包括碳酸盐化合物沉淀的脱盐方法和系统的制作方法

文档序号:4974164阅读:623来源:国知局

专利名称::包括碳酸盐化合物沉淀的脱盐方法和系统的制作方法包括碳酸盐化合物沉淀的脱盐方法和系统鹏申i青,X綠根据35U.S.C.§119(e),本申请要求下列专利的提交日的优先权2008年6月17日递交的美国临时专利申请顺序号61/073,326;2007年6月28日递交的美国临时专利申请顺序号60/937,786和2007年12月28日递交的美国临时专利申请顺序号61/017,392;这些申请的公开内容通过引用结合到本文中。舰脱盐系统在许多干旱地区和在淡水供应受限但是有大量海水、内陆水路、河流或其他含盐的水源的海运应用中是需要的。淡水也在许多商业过程中大量需要,这些商业过程包括农业和电力产生。最常规的脱盐系统采用反渗透或蒸馏方法。这两种方法通常均得到约50%的回收率。因此对作为进料加入的每加仑水而言,1/2加仑将成为纯化淡化水,而另外1/2加仑将以盐水含量约是进料水的浓度的两倍浓度排放。该浓縮盐水向环境的排放可产生局部的负面影响。常规的脱盐系统可产生盐含量高且对大多数生物体有毒的盐水副产物。废盐水的处理对环境有潜在性的危险。另外,脱盐进料水的组分可不利地影响脱盐系统及其组件的效率和/或有效期。例如,在反渗透系统中,进料水中二价阳离子的存在可导致膜污垢或结垢,这限制了膜的有效期。概述本发明提供了包括碳酸盐化合物沉淀的脱盐方法。在某些实施方案中,在脱盐前使进料水经历碳酸盐化合物沉淀条件。在某些实施方案中,使脱盐废盐水经历碳酸盐化合物沉淀条件。在还其他实施方案中,使进料水和废盐水均经历碳酸盐化合物沉淀条件。本发明的方面包括二氧化碳螯合。本发明的实施方案还利用该碳酸盐化合物沉淀条件的沉淀产物作为建筑材料,例如水泥。本发明也提供了配置用于本发明方法的系统。附图简述图1提供了根据本发明实施方案的沉淀处理的流程图。图2提供了各种波特兰水泥掺混物测定的强度达到结果的图,包括如下面的实验部分中更详细描述的掺混物,这些掺混物包含根据本发明实施方案的碳酸盐化合物沉淀物。图3A-3C提供了按下面实验部分的描述得到的沉淀物的SEM显微图像。图4提供了按下面实验部分的描述得到的沉淀物的FTIR。详细描述本发明提供了包括碳酸盐化合物沉淀的脱盐方法。在某些实施方案中,在脱盐前使进料水经历碳酸盐化合物沉淀条件。在某些实施方案中,使脱盐废盐水经历碳酸盐化合物沉淀条件。在还其他实施方案中,使进料水和废盐水均经历碳酸盐化合物沉淀条件。本发明的方面包括二氧化碳螯合。本发明的实施方案还利用该碳酸盐化合物沉淀条件的沉淀产物作为建筑材料,例如水泥。本发明也提供了为用于本发明的方法而配置的系统。在对本发明进行更详细的描述之前,应理解,本发明不限于所描述的特定实施方案,当然,本身可以变化。也应理解,本文所使用的术语的目的仅用于描述特定的实施方案,而无意进行限制,因为本发明的范围将仅由权利要求来限定。当提供数值的范围时,应理解,本发明中包括在该范围的上限和下限之间该单位下限十分之一的各中间值(除非上下文另外清楚地指明),以及该指定范围中的任何其他指定值或中间值。这些更小范围的上限和下限可独立包括在更小的范围中,并且也包括在本发明内,服从于指定范围中任何具体排除的限制。当指定范围包括限度之一或两者时,排除所包括的那些限度中任一个或两者的范围也包括在本发明中。某些范围在本文中用在前加上术语"约"的数值表示。术语"约"在本文中用于提供它前面的确切数字,以及接近的数字或大约该术语前面数字的文字支持。在确定数字是否接近或大约接近具体记载的数字时,该接近或大约未记载的数字可以是在它出现的上下文中的数字,提供该具体记载的数字的基本上等同物。除非另外定义,本文所使用的所有技术和科学术语均具有与本发明所属领域普通技术人员通常所理解的相同含义。虽然类似于或等同于本文所描述那些的任何方法和材料也可用于本发明的实践或试验,现在描述代表性的示例性方法和材料。本说明书中引用的所有出版物和专利通过引用结合到本文中,好像各单独的出版物或专利具体地并单独地指明要通过引用结合并且通过引用结合到本文中,以公开和描述与引用的这些出版物相关的方法和/或材料。任何出版物的引用是为了其递交日期前的公开内容,而不应解释为承认本发明没有资格由于前面的发明而先于该出版物。此外,所提供的出版物的日期可能与实际出版物的日期不同,这些日期可能需要独立证实。应注意,如本文和权利要求中使用,单数形式"一"和"该"包括复数指示物,除非上下文另外清楚地指明。还应注意,可起草权利要求以排除任何任选的元件。因此,对于像"唯一"、"仅"等与要求元件的记载相关的此类排斥性术语的使用,或"负面"限制的使用来讲,该陈述将起前提基础的作用。对于本领域技术人员来讲,在阅读本公开后,本文所描述的和举例说明的各实施方案中每一个具有不连续的组件和特征将是显而易见的,这些组件和特征可以容易地与任何其他几个实施方案的特征分开或组合而不背离本发明的范围或精神。可以所记载事件的顺序或以逻辑上可能的任何其他顺序实施任何记载的方法。方法如上所总结,本发明的方面包括脱盐方法,其中这些方法的一个方面是碳酸盐化合物沉淀处理在整个脱盐方案期间进行一次或多次,例如,其中使进料水和/或废盐水经历碳酸盐化合物沉淀条件。这些方法的实施方案包括(a)使进料水经历碳酸盐化合物沉淀条件一次或多次,以产生碳酸盐化合物沉淀物和碱土金属离子贫化(d印leted)水;和(b)使碱土金属离子贫化水脱盐,以产生淡化水。这些方法的实施方案包括a)使盐水脱盐,以产生脱盐的水和废盐水;b)使该废盐水经历矿物质沉淀条件,以产生沉淀的矿物质组合物和贫化(即处理过的)的盐水;和c)将该矿物质组合物与所述贫化盐水分离。在某些实施方案中,这些步骤可涉及步骤a-c的几次顺序处理,导致接近零,或在该处理之后排放。在某些上述实施方案中,这些方法包括向水中充入外原性来源(例如来自电力工厂的烟道气)的二氧化碳,以提高该处理的效率和产率。本发明的实施方案中被脱盐的盐水可来自任何方便的盐水源。术语"盐水"以其常规的含义使用,指许多不同类型的流体水溶液而不是淡水,其中术语"盐水"包括微咸水、海水和盐水(包括人造盐水,例如地热工厂废水等),以及具有大于淡水盐度的盐度的其他盐水。盐水是盐饱和的或接近饱和的水,并具有为50卯t(每千分数)或更大的盐度。微咸水是比淡水咸的水,但是不像海水那样咸,具有范围在O.5-35ppt的盐度。海水是来自海或洋的水,并具有范围在35-50ppt的盐度。海水进料水从其获得的盐水源可以是天然存在的来源,例如海、洋、湖、沼泽、河口、泻湖等,或人造来源。在某些实施方案中,盐水源是洋或海,盐水进料水是海水。目标盐水是含一种或多种碱土金属例如镁、钙等的盐水,以便它们可以被视为含碱土金属的水。此类水的实例有以50卯m-20,OOOppm,例如200ppm-5000ppm并包括400ppm-1000ppm范围的量包括f丐的那些水。目标水包括以50卯m-40,OOO卯m,例如100ppm-10,OOOppm并包括500ppm-2500ppm范围的量包括镁的那些水。在盐水脱盐中可采用任何方便的方案。脱盐(即减少盐分或脱盐作用)指从水中除去过量的盐和其他矿物质的几种方法中的任何一种。在脱盐中,水被脱盐以转化成适用于动物消耗或灌溉的淡水,或者,如果除去了几乎所有的盐,适用于人类消耗的淡水。目标脱盐方法包括但不限于蒸馏方法,例如多级闪蒸(MSF)、多效蒸发器(MED口ME)、蒸气压縮蒸发(VC)和蒸发/浓縮;离子交换法;膜方法,例如反向电渗析(EDR)、反渗透(RO)、纳米过滤(NF)、正向渗透(FO)、膜蒸馏(MD)等。如上所述,在整个脱盐处理期间的某点,例如在脱盐前和/或后,进行碳酸盐化合物沉淀步骤,以便水经历碳酸盐化合物沉淀条件。因此,使脱盐处理的进料水和/或废盐水经历碳酸盐化合物沉淀条件。目标碳酸盐沉淀条件包括将目标水,例如进料水和/或废盐水与C02接触,得到充C02的水,然后使充C02的水经历碳酸盐化合物沉淀条件。水与源C02的接触可在使水经历C02沉淀条件的时间之前和/或期间发生,例如,如下面更详细的描述。因此,本发明的实施方案包括其中在使水的体积经历沉淀条件之前,将水的体积与C02源接触的方法。本发明的实施方案包括其中当水的体积正经历碳酸盐化合物沉淀条件时,使水的体积与C02源接触的方法。本发明的实施方案包括其中在使水的体积经历碳酸盐化合物沉淀条件之前和当水的体积正经历碳酸盐化合物沉淀条件时,使水的体积与C02源接触的方法。这些实施方案中的与水的体积接触的C02源可以是任何方便的C02源。C02源可以是液体、固体(例如干冰)或气态(A源。在某些实施方案中,0)2源是气态0)2源。该气态C02可以在空气、工业废流等的范围内广泛地变化。在某些情况下,该气态C02是工厂的废弃产物。工厂的性质可以在这些实施方案中变化,其中目标工厂包括发电厂、化学加工厂和其他产生(A副产物的工厂。废流表示由工厂的活动进程作为副产物产生的气体流(或类似的流),例如废气。气流可以基本上是纯C02或是包括C02和一种或多种另外的气体的多组分气流。可用作本发明方法的实施方案中的(A源的多组分气流(含co》包括还原条件流,例如合成气、位移合成气、天然气和氢气等,及氧化条件流,例如燃烧产生的烟道气。根据本发明可处理的目标特定多组分气流包括含氧燃烧发电厂烟道气、带涡轮的锅炉产物气体、煤气化产物气体、位移煤气化产物气体、无氧蒸煮锅产物气体、井口天然气气流、转化的天然气或甲烷水合物等。在本发明的实施方案中,C02源可以是煤或其他燃料燃烧产生的烟道气,它与带稍微或未预先理的烟道气的盐水的体积接触。在这些实施方案中,含碱土金属的水中镁和钙离子反应形成CaS04和MgS04和其他化合物,以及CaC03和MgC03和其他化合物,有效地从烟道气气流中除去了硫,而未从脱硫步骤中另外释放(A。在某些实施方案中,脱硫步骤可与碳酸盐化合物沉淀步骤一起进行,或者可以在该步骤之前进行。在某些实施方案中,因此有在不同阶段收集的多组反应产物,而在其他实施方案中,有所收集的单一反应产物。除了沉淀反应的含镁和钙产物外,目标化合物包括基于硅、铝、铁、硼和其他元素的那些化合物。由使用这些反应物产生的产物的化学组成和形态可以改变由该方法获得的水泥的反应性,或改变固化的水泥和由它们制备的混凝土的特性性质。在本发明的实施方案中,将灰(下面将更详细的描述)作为这些另外的反应物的一种来源加入到该反应中,生成碳酸盐矿物质沉淀物,该沉淀物含一种或多种组分例如无定形二氧化硅、结晶二氧化硅、硅酸钙、硅酸钙铝,或可由碳酸盐矿物质沉淀过程中的灰反应产生的任何其他部分。水的体积可以用任何方便的方案与C02源接触。当C02是气体时,目标接触方案包括但不限于直接接触方案,例如将气体鼓泡通入盐水的体积、同时接触法,即在单向流动的气相和液相流之间接触、逆流法,即在相反流动的气相和液相流之间接触等。因此,当可能方便时,接触可通过使用注入器、鼓泡器、流体文丘里反应器、喷洒器、气体过滤器、喷雾器、淋盘或填充的柱反应器等完成。在本发明的方法中,使充(A的水的体积(例如按上述制备的)经历碳酸盐化合物沉淀条件,该条件足够产生沉淀的碳酸盐化合物组合物和碱土金属贫化的水,该水在沉淀步骤的上下文中可以视为母液(即该碳酸盐化合物组合物从该水中沉淀后剩下的水的部分)。可采用任何方便的沉淀条件,这些条件导致含碳酸盐固体或沉淀物从充(A的水中产生。目标沉淀条件包括调节充C02的水的物理环境,以产生所期望的沉淀产物的那些条件。例如,充(A的温度可以升高到适用于所期望的碳酸盐化合物的沉淀发生的量。在此类实施方案中,充C02的温度值可升高到5-70°C,例如20-5(TC并包括25-45°C。因此,当沉淀条件的特定设置可以具有范围在0-10(TC的温度时,该温度在某些实施方案中可以升高,以产生所期望的沉淀物。在某些实施方案中,该温度利用从低或零二氧化碳发射源产生的能量升高,例如太阳能源、风能源、水电能源等。在某些实施方案中,该温度可以采用煤或其他燃料燃烧产生的烟道气生成的热升高。本发明的方面包括将充(A的水的pH升高到用于沉淀的碱性水平。pH可以升高到9或更高,例如10或更高,例如11或更高。在本发明的实施方案中,灰用作pH调节剂,例如以升高充C02的水的pH。灰可作为唯一的pH调节剂使用或与一种或多种另外的pH调节剂联合使用。某些实施方案中的目标是用煤灰作为灰。本发明中所采用的煤灰指电厂锅炉或煤燃烧炉,例如,链式筛锅炉、旋风锅炉和流化床锅炉燃烧粉碎的无烟煤、褐煤、烟煤或次烟煤产生的残渣。该煤灰包括为从炉子由废气或烟道气携带的细分煤灰的飞灰;和在炉子底部以聚集物收集的底部灰。灰作为碱性来源的用途进一步在2008年6月17日递交的美国临时专利申请61/073,319描述,其公开的内容通过引用结合到本文中。在本发明的实施方案中,炉渣用作pH调节齐U,例如,以增加充C02的水的pH。炉渣可以作为唯一的pH调节剂使用或与一种或多种另外的pH调节剂联合使用。炉渣由金属的加工产生,可能含有氧化钙和氧化镁以及铁、硅和铝化合物。炉渣作为pH调节剂的使用可通过反应性硅和氧化铝向沉淀产物的导入提供另外的益处。目标炉渣包括但不限于来自铁熔炼的鼓风炉炉渣、来自钢的电弧或鼓风炉加工的炉渣、铜炉渣、镍炉渣和磷炉渣。在某些实施方案中,可采用pH升高剂,其中此类试剂的实例包括氧化物、氢氧化物(例如氧化钙、氢氧化钾、氢氧化钠、水镁石(Mg(0H2)等)、碳酸盐(例如碳酸钠)、蛇纹石、纤蛇纹石等。蛇纹石的加入也将二氧化硅和镁释放到该溶液中,导致含二氧化硅的碳酸盐化合物的形成。加入到水中的PH升高剂的量将取决于该试剂的特殊性质和被调节的水的体积,并将足以将该水的pH升高到所期望的值。或者,水的pH可以通过水的电解升高到所期望的水平。当采用电解时,可采取各种不同的方案,例如采用水银电解槽法(也称为卡士纳-克纳法(Castner-Kellner));隔膜电解槽法和膜电解槽法。在需要时,可以收获水解产物的副产物,例如Hy钠金属等并用于所期望的其他目的。在某些实施方案中,碳酸盐沉淀的上清液的pH水平通过电解增加,然后与海水或脱盐盐水一起被送回到反应容器中,以再参与碳酸盐沉淀。电解前,在这些实施方案中除去钙、镁和其他阳离子可以利用电解法,以更有效的升高溶液的pH。除pH升高剂外的添加剂也可引入到水中,以影响所产生的沉淀物的性质。因此,某些方法的实施方案包括在使水经历沉淀条件的时间之前或期间提供水中的添加剂。某些碳酸钙的多晶形物可能由于痕量的某些添加剂获益。例如,球霰石(vaterite)-—种CaC03的高度不稳定多晶形物以各种不同形态沉淀,并迅速转化成方解石,它可通过在碳酸钙的超饱和溶液中包含痕量的镧如氯化镧,以非常高的产率获得。除了镧以外的其他目标添加剂包括但不限于过渡金属等。例如,已知二价铁或三价铁的加入有利于否则它将不形成的无序白云石(原白云石)的形成。在某些实施方案中,采用有利于沉淀物形成的添加剂,这些沉淀物的特征在于较大尺寸的颗粒,例如,颗粒尺寸的范围在50-1000iim,例如100-500ym,和/或无定形性质。在某些实施方案中,这些添加剂是过渡金属催化剂。目标过渡金属催化剂包括但不限于Zn、Cr、Mn、Fe、Co和Ni的可溶性化合物或其任何组合。目标具体的化合物包括但不限于CoCl2或NiCl2。在使用时,此类过渡金属催化剂的量在某些实施方案中可以在10卯b-2000卯m的范围内,例如100ppb-500卯m变化。可采用此类添加剂的包合物供给无定形产物(其中否则在无此类添加剂时得到结晶产物),和/或与无此类添加剂存在下产生的沉淀物相比,在沉淀物中获得较大的粒度。沉淀物的性质也可受适当的主要离子比率的选择影响。主要离子比率也具有相当大的多晶形物形成的影响力。例如,当水中的镁f丐比率增加时,霰石成为比低镁方解石有利的碳酸钙多晶形物。在低的镁钙比率下,低镁方解石是优选的多晶形物。也可以调节沉淀的速度,以控制化合物相形成的性质。最迅速的沉淀可通过向具有所期望的相的溶液中加晶种实现。不加晶种,迅速沉淀可通过迅速增加海水的pH实现,这导致更多的无定形组分。当二氧化硅存在时,反应速度越快,与碳酸盐沉淀物混合的二氧化硅越多。pH越高,沉淀越迅速,并且沉淀物更多的呈现无定形。在某些实施方案中,选择沉淀的速度,以产生更高纯度的大霰石晶体,例如,范围在20-50iim的聚结结构的晶体,由如下面的实施例II中所描述的范围在10-15iim的各结构组成。因此,在某些实施方案中,一组从水中产生所期望沉淀物的沉淀条件包括水的温度和pH,在某些情形中,包括添加剂的浓度和水中的离子类物质。沉淀条件也可包括一些因素例如混合速度、搅拌的形式例如超声波,及晶种、催化剂、膜或底物的存在。在某些实施方案中,沉淀条件包括超饱和的条件、温度、pH和/或浓度梯度,或使任何这些参数循环或改变。制备根据本发明的碳酸盐化合物沉淀物所采用的方案可以是批量或连续的方案。将认识到,与批量系统相比,在连续流动的系统中制备给定沉淀物的沉淀条件可不同。在从水中制备碳酸盐化合物沉淀物之后,将所产生的沉淀的碳酸盐化合物组合物与母液分离,以制备淡化水,例如可用作用于脱盐或处理过的盐水的进料水的碱土金属贫化的水。沉淀物与淡化水的分离可以用任何常规方法实现,包括机械法,例如,其中大量过量的水例如仅通过重力或加真空、机械压榨,通过将该沉淀物从母液中过滤产生滤液等,从沉淀物中排出。大量水的分离产生湿的、脱水的沉淀物。在某些过滤实施方案中,控制沉淀物颗粒的尺寸以提供有效的和非能量增强的过滤,例如,其中所沉淀的颗粒被制成尺寸范围在50-1000iim,例如100-500ym。因此,在本发明的某些实施方案中,控制所沉淀材料的尺寸和组成,以减少或排除反渗透前原料的高能量机械过滤的需要。由于在碳酸盐和碳酸盐/硅酸盐沉淀处理中使用某些过渡金属催化剂,获得其中通常观察到晶体结构的无定形沉淀物是可能的。可使用的过渡金属催化剂包含Zn、Cr、Mn、Fe、Co和Ni的可溶性化合物或其任何组合。例如,以10卯b-2000卯m间的任何浓度包括100卯b-500ppm加入的CoCl2或NiCl2,将产生无定形结构的沉淀,其中将通常观察到完全结晶态的结构。沉淀物形成的速度通过采用这些催化剂提高,导致更大的粒度、更多的无定形结构或其组合。在产生更大粒度的那些实施方案中,将沉淀物从原料中除去可以通过更低的能量手段,例如重力沉降实现。与加晶种沉淀法相反,本发明的方法在沉淀处理期间不产生C02。因此,本发明方法的实施方案可被视为无C02产生的沉淀方案。图l提供了根据本发明实施方案的碳酸盐沉淀处理的流程图。在图1中,将来自水源10的水(它可以是供给脱盐装置的进料水和/或来自脱盐装置的废盐水)经历沉淀步骤20的碳酸盐化合物沉淀条件。在图1所示的实施方案中,来自水源10的水首先充以C02制备充C02的水,然后将该C02经历碳酸盐化合物沉淀条件。如图1中所示,在沉淀步骤20将C02气流30与水接触。如上所述,在沉淀步骤20将所提供的气流30与合适的水接触产生充(A的水。在沉淀步骤20,析出碳酸盐化合物,它们可能是无定形的或结晶态的。如上所述,充C02和碳酸盐化合物沉淀可以在连续处理中或以分开的步骤发生。因此,根据本发明的某些实施方案,充(A和沉淀可以在系统的相同反应器中发生,例如,如图1中步骤20所示。在本发明的还其他实施方案中,这两个步骤可以在分开的反应器中发生,以便将水首先在充气反应器中充(A,然后使所得的充C02的水在另外的反应器中经历沉淀条件。在从水中制备碳酸盐沉淀物后,将所得沉淀的碳酸盐化合物组合物与碱土金属贫化的水,即母液分离,产生分离的碳酸盐化合物沉淀产物,如图1中的步骤40所示。沉淀物的分离可以用任何方便的方法实现,包括机械法,例如,其中大量过量的水例如仅通过重力或加真空、机械压榨,通过将该沉淀物从母液中过滤产生滤液等,从沉淀物中排出。大量水的分离(水待用作供脱盐的处理过的进料水或处理的盐水,如以上所述并指示为42)产生湿的、脱水的沉淀物。在图1所示的实施方案中,如图1中步骤60所示,然后将所得的脱水沉淀物干燥,制备产物。干燥可以通过空气干燥滤液实现。当滤液用空气干燥时,空气干燥可以在室温或升高的温度下进行。在还另一个实施方案中,将沉淀物喷雾干燥来使该沉淀物干燥,其中含沉淀物的液体通过将其通过热气体(例如来自发电厂的气态废流)进料干燥,例如,其中将液体进料通过雾化器泵入主干燥室,并将热气体以直流或逆流通向雾化器的方向。根据系统的特定干燥方案,干燥站可包括过滤元件、冷冻干燥结构、喷雾干燥结构等。在需要时,来自分离反应器40的脱水沉淀产物可以在干燥前洗涤,如图1中的任选步骤50所示。沉淀物可以用淡水洗涤,例如,除去脱水沉淀物中的盐(例如NaCl)。所用的洗涤水可以方便地处理,例如,通过将其置于尾料池中等。在某些实施方案中,将所得产物进一步处理,例如,如下更详细所述,制备地上贮藏稳定的碳螯合材料,制备建筑材料等。例如,在图l所示的实施方案中,在步骤70,将干燥的沉淀物进一步处理或精制,例如提供所期望的物理特性,例如粒度、表面积等,或将一种或多种组分加入到沉淀物中,例如混合物、聚集体、补充的胶结材料等,制备最终产物80。在某些实施方案中,系统用于实施上述方法,其中此类系统包括下面更详细地描述的那些。例如,如元件42所示,根据碳酸盐化合物沉淀反应的输入水是进料水还是废盐水,使图1中所示处理的淡化水,即碱土金属贫化的水经历脱盐和/或以合适的方式处理。在其中碳酸盐化合物沉淀处理的输入水是脱盐进料水的那些实施方案中,然后使产物碱土金属贫化的水经历脱盐处理。如上所述,在盐水脱盐中可采用任何方便的方案。脱盐(即减少盐分或脱盐作用)指除去水中过量的盐和其他矿物质的几种方法中的任何方法。在脱盐中,将水脱去盐分以转化成适用于动物消耗或灌溉的淡水,或者,如果几乎除去了所有的盐,适用于人类消耗。目标脱盐的方法包括但不限于蒸馏方法,例如多级闪蒸(MSF)、多效蒸发器(MEDlME)、蒸气压縮蒸发(VC)和蒸发/浓縮;离子交换法;膜方法,例如反向电渗析(EDR)、反渗透(RO)、纳米过滤(NF)、正向渗透(FO)、膜蒸馏(MD)等。在某些实施方案中的目标方法是膜脱盐法,例如反渗透。反渗透(RO)是利用压力将进料水压过膜使溶质保留在一侧,并使水分子通过到另一侧的分离方法。因此,它是用超过渗透压的压力将水分子从高溶质浓度的区域压过膜到低溶质浓度的区域的方法。在RO法中所采用的膜是半透性的,以便它们能使水通过但溶质不能通过。用于反渗透的膜在大多数分离发生处,聚合物基质中具有密集阻挡层。在某些实施方案中,将膜设计成仅能使水通过该密集层,同时防止溶质(例如盐离子)的通过。RO的实施方案采用施加于膜的高浓度侧的高压,例如对微咸水而言为2-17巴(30-250psi),对海水而言为40-70巴(600-1000psi)。本发明可采用的RO法和系统包括但不限于下列美国专利号中所描述的那胜6,833,073;6,821,430;6,709,590;6,656,362;6,537,456;6,368,507;6,245,234;6,190,556;6,187,200;6,156,680;6,139,740;6,132,613;6,063,278;6,015,495;5,925,255;5,851,355;5,593,588;5,425,877;5,358,640;5,336,409;5,256,303;5,250,185;5,246,587;5,173,335;5,160,619;RE34,058;5,084,182;5,019,264;4,988,444;4,886,597;4,772,391;4,702,842;4,473,476;4,452,696;4,341,629;4,277,344;4,259,183;这些专利的公开内容通过弓I用结合到本文中。如上所述,在某些实施方案中,经历碳酸盐化合物沉淀条件的水是废盐水。将盐水脱盐产生脱了盐的水和废盐水。脱了盐的水可进一步以任何方便的方式利用,例如用于灌溉、用于动物和人类消耗、用于工业用途等。然后将脱盐所产生的废盐水处理生成处理过的盐水。在这些本发明方法中,如上所述,使废盐水经历碳酸盐化合物沉淀条件。在某些情形中,在将盐水处理生成贫化盐水之前,可能需要从初始盐水浓縮物中除去氯化物和钠。例如,在产生淡水和初始盐水浓縮物形成的初始脱盐步骤之后,在将碳酸盐和氢氧化物矿物质从该盐水中析出之前,氯、苛性钠和岩盐(食盐)可通过氯-碱法等制备。在这些情形中,产生了仅淡水或接近淡水的接近零或零排放贫化盐水。在从废盐水中制备出沉淀物之后,将所得的沉淀物与剩余的液体分离,该液体在本文中称为处理过的盐水或贫化盐水。沉淀物的分离可按上面所描述的实现。然后将所得的处理过的盐水可进一步处理和/或在必要时返回到环境中。例如,可将处理过的盐水返回到水源中,例如海洋,或返回到另一个场所。在某些实施方案中,例如,如上所描述,可将处理过的盐水与C02源接触,以进一步与C02螯合。例如,当处理过的盐水要被返回到海洋时,可以将处理过的盐水以足够增加存在于该处理过的盐水中的碳酸根离子的浓度的方式与0)2的气源接触。接触可采用任何方便的方案进行,例如上面所描述的那些方案。在某些实施方案中,处理过的盐水具有碱性pH,且与C02源接触以足够将pH降低到5-9之间的范围,例如6-8.5,包括7.5-8.2的方式进行。反应得到的处理过的盐水可用任何方便的方案处理。在某些实施方案中,它可以被送到尾料池中处理。在某些实施方案中,它可以排放到水的天然存在体中,例如,洋、海、湖或河。在某些实施方案中,将处理过的盐水返回到用于脱盐处理的进料水的来源中,例如洋或海。本发明方法的实践导致含碳酸盐沉淀产物的产生。由于沉淀物得自水源,它们将包括一种或多种存在于水源,例如海水、盐水、微咸水中的组分,并将识别来自水源的组成,其中这些识别组分及其量在本文中统称水源识别物。例如,如果水源是海水,可能存在于碳酸盐化合物组合物中的识别化合物包括但不限于氯化物、钠、硫、钾、溴化物、硅、锶等。任何此类来源识别物或"标记"元件通常以小量存在,例如,以20,000ppm或更小的量,例如2000ppm或更小的量存在。在某些实施方案中,"标记"化合物是锶,它可能存在于加入到霰石晶格中的沉淀物中,并构成10,000卯m或更少,在某些实施方案中,范围在3-10,000卯m,例如5-5000卯m,包括5-1000卯m,例如5-500ppm,包括5-100卯m。另一个目标"标记"化合物是镁,它可以最大到20%摩尔的量存在,取代碳酸盐化合物中的钙。这些组合物的盐水源识别物可以根据用于制备盐水衍生的碳酸盐组合物的特定盐水源变化。在某些实施方案中,水泥中碳酸f丐的含量为25%w/w或更高,例如40%w/w或更高,并包括50%w/w或更高,例如60%w/w。在某些实施方案中,碳酸盐化合物组合物具有钙/镁比率,该比率受该组合物从其中沉淀出的水源影响,并因此反映该水源。在某些实施方案中,钙/镁摩尔比率的范围在10/l-l/5Ca/Mg,例如5/l-l/3Ca/Mg。在某些实施方案中,碳酸盐组合物的特征在于具有识别碳酸盐与氢氧化物化合物比率的水源,其中在某些实施方案中,该比率的范围为100-1,例如10-1并包括1-1。在某些实施方案中,产物沉淀物可包括一种或多种含硼化合物。可能存在的含硼化合物包括但不限于硼酸;硼酸盐和硼酸盐聚合物,例如硼砂(即硼酸钠、四硼酸钠或四硼酸二钠)、硬硼酸f丐石(CaB304(0H)3H20);水硼镁石(Admontite或Admontit或Admontita(MgB^A。*7H20))等。另外,沉淀物可包括有机物,例如聚丙烯酸、三卤甲烷前体、杀虫剂、海藻和细菌、富含Asp、Glu、Gly、Ser的酸性糖蛋白,及其他高度带电荷部分。干燥产物可以许多不同的方式处理或使用。在某些实施方案中,沉淀产物被转移到供长期贮藏的场所。此类实施方案发现了其中(A螯合是所期望的用途,因为该产物可以转移到一个场所并作为地上贮藏稳定的C02螯合材料保持。例如,碳酸盐沉淀物可以贮藏在与发电厂和沉淀系统相邻的长期贮藏地点。在还其他实施方案中,根据需要,沉淀物可以被转移并置于长期贮藏地点,例如地上,地下等,其中长期贮藏地点在脱盐装置的远端(在其中不动产不邻近脱盐装置的实施方案中可能是理想的)。在这些实施方案中,沉淀物找到了作为地上贮藏稳定形式的用途,以便(A不再作为大气中的气体存在,或以此获得。因此,根据本发明方法的C02螯合导致防止C02气体进入大气,并以C02不成为大气的一部分的方式长期贮藏(A。地上贮藏稳定的形式表示可以在暴露的条件下(即向大气开放)地上贮藏而不在延长的时间内显著降解(如果有的话)的物质形式,例如1年或更长,5年或更长,10年或更长,25年或更长,50年或更长,100年或更长,250年或更长,1000年或更长,10,000年或更长,1,000,000年或更长,或者甚至100,000,000年或更长。因为贮藏稳定的形式在正常雨水pH下地上贮藏时有很少的(如果有的话)降解,根据(A气体从产物中释放测定的降解(如果有的话)的量将不超过5%/年,在某些实施方案中将不超过1%/年。地上贮藏稳定的形式是在各种不同的环境条件下,例如温度范围在-IO(TC-6001\湿度范围在0-100%(其中条件可以是平静的、刮风的或有暴雨的)贮藏稳定的。在某些实施方案中,由本发明的方法制备的碳酸盐化合物沉淀物用作建筑材料。某些实施方案的其他益处是处理中所采用的可从废气流中获得的C02被有效地螯合在修建的环境中。建筑材料表示碳酸盐矿物质被用作某种类型的人造结构,例如建筑物(商业的和住宅的)、道路、桥梁、大堤、水坝和其他人造结构等的构造材料。建筑材料可以用作此类结构的结构性或非结构性组件。在此类实施方案中,沉淀装置可以与建筑产品工厂建在一起。在某些实施方案中,将沉淀产物在随后使用之前以某种方式精制(即处理)。如图1中的步骤80所示的精制可包括各种不同的方案。在某些实施方案中,使产物进行机械精制,例如研磨,以获得具有所期望的物理性质例如粒度等的产物。在某些实施方案中,将沉淀物与水硬水泥混合,例如作为补充的胶结材料、作为沙子、作为聚集体等。在某些实施方案中,可以将一种或多种组分加入到沉淀物中,例如,当沉淀物要用作水泥时,例如加入一种或多种添加剂、沙子、聚集体、补充的胶结材料等,以制备最终产物,例如混凝土或砂浆90。在某些实施方案中,碳酸盐化合物沉淀物用于制备聚集体。此类聚集体、其制备和使用的方法在2008年5月29日递交的共同待审美国专利申请顺序号61/056,972中描述,其公开的内容通过弓I用结合到本文中。在某些实施方案中,碳酸盐化合物沉淀物用作水硬水泥的组分。术语"水硬水泥"以其常规的含义使用,指与水混合后固化和变硬的组合物。由本发明的水泥与流体水溶液组合制备的产物的固化和变硬由水合物的产生而产生,这些水合物由水泥与水反应后形成,其中这些水合物基本上不溶于水。此类碳酸盐化合物组分的水硬水泥、其制备和使用的方法在2008年5月23日递交的共同待审美国专利申请顺序号12/126,776中描述,该申请的公开内容通过弓I用结合到本文中。实用性本发明方法找到了在任何期望处理脱盐水的情况中的用途。本发明方法的实践可以为脱盐方案提供众多优势。例如,这些方法的实践可以用于增加脱盐的效率,例如,通过减少膜的污垢和结垢。本发明的实施方案与其中未采用碳酸盐化合物沉淀步骤的控制方法相比,导致膜结垢的降低。膜结垢可以用Rahardianto等,JournalofMembraneScience,(2007)289:123-137中描述的方案评估。例如,膜结垢可以通过流量下降测定和运转后膜表面图象分析评估,例如,如上述Rahardianto等所描述。本发明方法的实施方案的实施导致在24小时测试时间内流量下降25%或更少,例如15%或更少,包括10%或者甚至5%或更少,并且在某些实施方案中,导致基本上无(如果有的话)流量下降。本发明方法的实施可提供90%或更多,例如95%或更多,包括98%或更多,例如99%或更多的水回收率。可根据本发明的方法处理的废盐水包括盐度范围在45,000-80,000卯m的那些废盐水。这些方法的实施方案产生盐度为35,000ppm或更小的处理过的盐水。因此,本发明的方法找到了在处理盐水中的用途,以便它们比其未处理过废盐水的相应物在环境上是可接受的、更少毒性的等。此类方案可导致更少的环境有害影响,更容易遵从政府的规章等。另外,这些方法的实施方案导致C02螯合。"与C02螯合"表示将C02从来源,例如废气流中除去或隔离,并将它固定成稳定的非气体形式,以便(A不能逃逸进入大气。"C02螯合"表示将C02置于贮藏稳定的形式中,例如地上贮藏稳定形式,以便它不再作为大气中的气体存在或以此获得。因此,根据本发明方法的C02螯合导致防止C02气体进入大气,并以C02不成为大气的一部分的方式长期贮藏C02。系统如上所描述,本发明的方面还包括处理脱盐废盐水的系统,例如处理装置或工厂。本发明的系统可具有任何能使特定目标方法实施的构造。在某些实施方案中,所述系统包括盐水源,例如以具有盐水输入装置的结构形式。例如,所述系统可包括盐水的管线或类似的进料装置。当用该系统脱盐的盐水源是海水时,输入装置与海水源流体连通,例如,其中输入装置是从海洋水到陆基系统的管线或进料装置,或者是船的船体中的进气口,例如其中该系统是船的一部分,例如在海洋基系统中。在本发明的系统中也存在从盐水中产生脱盐水和废盐水的脱盐站或反应器。脱盐站可以构建来进行任何一些不同类型的脱盐方案,包括但不限于上面提及的脱盐方案,例如反渗透和多级闪蒸方案。另外,所述系统将包括碳酸盐化合物沉淀站或反应器,例如,如上所描述,该沉淀站或反应器使供脱盐站的进料水和/或由脱盐站产生的盐废盐水经历碳酸盐化合物沉淀条件,并产生沉淀的碳酸盐化合物组合物和碱土金属贫化的水,例如供脱盐装置的软化进料水或来自脱盐装置的处理过的盐水。本发明的系统可还包括用于将沉淀物与母液分离的分离器。在某些实施方案中,分离器包括过滤元件。所述系统也可包括分开的二氧化碳源,例如,其中配置该系统,以用于在处理期间盐水和/或母液在某些时间与二氧化碳源接触的实施方案中。该来源可以是上面所描述的那些中的任何来源,例如,来自工业发电厂的废料等。在某些实施方案中,所述系统将还包括由沉淀物制备建筑材料,例如水泥的站。例如2008年5月23日递交的美国专利申请顺序号12/126,776中所描述,可以配置该站以由沉淀物制备各种水泥;该申请的公开内容通过引用结合到本文中。所述系统可以存在于陆地或海上。例如,所述系统可以是在沿海区域,例如接近海水源,或者甚至是内地场所的陆基系统,其中水从盐水源例如海洋被管送到系统中。或者,所述系统为海湾的水基系统,即为存在于水上或水中的系统。根据需要,该系统可以存在于小船、海洋基平台等上。提出以下实施例,以提供给本领域普通技术人员如何制备和使用本发明的全部内容和描述,并无意限制本发明人所认为的其发明的范围,它们也无意表示以下试验是全部的或唯一进行的试验。关于所使用的数字(例如量、温度等),已努力确保精确性,但是某些实验误差和偏差应该考虑。除非另外指明,份数是重量份数,分子量是重均分子量,温度是摄氏度,压力是或接近大气压。试验I.P00099沉淀物在以下实施例中,描述了用于从海水中制备碳酸盐沉淀物(即P00099沉淀物)的方法学,以及所产生的沉淀物的化学和物理性质。另外,评论了由80%普通波特兰水泥(OPC)和20%P00099组成的掺混水泥的压縮强度和收縮特性。以下实施例证明,水在利用(A气体的反应中可以被软化,并且产物沉淀物发现了作为建筑材料的用途。A.沉淀反应以下方案用于制备P00099沉淀物。将380L过滤过的海水泵入圆柱形聚乙烯60°-锥形底计量罐中。该反应罐是开放系统,放置暴露于周围大气中。该反应罐用顶置搅拌器不断搅拌。在整个反应过程中不断监测pH、室温和水温。将25g颗粒状(Ca,Mg)O(亦称为煅烧白云石(dolime)或煅烧白云石(calcineddolomite))混合到海水中。将沉降到罐底部的煅烧白云石从该罐的底部人工再循环,再通过顶部,以促使反应物的充分混合和溶解。以同样的方式,第二次加入25g煅烧白云石,包括沉降反应物的人工再循环。当水的pH达到9.2时,10%C02(和90%压縮空气)的气体混合物缓慢地通过陶瓷增氧气石(airstone)扩散到溶液中。当该溶液的pH降到9.0时,将另外的25g煅烧白云石加入到该反应罐中,这再一次导致pH升高。无论何时溶液的pH降到9.0(或以下),重复加入煅烧白云石,直到总共加入225g。在每次煅烧白云石加入之间,进行沉降反应物的人工再循环。在煅烧白云石最后加入后,气体在整个溶液中的连续扩散停止。将反应再搅拌2小时。在该时间期间,pH继续升高。为了将pH维持在9.0-9.2之间,当pH升高到9.2以上时,另外的气体通过反应扩散,直到pH达到9.0。整个该2小时的时间内,沉降反应物的人工再循环也进行4次。煅烧白云石最后加入2小时后,搅拌、气体扩散和沉降反应物的再循环停止。使反应罐不搅动静置15小时(向大气开放)。15小时时间后,用水下泵将上清液从反应罐的顶部除去。将剩余混合物从该罐的底部除去。使所收集的混合物沉降2小时。沉降后,将上清液倾出。将剩余浆状物在布氏漏斗中通过llym孔径大小的滤纸真空过滤。将所收集的滤饼置于Pyrex盘中,并于ll(TC下烘烤24小时。将干燥的产物在球磨机中碾磨,并通过一系列筛,按尺寸筛分,以制备P00099沉淀物。B.材料分析在所收集的不同筛组分中,仅采用含被截留在38iim孔筛上,并通过75ym孔筛的颗粒的组分。1.化学特征使用XRF,分析用于掺混物的P00099沉淀物的元素组成。对用于该掺混物的QuikreteI/II型波特兰水泥以及P00099沉淀物的主要元素的结果进行了报告。如下表1所示。表l<table>tableseeoriginaldocumentpage15</column></row><table>表1:用于该掺混物的I/II型波特兰水泥和P00099-002的XRF分析该沉淀物的XRD分析显示有霰石和镁方解石(组成接近Mg。.^a。.9C03)和少量水f石和岩盐存在(表2)。表2<table>tableseeoriginaldocumentpage15</column></row><table>电量分析法测定的总无机碳含量完全与由XRDRietveld估算的组成结合XRF元素组成得到的相同值一致。表3提供了与得自XRD/XRF数据的XC相比的P00099的电量分析结果。表3<table>tableseeoriginaldocumentpage15</column></row><table>2.物理特征对沉淀物的SEM观察证实了霰石的优势地位(针状)以及颗粒聚集体的尺寸。表4给出了所测定的波特兰水泥和P00099沉淀物的BET比表面积("SSA")。<table>tableseeoriginaldocumentpage16</column></row><table>预超声处理2分钟以将聚集的颗粒分离后,测定粒度分布。C.0PC/P00099掺混水泥在砂浆临混合之前,将P00099沉淀物与普通波特兰水泥(OPC)用手掺混大约两分钟。所掺混的水泥含20%(w/w)P00099和80%(w/w)OPC。1.压縮强度根据ASTMC109测定了压縮强度的发展。2"侧面的砂浆立方体用于压縮测试。研究了该沉淀物20^的代替水平,并与普通的波特兰I/II型水泥砂浆及用飞灰F取代的波特兰I/II型水泥比较。将水/水泥比率调节到0.58,以满足110%±5%的流动标准(值107%)。制备了掺混物的6个立方体。ASTMC511贮藏条件的变化如下这些立方体在湿毛巾下固化24小时(估算的相对湿度为95%)脱模后,将这些立方体贮藏在相对湿度为30-40%的实验室中,而不是贮藏在石灰处理槽中。用一式两份的沉淀物(P00100,BET比表面积约11m7g),也研究了5%代替水平的数据。将水/水泥比率调节到0.54,以满足110%的流动要求。在5%的代替水平下,强度发展与普通波特兰水泥的类似。结果总结在图2提供的图中。2.收縮性按照ASTMC596,研究了P00099沉淀物的5%和20%代替水平的砂浆棒的干燥收縮性。将它与仅用波特兰水泥I/II型或波特兰水泥和飞灰F的掺混物制备的类似棒比较。将水/水泥比率调节到0.50,以满足110%±5%的流动标准(值107%),在一组样品中,加入Daracem增塑剂,使水/水泥比率达到0.45。ASTMC596贮藏条件的变化如下与ASTMC596建议的50%相比,实验室的相对湿度更接近于30-40%,增加了干燥潜力。结果总结在下表6中。表6<table>tableseeoriginaldocumentpage16</column></row><table>II.高纯度的大霰石晶体的制备A.沉淀物P00143:将390L海水(来源LongMarineLab,UCSC,SantaCruz,CA)(水温=23.5-24.5t:,初始pH=7.72)泵入到锥形底塑料罐中。用自动pH控制器将1MNaOH溶液缓慢地加入到该海水中,同时连续搅拌,直到pH升到9.10。将10%C02和90%空气的气体混合物扩散到整个海水中,将该海水酸化,并增加所溶解的碳。设置pH控制器以自动加入少量NaOH溶液,抵抗该气体混合物的酸化作用,将pH维持在9.00_9.10之间。在约4小时的时间内,连续加入气体混合物和NaOH溶液,直到总共加入12.Okg的NaOH溶液。停止搅拌,使水沉降15小时。将大部分(380L)上清液从罐中泵出。将剩余上清液和沉降的沉淀物以浆状物从罐中除去。将该浆状物用llPm孔径大小滤纸真空过滤。滤饼在11(TC烘箱中干燥6小时。干燥的产物是细的类白色粉末。SEM、EDS、XRD和碳电量分析法分析显示,该产物超过99%的是霰石(CaC03)。SEM显示存在两种主要的霰石形态单个或聚集的较小长而尖的(spikey)"星"和较大的"花椰菜"形状。"星"的直径通常为5ym。单个的"花椰菜"的长度通常为10-15iim。聚集的"花椰菜"的尺寸范围宽,但是直径范围在20-50iim。B.沉淀物POO145:(水温=24.0-25.7°C,初始pH=7.84)将390L海水(来源LongMarineLab,UCSC,SantaCruz,CA)泵入到锥形底塑料罐中。用自动pH控制器将2MNaOH溶液缓慢地加入到该海水中,同时连续搅拌,直到pH升到9.10。将10%C02和90%空气的气体混合物扩散到整个海水中,将海水酸化,并增加所溶解的碳。设置pH控制器,以自动加入少量NaOH溶液,抵抗该气体混合物的酸化作用,将pH维持在9.00-9.10之间。在约5小时的时间内连续加入气体混合物和NaOH溶液,直到总共加入12.4kg的NaOH溶液。停止搅拌,使水沉降65小时。将大部分(380L)上清液从罐中泵出。将剩余上清液和沉降的沉淀物以浆状物从罐中除去。将该浆状物用llPm孔径大小滤纸真空过滤。滤饼在ll(TC烘箱中干燥6小时。干燥的产物是细的类白色粉末。SEM、EDS、XRD和碳电量分析法分析显示,该产物超过99%的是霰石(CaC03)。SEM显示该固体主要由"花椰菜"形聚集体组成。聚集的"花椰菜"的尺寸范围宽,但是直径范围在20-50m。III.用镍催化剂控制碳酸盐沉淀的沉淀物粒度A.P00140的试验方法1.方法IL海水中掺杂15ppmNiCl21.IL海水,起始pH=8.10,T=21.4°C2.将15卯mNiC^加到海水中。3.滴定被0)2气体中和的(countered)55ml1MNaOH,将pH范围维持在8.0-10.2之间,包括在8.8-9.8之间的pH范围。最终pH=9.73,T=22.0。试验持续时间19分钟。过滤器在11Pm滤纸上采用真空过滤。过滤前沉降时间15分钟。于ll(TC烘箱干燥24小时。2.结果上述方案产生1.14g沉淀物。如图3A-3C中显示的SEM显微图像所示,所得沉淀物的粒度范围最大到500Pm(无镍的对照试验产生范围在5-20ym的粒度)。如FTIR所示(参见图4),观察到完全无定形晶体结构。沉淀物中的Ca:Mg比率为4:l和3:1。在用于脱盐处理的进料水的沉淀性软化中,沉淀物的粒度通常非常细,并且需要充分的机械过滤,以防止反渗透膜的堵塞。在本发明的实施方案中,控制所沉淀的材料的尺寸和组成,以减少或排除反渗透前原料的高能量机械过滤的需要,例如,通过包括如上所述的过渡金属催化剂。这些结果与无镍催化剂,如以上P00143和P00145所述达到的结果形成对比。IV.碳酸盐化合物沉淀物中硼的鉴别根据如上所述P00143的制备所采用的相同方法,制备沉淀物P00144。通过电感偶合等离子体-质谱法分析沉淀物P00144的硼含量。发现硼以109iig/g的量存在于沉淀物中。该发现等于以PPt计的0.109mg/L硼(假设lg/L卯t)。注意海水中有.00042molB/L[SW]*10.8g/mol—4.5mgB/L,因此确定海水中约2.5%的B正在按ppt被吸收。虽然为了理解清楚的目的,前述发明通过示例和实施例一定程度的进行了详细地描述,但是对本领域普通技术人员来讲,根据本发明的教导,可对其进行某些变化和修改,而不背离权利要求的精神或范围是显而易见的。因此,前述仅举例说明了本发明的原则。将认识到,本领域技术人员将能够设计各种安排,这些安排虽然未在本文中明确描述或显示,但是具体表达了本发明的原则并包括在其精神和范围内。此外,本文所记载的所有实施例和条件性语言主要用于帮助读者理解本发明的原则,和本发明人为促进技术发展所贡献的概念,并应解释成对此类具体记载的实施例和条件没有限制。此外,本文中记载本发明的原则、方面和实施方案以及其具体实施例的所有陈述将包含其结构和功能等同物。另外,此类等同物将包括目前已知的等同物和未来发展的等同物,即开发的不管结构执行相同功能的任何元件。因此,本发明的范围将不限于本文所示和描述的示例性实施方案。而是,本发明的范围和精神由权利要求具体体现。权利要求一种使水脱盐的方法,所述方法包括提供进料水;和使所述进料水进行脱盐处理,以得到脱盐的淡化水和废盐水;其中所述方法还包括在所述方法期间采用碳酸盐化合物沉淀处理至少一次。2.权利要求l的方法,其中所述脱盐处理是蒸馏方案。3.权利要求l的方法,其中所述脱盐处理是膜方案。4.权利要求1的方法,其中所述碳酸盐化合物沉淀处理包括使水与C02接触。5.权利要求l的方法,其中在使所述进料水进行所述脱盐处理之前,对所述进料水进行所述碳酸盐化合物沉淀处理。6.权利要求1的方法,其中对所述废盐水进行所述碳酸盐化合物沉淀处理,得到处理过的废盐水。7.权利要求1的方法,其中所述碳酸盐化合物沉淀条件也使含硼化合物沉淀。8.权利要求1的方法,其中所述进料水是海水。9.权利要求1的方法,其中所述进料水是微咸水。10.权利要求1的方法,其中所述进料水是盐水。11.权利要求1的方法,其中所述碳酸盐化合物沉淀处理采用过渡金属催化剂。12.权利要求1的方法,所述方法还包括将所述碳酸盐化合物沉淀处理的碳酸盐化合物沉淀物用作建筑材料。13.—种使水脱盐的方法,所述方法包括使盐水进料水经历碳酸盐化合物沉淀条件,得到碳酸盐化合物沉淀物和碱土金属离子贫化水;和将所述碱土金属离子贫化水脱盐,以制备淡化水。14.权利要求12的方法,其中所述脱盐包括反渗透。15.权利要求12的方法,其中所述碳酸盐化合物沉淀条件包括使所述盐水进料水与C02接触。16.权利要求12的方法,其中所述碳酸盐化合物沉淀条件也使含硼化合物沉淀。17.权利要求12的方法,其中所述盐水进料水是海水。18.权利要求12的方法,其中所述盐水进料水是微咸水。19.权利要求12的方法,其中所述盐水进料水是盐水。20.权利要求12的方法,所述方法还包括将所述碳酸盐化合物沉淀物用作建筑材料。21.权利要求20的方法,其中所述建筑材料是混凝土。22.—种方法,所述方法包括a)将盐水脱盐,得到脱盐的水和废盐水;b)使所述废盐水经历碳酸盐化合物沉淀条件,以得到碳酸盐化合物沉淀的组合物和贫化盐水;和c)将所述沉淀的组合物与所述贫化盐水分离。23.权利要求22的方法,其中所述盐水是海水。24.权利要求23的方法,所述方法还包括将所述贫化盐水释放到海中。25.权利要求22的方法,其中所述脱盐包括蒸馏。26.权利要求22的方法,其中所述脱盐包括反渗透。27.权利要求22的方法,其中所述碳酸盐化合物沉淀条件包括使所述盐水进料水与C02接触。28.权利要求22的方法,所述方法还包括将所述沉淀物用作建筑材料。29.权利要求28的方法,其中所述建筑材料是水泥。30.—种使水脱盐的系统,所述系统包含待脱盐的水的输入装置;脱盐站;和碳酸盐化合物沉淀反应器。31.权利要求30的系统,其中所述输入装置与海水源流体连通。32.权利要求30的系统,其中将所述碳酸盐化合物沉淀反应器放置,使得来自所述输入装置的水在进入所述脱盐站之前,通过所述反应器。33.权利要求30的系统,其中将所述碳酸盐化合物沉淀反应器放置,使得由所述脱盐站产生的废盐水通过所述反应器。34.权利要求30的系统,其中所述脱盐站是蒸馏脱盐站。35.权利要求30的系统,其中所述脱盐站是反渗透脱盐站。36.权利要求30的系统,其中所述碳酸盐化合物沉淀反应器包含C02源的输入装置。37.权利要求30的系统,所述系统还包含水泥制备站,该水泥制备站由所述反应器产生的沉淀物制备水泥。全文摘要本发明提供了包括碳酸盐化合物沉淀的脱盐方法。在某些实施方案中,在脱盐之前使进料水经历碳酸盐化合物沉淀条件。在某些实施方案中,使脱盐废盐水经历碳酸盐化合物沉淀条件。在还其他实施方案中,使进料水和废盐水两者经历碳酸盐化合物沉淀条件。本发明实施方案的方面包括二氧化碳螯合。本发明的实施方案进一步将碳酸盐化合物沉淀条件的沉淀产物用作建筑材料,例如水泥。本发明也提供了装配用于本发明方法的系统。文档编号B01D21/00GK101743046SQ200880022573公开日2010年6月16日申请日期2008年6月27日优先权日2007年6月28日发明者B·康斯坦茨,K·法萨德,M·费尔南德斯申请人:卡勒拉公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1