能响应可见光的灰化纳米TiO2光催化剂的制备方法与流程

文档序号:11905195阅读:930来源:国知局
能响应可见光的灰化纳米TiO2光催化剂的制备方法与流程

本发明属于光催化产品合成技术领域,具体涉及一种能响应可见光的灰化纳米Ti O2光催化剂的制备方法。



背景技术:

太阳能具有廉价、清洁、可再生等优点,以高效利用和转化太阳能为核心,以光解水制氢和光催化消除环境污染物为主要方式的半导体光催化技术是人类应对21世纪环境与能源两大挑战的重要手段。该技术应用的关键是获得具有高太阳能利用效率和催化活性的光催化剂。

目前有很多性能优良的光催化剂,如TiO2、BiOCl及La、Nb、Ta基氧化物等。多为宽禁带半导体,只能吸收紫外和近紫外光,严重限制了其广泛应用。为改变这一现状,利用窄禁带半导体或者金属离子掺杂以拓宽半导体的光响应范围。此类调控催化剂禁带的方法虽然能提高光催化剂对太阳光的利用率,但是改性后的半导体能带电位发生较大改变,氧化电位降低,往往会降低其光催化活性。如果能有一种调控方式,既能扩展宽禁带半导体的光吸收范围又能保持主体材料的能带位置,将对光催化技术的应用有着非凡现实意义。

2011年陈晓波教授首次获得了表观黑色的二氧化钛,因其表面是黑色,吸光范围拓宽到了1000nm左右,引发了世界范围内的关于 黑色二氧化钛的研究热潮。目前关于黑色二氧化钛的制备主要有以下几种方法:利用溶胶凝胶法进行纳米铁粒子与二氧化钛的复合,高温高压氢气热处理、惰性气体混合气高压处理等。文献中制得的催化剂增强光活性依靠铁元素,这样就存在不可控性,铁是可变价态容易发生变化,稳定性差,一旦二氧化钛脱离复合基体铁,催化剂效率就会下降甚至失活。



技术实现要素:

本发明的目的是提供一种使用比较廉价的德国气相法制得的纳米二氧化钛(简称p25)为原料,利用简单的超声法用铁粉处理,在不改变能带位置的前提下,拓宽光吸收的范围,使二氧化钛可见光光响应程度提高。

为了实现本发明所述目的,本发明提供了以下技术方案。

这种能响应可见光的灰化纳米TiO2光催化剂的制备方法,包括如下步骤:

A、分别称量摩尔比例为1∶1的纳米二氧化钛p25粉末和还原性铁粉,放到盛有100mL去离子水并带有循环冷却水的反应器中,室温下,利用超声细胞粉碎机在570W的功率下进行超声反应1h;

B、得到反应产物后,用强磁铁吸在反应器底部,倒出反应液,以此除过量铁粉;

C、经过稀盐酸反复洗涤3-5次,后用去离子水洗涤,直到磁性消失说明铁已经除去;

D、过滤后60℃下真空干燥8h,得到改性纳米二氧化钛。

所述能响应可见光的灰化纳米TiO2光催化剂的制备方法,步骤B得到的反应产物经搅拌后倒出悬浮液。

所述能响应可见光的灰化纳米TiO2光催化剂的制备方法,步骤C的洗涤是把0.01mol/l的稀盐酸直接倒在悬浮液里反复浸泡3-5次,浸泡时间为12h,每次浸泡后用沙心漏斗过滤,并用去离子水洗涤至中性,直到磁性消失。

本发明创新点在于改性灰化纳米TiO2光催化剂实现在使用的过程中不用考虑复合后催化剂的稳定性问题及复合后二氧化钛的损失问题,利用磁铁是把剩余的铁粉吸出来,以得到纯的二氧化钛,光活性只依赖于催化剂二氧化钛本身,成分简单,可控性稳定性好,另外本身二氧化钛无毒无污染,经过处理既保留原有的紫外光吸收和强氧化性,即能带位置不改变的前提下,还对可见光有响应。

除此之外,本制备方法较为简便安全,工艺简单,不用在450℃的氢气氛围下还原,原料相对于钛醇盐来说价格便宜,易于实现工业化生产。

附图说明

一、实物对比

图1-a是改性所得二氧化钛的实物图

图1-b是原料二氧化钛的实物图

如图1-a和图1-b两种样品的实物图对照所示,本发明改性的纳米二氧化钛颜色加深,这就有利用可见光的吸收。

二、所得产物的表征结果

图2是本发明不同功率下制备样品和原样p25的XRD图

从XRD图中可以看出,样品中的主要衍射峰出现的位置与原料p25的特征衍射峰的位置相对应,并未出现其他物质的衍射峰。说明晶型与原物质相比并未发生改变,且并未出现Fe2+的相关峰值。

图3是本发明制备样品透射电镜图

从HRTEM图3中可以看出制备产物的晶格条纹,约为0.358nm,经布拉格方程2dsinθ=nλ计算知,对应于P25的(101)晶面,说明这种方法的处理没有改变二氧化钛的结构。

图4是本发明制备样品的扫描电镜图

从图4中可以看出制备的样品催化剂颗粒均匀,颗粒大小大约为20-40nm之间,分散性较好,局部小部分堆积。并未发现有Fe任何形式的出现,包括表面复合或者是Fe的物质负载到p25表面。

三、样品能带的分析

证实这种方法制得的二氧化钛能带位置基本没变,禁带宽度也变化很小,但从紫外-可见光谱图可知,光吸收范围扩大到了近红外区,光催化性能也提高了。

图5是摩尔比p25∶Fe=1∶0.5和p25超声时间60min所得产物的禁带宽度图

由图可知p25的禁带宽度为2.93eV,摩尔比为p25∶Fe=1∶0.5产物的禁带宽度为2.86。下面是产物能带位置的计算:

EVB=X-Ee+0.5Eg=5.8-4.5+0.5*2.86=2.73eV

(P25 EVB=2.765eV)

ECB=EVB-Eg=2.73-2.86=-0.13eV

(p25 ECB=-0.165eV)

与p25的价带和导带位置相比,制备的催化剂的能带位置变化很小。

四、制备条件对产物可见光催化性能的影响

图6是不同超声功率和超声间歇所得产物的紫外-可见吸收光谱图(注:2-2指超声2S歇2S,其他类推)

功率从570W到1548W,发现制备产物与原料p25相比在可见光部分的吸收都有很大的提高,其中960W以上的功率制备的催化剂可见光的吸收大于其他功率的吸收。然而间歇对产物影响较小。

图7是不同超声功率和超声间歇所得产物对有机染料甲基橙MO的降解曲线

其中p25是在紫外光下的降解,制备产物是在模拟太阳光下的降解。结果发现制备的产物光催化效果均好于同等条件下的原料紫外光下的光催化效果。(注:2-2指超声2S歇2S,其他类推)

图8是p25和Fe的不同摩尔比和超声时间所得产物的紫外-可见吸收光谱图

不难发现,p25∶Fe的摩尔比为1∶1的条件下超声180min有较好的可见光吸收。

图9是不同摩尔比和超声时间所得产物的降解MO的曲线

显示,所有产品都有着优于原料的光催化性能。

具体实施方式

下面结合具体实施例对本发明所述内容做进一步详细的说明。 p25粉末(是德国气相法制得的纳米二氧化钛的简称)来源于上海冠都实业有限公司

实施例1∶

A、分别称量摩尔比例为1∶1的纳米二氧化钛p25粉末和还原性铁粉,放到盛有100mL去离子水并带有循环冷却水的反应器中,室温下,利用超声细胞粉碎机在570W的功率下进行超声反应1h;

B、得到反应产物后,用强磁铁吸在反应器底部,反应产物经搅拌后倒出悬浮液,以此除过量铁粉;

C、经过稀盐酸反复洗涤3-5次,后用去离子水洗涤,直到磁性消失说明铁已经除去。

上述步骤的洗涤是把0.01mol/l的稀盐酸直接倒在悬浮液里反复浸泡3-5次,浸泡时间为12h,每次浸泡后用沙心漏斗过滤,并用去离子水洗涤至中性,直到磁性消失。

D、过滤后60℃下真空干燥8h,得到改性纳米二氧化钛。

具体反应如下:

Fe+Ti4+=Fe2++Ti3+

从上面反应看,在制备此催化剂的过程中,铁粉作为处理剂,剩余被磁性吸出,成为二价铁之后并没有掺杂到晶格中或者以任何形式负载到二氧化钛的表面。且在后处理的过程中是经过多次酸洗和去离子水洗涤的。无论是从XRD,还是SEM中都可以看出Fe并没有以任何形式存在于催化剂中。

五、使用效果:

所得样品用于制药废水的处理,光催化降解效果采用国标GB11914-89测量COD的值来考量。

取0.20g所得催化剂,在300W Xe灯下光催化2h稀释40倍的制药废水(原液CODCr(O2,mg/L)=21098.80mg/L)。催化后废水的COD(CODCr(O2,mg/L)=10893.312mg/L)降解到原制药废水的51.63%,降解效果显著。

本发明通过超声辅助相对温和的方法,制备出了可见光催化性能优越的改性纳米二氧化钛p25催化剂。综合实验结果发现,在超声仪功率1152W、p25∶Fe的摩尔比为1∶1,反应60min的情况下制备的催化剂,在能带不改变的前提下,具有最好的可见光催化降解甲基橙的性能,从而实现了纳米二氧化钛对可见光没有吸收的突破。

综上所述,本发明制备改性灰化纳米TiO2光催化剂的方法简便易行,用于产业化开发,具有重要的创新意义。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1