节流阀和用于在流过节流阀的流体流中增大液滴尺寸的方法

文档序号:5029884阅读:351来源:国知局
专利名称:节流阀和用于在流过节流阀的流体流中增大液滴尺寸的方法
技术领域
本发明涉及一种节流阀和一种用于在流过节流阀的流体流中增大液滴尺寸的方法。
背景技术
在油气工业中,控制阀用于控制压力、液位、温度和流量。在有些情况下,一旦在控制阀上建立充足的压降,这些控制阀就在阻流或节流状态下运行。在处理天然气时,阀上的这种压力减低会在没有从气体抽取热量或功的情况下导致温度下降。这种所谓的等焓膨胀过程也被称为焦耳-汤普森(JT)冷却。建立这种压力减低的阀被称为JT阀。JT阀的冷却效应用于冷凝一部分天然气流,以便可以在容器中分离出液化的部分。对于这样的大多数分离容器来说,驱动力是惯性或重力,或者换句话说,液滴的质量决定了分离的效率。放在JT阀之前的低温分离器通常被称为JT-LTS系统。
即使JT阀最初的功能是流速控制,也常常忘记第二功能是建立可分离的液相。在气体处理工业中,由JT阀的等焓膨胀引起的平均液滴尺寸是未知的,因此下游分离器的分离效率更是未知的。由于亚最佳的分离效率,气体品质问题不时地发生。在那些情况下,通常是烃露点保持太高,这表明,尤其是烃滴势必很小。
国际专利申请WO2004/001260和美国专利4,384,592和4,671,321公开了配备有漩涡赋予装置的节流阀,所述漩涡赋予装置在流过阀的流体通量中产生涡流。
美国专利4,383,592和4,671,321公开的阀设置有穿孔套筒,其中,穿孔相对于套筒的中心轴线具有不同的方向,这样,在流过阀的流体通量中产生多个涡流,所述多个涡流可以反转,可以充当噪音阻尼器。
国际专利申请WO2004/001260公开的阀设置有阀杆,所述阀杆限定了带有切向入口和非切向入口两种入口的流体涡流室。如果阀完全或几乎完全打开,流体仅仅流过切向入口,在流体通量中不会产生漩涡。如果阀差不多关闭,则流体仅仅流过非切向入口,从而产生涡流和流动阻力,并抑制阀机构的腐蚀性磨损和气蚀性磨损。
美国专利4,055,961和4,544,390和国际专利申请WO2004083691公开了节流阀,其中气态组分在焦耳汤姆逊效应的作用下冷凝。
已知的焦耳汤姆逊及其它节流阀存在的问题在于,冷凝出的液滴尺寸通常较小,以致形成雾状流,液体和气态相不容易从该雾状流中分离。
本发明的目的是解决这个问题,其提供了一种节流阀,其中与已知的节流阀相比,可以形成较大的液滴。

发明内容
依照本发明,提供了一种节流阀,具有外壳;阀体,所述阀体可动地布置在外壳中,以控制从流体入口通道流入该阀的流体出口通道的流体流通量,以致膨胀和冷却流体流;和漩涡赋予装置,所述漩涡赋予装置把漩涡运动强加给流过流体出口通道的流体流,所述漩涡赋予装置定向成,如果该阀完全打开,流体流绕流体出口通道的纵向轴线打漩,从而诱导液滴朝流体出口通道的外周打漩和聚结。
节流阀任选包括大体上圆锥形的中心体,所述中心体布置在流体出口通道中,大体上与流体出口通道的中心轴线同轴,所述中心体形成具有沿下游方向逐渐增加的横截面面积的流体出口通道,从而产生带有促进被冷凝的液滴形成和聚结的涡流要素的涡流。
该阀还包括穿孔套筒,如果使用时阀体容许流体从流体入口通道流入流体出口通道,流体经由该套筒从流体入口通道流入流体出口通道,漩涡赋予装置通过套筒的纵向和圆周间隔开的穿孔提供,穿孔相对于套筒的纵向轴线至少部分地切向定向,这样,在使用时诱导流体流绕流体出口通道的纵向轴线打漩。
至少一些穿孔具有中心轴线,所述中心轴线在选定的距离D处以0到90度之间的选定锐角与套筒的纵向轴线相交,穿孔套筒的内表面位于离套筒的纵向轴线半径R处,使得距离D与半径R之比在0.2到1之间,优选在0.5到0.99之间。
该阀可以是具有大体上管状流体出口通道和阀体的焦耳汤普森阀,阀体包括沿流体出口通道的大体上纵向方向可动的活塞,穿孔套筒可以固定到活塞上,这样,流体入口通道的大体上环形的下游端至少部分地环绕穿孔套筒,并且当阀体处于完全打开位置时,至少一些流体被诱导从流体入口通道经由穿孔套筒上的非径向穿孔流入流体出口通道。
依照本发明,还提供了一种用于在流过节流阀出口段的多相流体流中增大液滴尺寸的方法,所述多相流体流包括液滴和载流流体,其中,漩涡赋予装置把漩涡运动强加给流过流体出口通道的流体流,从而诱导液滴朝流体出口通道的外周打漩,并诱导液滴聚结成增大的液滴。
流体可以下列中的任一种1)带有液相的气态主导载体;或者,2)带有不相溶液相和/或气相的液体主导载体。选项1)的例子是带有JT阀的低温分离(LTS)工艺,JT阀供给有带有冷凝物、水和乙二醇的液体部分的天然气流。选项2)的例子是带有节流阀的冷凝稳定工艺,节流阀供给有带有水和/或乙二醇的液体部分的冷凝物流。
依照本发明的节流阀和方法的这些及其它特征、目的和优点将从附带的权利要求书、摘要和依照本发明节流阀的实施例的详细说明并参照附带的视图变得显而易见。


图1A是依照本发明节流阀的纵向剖视图;图1B是图1A中节流阀的出口通道的放大剖视图;图1C示出了图1A和1B中节流阀的出口通道中流体流的漩涡运动;图1D示出了图1A和1B中节流阀的出口通道外周上液滴的聚结;
图2A是传统节流阀的纵向剖视图;图2B是图2A中节流阀的出口通道的放大剖视图;图2C示出了图2A和2B中传统阀的出口通道中流体流的不确定运动;和图2D示出了图2A和2B中传统节流阀的出口通道中带有小液滴的均匀雾状流。
具体实施例方式
如图1A-1D所示依照本发明的节流阀的实施例的阀几何结构能够增强在沿焦耳-汤姆逊或其它节流阀的流径膨胀期间增强液滴的聚结过程。这些较大的液滴比传统焦耳-汤姆逊或其它节流阀的情况能够更好地分离。
图1A所示的阀包括阀外壳1,活塞式阀体2和相联的穿孔套筒3可滑动地布置在阀外壳1中,这样,通过阀轴5上的齿轮4的转动,带齿的活塞杆6上下推动活塞式阀体进入流体出口通道7内,如箭头8所示。该阀具有流体入口通道9,流体入口通道9具有可以环绕活塞2和/或穿孔套筒3的环形下游段9A,被容许从流体入口通道9流入流体出口通道7的流体的通量由活塞式阀体2的轴向位置和相联的穿孔套筒3控制。该阀还包括圆锥形的中心体15,该中心体15大体上与流体出口通道7的中心轴线11同轴,中心体15产生具有沿下游方向逐渐增加的横截面面积的出口通道7,从而控制出口通道7中的流体通量的减低,并产生带有促进形成和聚结被冷凝的液滴的涡流要素的涡流。
如图1B所示,在依照本发明的节流阀中,穿孔套筒3包括倾斜或非径向穿孔10,所述穿孔10相对于流体出口通道7的中心轴线11沿选定的部分切向钻孔,使得每个穿孔10的纵向轴线12在距离D处横过中心轴线11,距离D为套筒3内半径R的0.2到1倍,优选为0.5到0.99倍。
倾斜穿孔10在流过流体出口通道7的流体流中产生漩涡流动,如箭头14所示。也可以通过阀内件和/或阀杆的特殊几何结构强加漩涡运动。在依照本发明的阀中,可获得的释放压力用于等焓膨胀,以在流体流中建立漩涡流动。动能主要通过涡流沿阀下游的延伸管道长度的阻尼而消散。
如图1C和1D所示,在阀的出口通道中建立漩涡流动的优点是双重的1.规则速度图案->较少界面剪切->较少液滴崩裂->较大的液滴2.在流体出口通道7流动区域的外周7A中液滴的集中->大的数量密度->改善的聚结->大的液滴18。
虽然任何焦耳-汤姆逊或其它阻流和/或节流类型的阀都适用于建立漩涡流动,但是,优选使用Mokveld Valves B.V.提供的、在其国际专利申请WO2004083691中公开的阻流类型的节流阀。
图2A-2D示出了由Mokveld Valves B.V.提供的用于流量控制用途的传统笼式阀(cage-valve),其中流体通量在穿孔套筒23上被节流,穿孔套筒23连接于活塞式阀体22。
如图2A所示的传统Mokveld节流阀包括阀外壳21,活塞式阀体22和相联的穿孔套筒23可滑动地布置在阀外壳21中,这样,通过阀轴25上的齿轮24的转动,带齿的活塞杆26上下推动活塞式阀体进入流体出口通道27内,如箭头28所示。该阀具有流体入口通道29,流体入口通道29具有可以环绕活塞22和/或穿孔套筒23的环形下游段29A,被容许从流体入口通道29流入流体出口通道27的流体的通量由活塞式阀体22的轴向位置和相联的穿孔套筒23控制。
传统套筒23包括穿孔30——缝隙或孔——其具有径向定向,即正交于套筒23的圆柱形表面。通过沿轴向方向移动活塞22和套筒23,可以控制流动区域。
如图2C所示,带有径向开口的笼式阀的流型很紊乱,所以引起高剪切力,导致液滴崩裂成更小的液滴。
漩涡流动对液滴尺寸影响的计算下面的计算示出了流体出口通道7中的雾状流的漩涡运动对液滴的聚结和成长的影响。
这些计算仅仅作为例子,这些计算不将依照本发明的方法和节流阀局限为任何科学理论的应用。
假定阀在阻流状态下运行,流体的平均切向进口速度(Utan)接近150m/s。对于直径(D)为80mm的典型笼,涡流强度Γ为Γ=πDUtan=38m2/s等式1为确定在何径向位置直径(d=1μm)、密度(ρL=650kg/m3)的液滴将在密度(ρG=60kg/m3)、粘度(v=2.10-7m2/s)和汇集强度(sinkstrength)(Q=4m2/s)的气态流体的漩涡中旋转,使用下列表达式Req=ΓQ2π·29·d24π2·v·(ρLρG-1)=25mm]]>等式2假设>>99%的全部液体质量由d≥1μm的液滴表示,那么该质量集中在半径Req=25mm之外的流动区域内。在笼中Req=25mm之外的流动区域表示总横截面流动区域的61%。与非漩涡流动相比,液滴数量密度(N)以因子1.67增加。
根据Chesters,相同尺寸的液滴之间的碰撞数量的基本公式为Ncol=-dNdt=k12ureld2N2]]>等式3在等式3中Ncol=每秒、每m3发生的碰撞数量N=每mY存在的液滴数量urel=液滴之间的相对速度d=液滴直径=2r(半径)k1=大约为1的常数由于在漩涡流动中,N以因子1.67增加,所以,液滴碰撞率以因子1.672=2.8增加。
液滴之间的相对速度(urel)按如下确定1.布朗运动2.湍流运动
3.离心漂移运动对于聚结,所关心的液滴尺寸范围是1≤d≤5μm。对于该尺寸范围,相对速度由湍流运动主导。布朗运动可以忽略不计,因为分子冲击不会影响1μm的液滴。虽然离心漂移运动增强了漩涡流动中的液滴相对运动,但是,仍然可以被忽略不计,因为湍流是更主导的驱动力。
聚结率可以由液滴尺寸倍增的时间来表示。d=1微米的液滴在标准重力或离心分离机中是不能被分离出来的。为变得可分离,最低需要液滴直径增加因子5。为了获得液滴直径增加因子5,不得不出现53=125的碰撞。所以,让一个液滴与其它液滴碰撞125次所需要的最低保持时间(t125)限定在如下的表格中。用于聚结时间标度(scales)的这些等式只是针对作为驱动力的湍流运动。
表1用于漩涡和非漩涡流动的聚结时间标度

漩涡流动对液滴聚结的影响的第一次序(order)概算(approximation)显示,由于流动湍流,较大地改善了聚结率。液滴以因子5增大——以便这些液滴在传统分离容器中变得可分离——对于漩涡流动,需要典型长度标度为2米,而对于非漩涡流动,为27米。
如图1D所示,在依照本发明的节流阀中,漩涡运动的存在使液滴18集中在流体出口通道7的外边界的减低流动区域7A(总体的61%)中,这样,液滴数量密度以大约1.67的因子增加。此外,由于高的切向速度,在无涡旋中心中的湍流消散率大。
应当理解,在依照本发明的节流阀的出口通道7中较大液滴的形成使得在流体分离组件中分离液相和气相更加容易,流体分离组件可以布置在节流阀的下游。这样的后置式流体分离组件可以包括一个或多个重力和/或气旋分离容器。
流体可以是下列中的任一种1)带有液相的气态主导载体;或者,2)带有不相溶液相和/或气相的液体主导载体。选项1)的例子是带有JT阀的LTS工艺,JT阀供给有带有冷凝物、水和乙二醇的液体部分的天然气流。选项2)的例子是带有节流阀的冷凝稳定工艺,节流阀供给有带有水和/或乙二醇的液体部分的冷凝物流。
权利要求
1.一种节流阀,具有外壳;阀体,所述阀体可动地布置在外壳中,以控制从流体入口通道流入该阀的流体出口通道的流体流通量,以致膨胀和冷却流体流;和漩涡赋予装置,所述漩涡赋予装置把漩涡运动强加给流过流体出口通道的流体流,所述漩涡赋予装置定向成,如果该阀完全打开,流体流绕流体出口通道的纵向轴线打漩,从而诱导液滴朝流体出口通道的外周打漩和聚结。
2.如权利要求1所述的节流阀,其特征在于,大体上圆锥形的中心体布置在流体出口通道中,所述中心体大体上与流体出口通道的中心轴线同轴,所述中心体产生具有沿下游方向逐渐增加的横截面面积的出口通道,从而产生带有促进形成和聚结被冷凝的液滴体的涡流要素的涡流。
3.如权利要求1所述的节流阀,其特征在于,该阀还包括穿孔套筒,如果使用时阀体容许流体从流体入口通道流入流体出口通道,流体经由所述穿孔套筒从流体入口通道流入流体出口通道,漩涡赋予装置通过套筒的纵向和圆周间隔开的穿孔提供,穿孔相对于套筒的纵向轴线至少部分地切向定向,这样,在使用时诱导流体流绕流体出口通道的纵向轴线打漩。
4.如权利要求3所述的节流阀,其特征在于,至少一些穿孔具有中心轴线,该中心轴线在选定的距离D处以一选定锐角横过套筒的纵向轴线。
5.如权利要求4所述的节流阀,其特征在于,穿孔套筒的内表面位于离套筒的纵向轴线半径R处,距离D与半径R之比在0.2到1之间。
6.如权利要求5所述的节流阀,其特征在于,距离D与半径R之比在0.5到0.99之间。
7.如前述任一权利要求所述的节流阀,其特征在于,该阀是具有大体上管状流体出口通道和阀体的焦耳汤普森阀,所述阀体包括沿流体出口通道的大体上纵向方向可动的活塞,以及其中,穿孔套筒固定到活塞上,这样,流体入口通道的大体上环形的下游端至少部分地环绕穿孔套筒,并且当阀体处于完全打开位置时,至少一些流体被诱导从流体入口通道经由穿孔套筒上的非径向穿孔流入流体出口通道。
8.一种用于在流过节流阀出口段的多相流体流中增大液滴尺寸的方法,所述多相流体流包括液滴和载流流体,其中,漩涡赋予装置把漩涡运动强加给流过流体出口通道的流体流,从而诱导液滴朝流体出口通道的外周打漩和聚结。
9.如权利要求8所述的方法,其特征在于,所述节流阀包括外壳;阀体,所述阀体可动地布置在外壳中,以便阀体控制从流体入口通道流入该阀的流体出口通道的流体流;还包括穿孔套筒,如果使用时阀体容许流体从流体入口通道流入流体出口通道,则流体经由所述穿孔套筒从流体入口通道流入流体出口通道,其中,套筒的至少一些穿孔相对于套筒的纵向轴线至少部分地切向定向,这样,多相流体流被诱导在流体出口通道内部打漩,液滴被诱导朝流体出口通道的外周打漩,并诱导液滴聚结成增大的液滴。
10.如权利要求8或9所述的方法,其特征在于,一气-液分离组件连接到节流阀的出口通道上,在所述气-液分离组件中,由该阀排出的流体的液相和气相至少部分地分离。
11.如权利要求8或9所述的方法,其特征在于,多相流体流包括烃和水状流体,以及其中,至少一小部分水状流体转变为液态水液滴,液态水液滴被诱导朝流体出口通道的外周打漩,并在流体出口通道的外周聚结成增大的水滴和/或环形水膜。
12.如权利要求8或9所述的方法,其特征在于,多相流体流包括气态载流流体,流体入口通道和/或流体出口通道和/节流阀内部的其它部分提供具有喉部截面的流体通道,在喉部截面中,流体流加速,从而被诱导借助于焦耳-汤姆逊效应膨胀和冷却。
13.如权利要求12所述的方法,其特征在于,多相流体流在喉部截面膨胀,达到接近音速或超音速。
全文摘要
一种焦耳-汤普森或其它节流阀,其包括出口通道(7),在出口通道(7)中,漩涡赋予装置(10)把漩涡运动(14)强加给由该阀排出的被冷却流体流(10),从而诱导液滴朝流体出口通道(7)的外周打漩,并诱导液滴聚结成增大的液滴,增大的液滴可以很容易地从气态或其它载流流体中分离出来。
文档编号B01D45/16GK101095024SQ200580045501
公开日2007年12月26日 申请日期2005年12月29日 优先权日2004年12月30日
发明者M·贝廷 申请人:缠绕机公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1