打开,阀件4b关闭。制冷剂循环流向为:制冷压缩机7-第二阀件9-冷凝器1-储液器2-阀件4a-电子膨胀阀5-蒸发器6-制冷压缩机7。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1