用于生产增压氮的低温精馏系统的制作方法

文档序号:4792523阅读:175来源:国知局
专利名称:用于生产增压氮的低温精馏系统的制作方法
技术领域
本发明一般涉及包括有氧和氮的混合物(如空气)的低温精馏,更具体地说,是涉及增压氮气产品的生产。
低温分离空气之类的混合物以生产氮是一种已建立良好的工业过程。液体和蒸气以逆流接触的方式通过低温精馏塔,在氮和氧之间的蒸气压差导致氮集聚在蒸气中而氧则集聚在液体中。分离塔中的压力越低,由于蒸气压差而产生的分离就越容易。因此,生产氮气产品(或产品氮气)用的分离通常是在相当低的压力下进行的。
经常要求处在高压下的氮气产品。在这种情况下,氮气产品在压缩机中压缩到所需的压力。由于能源费用和压缩机投资费用,这种压缩很费钱。而且,氮气产品的压缩会产生微粒之类的杂质,而如果氮气被用于要求在高纯的情况下应用(例如制造半导体),那么这些杂质就可能是有害的。在这些情况下,可能需要对氮气产品采取进一步提纯的步骤。
该技术中已知能够以高回收率生产增压氮的单塔或双塔生产工艺。但是,现有高回收率生产工艺的问题是至少部分氮产品是在显著小于进料压力的压力下回收的。当要求全部或大部分氮产品处于增压时,这种情况是不利的,因为需要压缩至少一部分取自塔系统的氮气。
因此,本发明的一个目的是提供一种低温精馏系统,其中可以在增压条件下有效地生产氮气产品,而不需要压缩取自塔系统的氮气产品。
本技术领域的专业人员在阅读本说明书后将会清楚的了解上述和其它目的是通过本发明实现的,其中的一个方面是一种用于生产增压氮气的低温精馏方法,其包括(A)将包括氮和氧的进料通入到处于高压工作状态的第一塔中,并在第一塔内通过低温精馏将进料分离为高压氮蒸气和第一富含氧液体;(B)将第一富含氧液体通入到处于中压工作状态的第二塔中,并在第二塔内通过低温精馏将第一富含氧液体分离为富含氮蒸气和第二富含氧液体;(C)将富含氮蒸气通入到处于低压工作状态的第三塔中,并在第三塔内通过低温精馏将富含氮蒸气分离为含氮流体和含氧流体;(D)将至少一部分高压氮蒸气回收成为增压氮气产品。
本发明的另一方面是一种用于生产增压氮气的低温精馏设备,其包括(A)一个第一塔,以及进料通入到第一塔内的装置;(B)一个第二塔,以及将液体从第一塔的下部通入到第二塔内的装置;(C)一个第三塔,以及将蒸气从第二塔的上部通入到第三塔内的装置;(D)用于回收取自第一塔的上部的增压氮气的装置。
在此处所用的术语“塔”指的是一种蒸馏或分馏塔或区,即一种接触的塔或区,其中液体和蒸气相逆流接触以实现流体混合物的分离,例如通过在蒸气-液体接触元件上接触蒸气相和液体相,接触元件例如是安装在塔内的一系列垂直间隔开的盘或板和/或填充物元件,后者可以是一定结构的和/或无规则的填充物元件。对于蒸馏塔的进一步讨论,可参见美国纽约麦克劳·希尔(McGraw-Hill)图书公司出版的由R.H.佩里(Perry)和C.H.契尔顿(Chilton)主编的《化学工程师手册(第五版)》中由B.D.史密斯(Smith)等人编写的第13部分《蒸馏》中第13-3页的《连续蒸馏工艺》。
蒸气和液体接触分离过程取决于组分蒸气压的差别。高蒸气压(或易挥发或低沸点)的组分将易于浓集在蒸气相中而低蒸气压(或不易挥发或高沸点)的组分将易于浓集在液相中。蒸馏是这样一种分离过程,由此可以利用液体混合物的加热来把易挥发的组分浓集在蒸气相中,并从而把不易挥发的组分浓集在液相中。部分冷凝是这样一种分离过程,由此可以利用蒸气混合物的冷却来把易挥发的组分浓集在蒸气相中,并从而把不易挥发的组分浓集在液相中。精馏或连续蒸馏是将接续部分蒸发和冷凝结合在一起的分离过程,该过程通过逆流处理蒸气相和液相而获得。蒸气相和液相的逆流接触可以包括两相之间的积分或微分接触。应用精馏原理以分离混合物的分离工艺装置常常可以互换地被称为精馏塔、蒸馏塔或分馏塔。低温精馏是一种至少部分地在低温如150°K或在此以下的温度进行的精馏工艺。
在此处所用的术语“间接热交换”指的是将两种流体带入热交换关系中,而这两种流体彼此间不存在任何物体接触或相互混合。
在此处所用的术语“进给空气”指的是一种主要包括氮和氧的例如空气的混合物。
在此处所用的术语“塔的上部”和“下部”分别是指塔的上半部和下半部。
在此处所用的术语“液氮”指的是含有氮的浓度至少为99摩尔百分比的液体。
在此处所用的术语“涡轮膨胀”和“涡轮膨胀器”分别表示用于使高压气体流动通过涡轮以降低气体的压力和温度,从而产生冷冻的方法和设备。
下面通过有关附图及具体实施例详细描述本发明的其他目的、方法、结构及特点,其中

图1是本发明的一个优选实施例的示意图,其中通过对进给空气部分的涡轮膨胀来产生冷冻过程;图2是本发明的另一个优选实施例的示意图,其中通过对取自中压塔的气流的涡轮膨胀来产生冷冻过程;图3是本发明的又一个优选实施例的示意图,其中通过对废气流的涡轮膨胀来产生冷冻过程;图4是本发明的又一个优选实施例的另一示意图,其中通过对废气流的涡轮膨胀来产生冷冻过程;以及图5是本发明的另一实施例的示意图,其中一些低压氮产品是额外产生的。
一般说来,本发明包括一个以在高压塔和低压塔的压力之间的压力水平进行工作的第三蒸馏塔,来提高氮的回收率,以达到高于从双塔装置得到回收率。通过增加中压塔,可以得到一个自由度(工作压力)。这个自由度被用来优化氮的回收率,并为产生冷冻条件提供附加的灵活性。这种产生冷冻条件的灵活性被用来同时保持高的氮回收率,使进给空气的压力保持仅仅稍高于所需的氮产品压力,并产生足够的冷冻量以便将过程维持在低温状态,而且任选地使氮产品的某些馏份成为液体。如上所述,本发明的主要特征是一个以介乎高压塔和低压塔的压力之间的压力进行操作的独立的提取塔。该提取塔的作用是使下降的液体富含氧。通过使中压塔以比低压塔的底部更低的L/V状态下进行操作(这有利于使下降的液体富含氧),废气流中的氧含量就可能增大。从中压塔的底部中取出的液流被排入低压塔的冷凝器中,在该处它与从低压塔的底部来的液体混合并蒸发形成废气流。由中压塔的各级产生的附加分离最终表现为增大了高压氮产品的回收。由中压塔的出现而获得的灵活性为将一或多个膨胀涡轮安置在生产过程中提供了更多的选择余地,从而使工厂的冷冻要求得以满足,同时,进给空气压力保持在稍许高于所要求的氮产品压力,这是生产增压氮气最有效的条件。
相当短的中压塔(大约为10级,与其相比较的高压塔和低压塔为40级或更多)通常安置在高压塔的上方。结合成的高压塔和中压塔的高度显著地低于常规的双塔装置的高度。本发明不要求将低压塔安置在高压塔的上方;但低压塔是可以安置在高压塔的上方的,只要这样的配置是有利的。对于许多应用,将低压塔沿高压塔的侧面设置将是最优的配置,因为这种配置使空气分离系统的组装费用更有效益。
下面参照附图更详细地说明本发明。现在参照附图1所示,已经清除了诸如二氧化碳、水蒸汽和碳氢化合物之类高沸点杂质的进给空气2被分割成两股气流100和101。气流100由于通过主热交换器102而被冷却,所生成的冷却的进给空气流103被通入到第一塔104中,后者通常以处在90至200磅/平方英寸绝对值(Psia)范围内的高压状态工作。在第一塔104内,进给空气通过低温精馏而分离成高压氮蒸气和第一富含氧液体,此高压氮蒸气具有高达99.99摩尔百分比或更高的氮浓度,而该第一富含氧液体具有的氧浓度通常处在25~40摩尔百分比的范围内。
第一富含氧液体在液流11中从第一塔104的下部取出并经过热交换器105通过与返回流体的间接热交换而被过度冷却。生成的流体12通过阀106进入以中压状态工作的第二塔107的上部,该中压小于第一塔104的工作压力,通常处在50~85Psia的范围内。在第二塔107内,第一富含氧液体通过低温精馏而分离成富含氮蒸气和第二富含氧液体,该富含氮蒸气具有的氮浓度通常处在60~90摩尔百分比的范围内,而第二富含氧液体的氧浓度通常处在40~70摩尔百分比的范围内。
高压氮蒸气作为气流108从第一塔104的上部排出。气流108的一部分65通过热交换器105加热,并生成的受热气流23经过主热交换器102被进一步加热,从而部分用于进行上述进给空气的冷却。生成的气流24从主热交换器102排出并作为增压氮气产品被回收,其压力通常在90至200Psia的范围内,且其氮浓度高达99.99摩尔百分比或更高。
气流108的另一部分109通入到冷凝器/重沸器110,其在该处通过与第二富含氧液体的间接热交换而被冷凝,用于为第二塔107提供蒸气沸腾。生成的冷凝氮流111作为回流从冷凝器/重沸器110通入到第一塔104的上部。
富含氮蒸气作为气流51从第二塔107的上部排出,经过阀112后进入到第三塔115的下部。第三塔115处在要比第二塔107的工作压力要小的低压下工作,通常处在30至60Psia的范围内。
进给空气流101通过压缩机116被压缩至通常处在140至250Psia范围内的压力。产生的压缩气流117通过冷却器18被冷却,以除去压缩热,再通过部分地穿过主热交换器102而进一步被冷却,并通过涡轮膨胀器119被涡轮膨胀至接近第三塔115的工作压力。生成的涡轮膨胀的气流120被通入到第三塔115的下部。
在第三塔115内,进入第三塔的进给空气通过低温精馏被分离为含氮流体和含氧流体,该含氮流体的氮浓度通常处在99至99.999摩尔百分比的范围内,而含氧流体的氧浓度通常处于35至50摩尔百分比的范围内。
含氧流体作为液流13从第三塔115的下部排出,经过阀121进入到顶部冷凝器122的蒸发部分。第二富含氧流体作为液流113从第二塔107的下部排出,通过热交换器123而被过度冷却并作为液流114通入顶部冷凝器122的蒸发部分。含氮流体作为蒸气流124从第三塔115的上部通入到顶部冷凝器122的冷凝部分。
在顶部冷凝器122中,含氮流体通过与通入到蒸发侧的液体的间接热交换受到冷凝,从而产生液氮和废气。废气作为气流45从顶部冷凝器122排出,通过热交换器123、105和102逐渐被加热,并作为气流从系统中排走。
冷凝的含氮流体即液氮作为液流125以回流形式通入到第三塔115中。最好液流125的一部分31通过液体泵126增压到大约为第一塔104的工作压力。生成的增压液流32通过热交换器123受热,且生成的液流33通过阀127进入到第一塔104的上部,在那里它用作低温精馏用的附加回流。如果需要,液流32的一部分128可以作为液氮产品回收。
图2至图5表示出本发明的另一些实施例。为了避免不必要的重复,图2至图5所示的实施例只详细讨论不同于图1所示实施例的那些方面。图中编号对共同的元件是相同的。
图2表示出另一个实施例,其中富含氮蒸气在通入第三塔之前先进行涡轮膨胀,而整个进给气流通入第一塔时并没有受压缩和涡轮膨胀的部分。现在参照图2所示,富含氮蒸气作为气流51从第二塔107的上部排出,并通过部分地穿过主热交换器102而受热。生成的气流129而后通过涡轮膨胀器130被涡轮膨胀到大约为第三塔115的工作压力,然后作为气流131通入到第三塔115的下部。对于图2中所示的实施例,通过富含氮蒸气的涡轮膨胀产生冷冻过程而不是通过进给空气流的涡轮膨胀。
图3表示出又一个实施例,其中冷冻过程是由废气的涡轮膨胀产生的。现在参照图3所示,气流48不是从系统排走而是通过压缩机132压缩到通常处在20至50Psia的范围内的压力。生成的压缩气流133通过冷却器134被冷却以除去压缩热,再通过部分地穿过主热交换器102而被冷却,并通过涡轮膨胀器135而被涡轮膨胀到通常处于15至20Psia范围内的压力。生成的涡轮膨胀气流136通过热交换器105和102被加热,并作为气流137从系统中排走。在通过主热交换器102的过程中,经涡轮膨胀的废气流用于冷却进给空气,从而将产生的冷冻过程合并到系统中。
此外,在图3所示的实施例中,一部分进给空气95被通入重沸器138,在那里它通过与含氧液体的间接热交换而被冷凝。生成的冷凝液流139而后通过阀140,之后进入到第三塔115。
图4表示出又一个实施例,其中一部分富含氮蒸气受压缩而后被涡轮膨胀以产生制冷。现在参考图4所示,气流51的一部分141并未通入到第三塔115中,而是通过主热交换器102被加热。生成的气流142而后通过压缩机143被压缩到通常处于50至100Psia范围内的压力。生成的压缩流144通过冷却器145被冷却以除去压缩热,通过部分地穿过主热交换器102而被冷却并由涡轮膨胀器涡轮膨胀到通常处于15至20Psia范围内的压力。生成的涡轮膨胀的气流147与气流45合流而形成合并气流148,后者而后通过热交换器105和102被加热并作为气流149从系统中排走。在通过主热交换器102的过程中,包括有涡轮膨胀气流147的气流148用于冷却进入空气,从而将产生的冷冻过程合并入系统中。
图5表示一个类似于图2的实施例,所不同的是附加地回收一些含氮流体作为低压氮气产品。现在参照图5,含氮流体124的一部分75并不通入到顶部冷凝器122中,而是通过接续的热交换器123、105和102被加热并作为低压氮气产品150回收。
此外,在图5所示的实施例中,气流13的一部分151并不通入到顶部冷凝器122中,而是通过液压泵152增压。生成的增压气流153而后与气流11合流而形成合并气流154,后者通过热交换器105来冷却,之后通过阀106进入第二塔107的上部。
虽然本发明是参照某些优选实施例而详细说明的,但本技术领域的专业人员将会理解,在本发明权利要求书的精神实质及其范围内还可以有其它实施例。
权利要求
1.一种生产增压氮气用的低温精馏方法,其包括(A)将包括氮和氧的进料通入到处于高压工作状态的第一塔中,并在第一塔内通过低温精馏将进料分离为高压氮气和第一富含氧液体;(B)将第一富含氧液体通入到处于中压工作状态的第二塔中,并在第二塔内通过低温精馏将第一富含氧液体分离为富含氮蒸气和第二富含氧液体;(C)将富含氮蒸气通入到处于低压工作状态的第三塔中,并在第三塔内通过低温精馏将富含氮蒸气分离为含氮流体和含氧流体;(D)将至少一部分高压氮蒸气回收成为增压氮气产品。
2.根据权利要求1所述的方法,其特征在于,第三塔中产生的含氮流体其压力增大并被通入到第一塔中。
3.根据权利要求1所述的方法,其还包括压缩一般包括氮和氧的气流,涡轮膨胀该压缩的气流,并使经涡轮膨胀的气流进入到第三塔中。
4.根据权利要求1所述的方法,其特征在于,富含氮蒸气在被通入到第三塔之前是受到涡轮膨胀的。
5.根据权利要求1所述的方法,其还包括通过与含氧流体的间接热交换而冷凝包括氮和氧的气流。并将该经冷凝的气流通入到第三塔中。
6.根据权利要求1所述的方法,其还包括使含氧流体通过与含氮流体的间接热交换以产生废气,压缩废气,使压缩的废气涡轮膨胀,并使经涡轮膨胀的废气通过与进料的间接热交换,以便在使进料进入到第一塔之前冷却进料。
7.根据权利要求1所述的方法,其还包括压缩富含氮蒸气,使经压缩的富含氮蒸气涡轮膨胀,并使经涡轮膨胀的富含氮蒸气通过与进料的间接热交换,以便在使进料进入到第一塔之前冷却进料。
8.根据权利要求1所述的方法,其还包括回收含氮流体成为低压氮气产品。
9.根据权利要求1所述的方法,其还包括回收含氮流体作为液氮产品。
10.根据权利要求1所述的方法,其还包括增大从第三塔排出的含氧流体的压力,并使增压的含氧流体通入到第二塔中。
11.一种生产增压氮气用的低温精馏设备,其包括(A)一个第一塔,以及用于将进料通入到第一塔中的装置;(B)一个第二塔,以及用于将液体从第一塔的下部通入到第二塔中的装置;(C)一个第三塔,以及用于将蒸气从第二塔的上部通入到第三塔中的装置;(D)用于回收取自第一塔的上部的增压氮气的装置。
12.根据权利要求11所述的设备,其还包括用于增大取自第三塔的上部的流体的压力的装置,以及用于将该增压流体通入到第一塔中的装置。
13.根据权利要求11所述的设备,其还包括一个压缩机、一个涡轮膨胀器、用于将流体从压缩机通入到涡轮膨胀器的装置,以及用于将流体从涡轮膨胀器通入到第三塔中的装置。
14.根据权利要求11所述的设备,其特征在于,用于将蒸气从第二塔的上部通入到第三塔中的装置包括一个涡轮膨胀器。
15.根据权利要求11所述的设备,其还包括一个压缩机、一个涡轮膨胀器和一个热交换器,用于将取自至少一个塔的上部的流体通入到压缩机的装置、用于将流体从压缩机通入到涡轮膨胀器的装置,以及用于使流体从涡轮膨胀器经过热交换器的装置,而且其中还有用于将进料通过上述热交换器通入塔中的装置。
全文摘要
一种大量生产增压氮用的低温精馏系统,其使用一个附加的蒸馏塔,该塔的工作压力介乎于高压塔和低压塔的压力之间,由此通过改善冷冻生产的灵活性而使氮的回收最优化。
文档编号F25J3/04GK1126304SQ95103548
公开日1996年7月10日 申请日期1995年3月24日 优先权日1994年3月25日
发明者D·P·邦纳奎斯特, M·J·罗伯特斯 申请人:普拉塞尔技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1