包括优化出口的片材剥离装置的制作方法

文档序号:14186739阅读:119来源:国知局

相关专利申请的交叉引用

本申请要求于2015年9月25日向韩国知识产权局提交的韩国专利申请no.10-2015-0137055的权益,其公开内容通过引用全部并入本文中。

本发明涉及一种片材剥离装置以及使用该装置制备石墨烯的方法,该片材剥离装置可有效剥离石墨并可制备大面积石墨烯。



背景技术:

石墨烯是一种半金属材料,形成碳原子通过sp2键以二维六边形形状连接的排列,并且具有对应于碳原子层的厚度。近来,已经报道,作为评估具有一个碳原子层的石墨烯片的性质的结果,电子迁移率为约50,000cm2/vs以上,因此表现出非常优异的导电性。

此外,石墨烯具有结构稳定性、化学稳定性以及优异的导热性。另外,由于它仅由碳(相对较轻的原子)组成,所以很容易处理一维或二维纳米图案。由于这样的电学、结构、化学和经济特性,预计石墨烯将从现在开始取代硅基半导体技术和透明电极,并且特别地,由于其优异的机械性能,预计将应用于柔性电子器件领域。

由于石墨烯的诸多优点和优异的性能,已经提出或研究了能够更有效地从碳质材料大批量制造石墨烯的各种方法。尤其是,能够容易地制备厚度更薄且面积大的石墨烯片或薄片的方法的研究已经有了各种进展,因此石墨烯的优异性能可以显著地显现出来。

作为现有的石墨烯的制备方法,已知的有以下获得石墨烯或其氧化物的方法:通过诸如使用胶带的物理方法或诸如石墨氧化的化学方法剥离;或通过在石墨的碳层间插入酸、碱、金属等的插层化合物的方法剥离。近来,通常使用通过用球磨机或超声波辐射研磨来剥离石墨中包含的碳层,同时将石墨分散在液相中来制备石墨烯的方法。但是这些方法具有以下缺点:产生石墨烯缺陷,工艺复杂,石墨烯产率低。

同时,片材剥离装置是一种向具有微米级直径的微通道施加高压并且因此对通过微通道的材料施加较强的剪切力的装置,并且如果使用片材剥离装置剥离石墨,则可以提高石墨烯的产率。

但是,由于片材剥离装置通常被设计并制备的目的是粉碎和分散颗粒,所以流过微通道的流体强烈地撞击出口壁面。因此,如果剥离的石墨烯与出口壁面碰撞,则石墨烯本身可能发生研磨并且石墨烯的粒度可能会减小。

因此,作为对剥离石墨有效并且能够制备大面积的石墨烯的片材剥离装置的研究的结果,本发明人确认,如果使用如下所述的特定形状的出口,则可以解决上述问题,并完成本发明。



技术实现要素:

技术问题

本发明的一个目的是提供一种片材剥离装置,该片材剥离装置有效用于剥离石墨烯并且能够制备大面积的石墨烯。

本发明的另一个目的是提供一种使用上述片材剥离装置制备石墨烯的方法。

技术方案

为了解决上述目的,本发明提供了一种片材剥离装置,包括:

入口,片材供应到所述入口中;

高压泵,位于所述入口的前端,并产生用于对所述片材加压的压力;

微通道,位于所述入口的后端,所述片材通过所述高压泵产生的压力穿过所述微通道,由此所述片材被均质化;以及

出口,位于所述微通道的后端,

其中,所述微通道的后端与从所述微通道的后端排出的所述片材所碰撞的出口壁面之间的最小距离(y,单位m)以及所述微通道的后端处的所述片材的速度(x,单位m/s)满足以下方程式1:

[方程式1]

y≥(2.7×10-5)x-(4.2×10-5)

此外,本发明提供一种使用上述片材剥离装置制备石墨烯的方法,所述方法包括以下步骤:1)将包含石墨的溶液供应到所述入口;2)用高压泵对所述入口施加压力以使所述包含石墨的溶液通过所述微通道;以及3)从所述出口回收石墨烯分散体。

有益效果

根据本发明的片材剥离装置的特征在于,通过使用特定的出口,可以在不研磨石墨烯本身的情况下提高石墨烯制备效率。

附图说明

图1是根据本发明的片材剥离装置的示意图;

图2示出了使用根据本发明的片材剥离装置根据微通道的通过次数制备的石墨烯的尺寸;

图3示出了使用根据本发明的片材剥离装置的微通道的后端和从微通道的后端排出的片材所碰撞的出口壁面之间的最小距离与微通道的后端处的片材的速度之间的关系。

[符号说明]

1:片材剥离装置

10:入口

11:高压泵

12:微通道

12-1:微通道的后端

13:出口

具体实施方式

在下文中,将详细解释本发明。

片材剥离装置是指向具有微米级直径的微通道施加高压以便对穿过微通道的材料施加强的剪切力的装置。通过剪切力,穿过微通道的材料被研磨并分散,并且因此被用于制备高度分散的材料。因此,片材剥离装置被用于制备要求高度分散的产品,例如在诸如电气/电子材料、生物工程、制药、食品、纤维、涂料、化妆品产业等的各个领域中。

同时,由于片材剥离装置被设计并制备用于通过强剪切力对材料进行粉碎和研磨,通常,通过微通道的流体强烈地撞击出口壁面。然而,根据使用片材剥离装置的目的,与出口壁面的碰撞可能成为缺点。

特别地,本发明的目的在于通过利用片材剥离装置剥离石墨来制备石墨烯,但是如果通过微通道的流体与出口壁面强烈地碰撞,则剥离的石墨烯本身可能被研磨。因此,石墨烯的尺寸变小,从而降低大面积石墨烯的制备产率。

因此,本发明提供一种片材剥离装置,其在施加剥离石墨所需的剪切力的范围内,能够提高大面积石墨烯的制备效率,而不需要研磨石墨烯本身。

首先,图1是根据本发明的片材剥离装置的示意图。根据本发明的片材剥离装置1包括:入口10,片材供应到入口10中;高压泵11,位于入口10的前端,并且产生对片材进行加压的压力;微通道12,位于入口10的后端,片材通过高压泵产生的压力穿过微通道,由此片材被均质化;以及出口13,位于微通道12的后端。

因此,通过高压泵11向入口10施加压力,并且供应到入口10中的片材穿过微通道12。由于微通道12的横截面积小,所以如果对微通道12施加比施加到入口10的压力更高的压力,片材受到强的剪切力并被均质化。穿过微通道12的片材被排出到出口13。

特别地,在本发明中,片材可以是石墨,并且可以通过微通道12中的强剪切力来发生剥离以制备石墨烯。这里,需要控制微通道的后端12-1与从微通道的后端12-1排出的片材碰撞的出口13的壁面之间的最小距离,使得通过微通道12的流体与出口13的壁面碰撞的能量可以减小,并且石墨烯本身可以不被研磨。

微通道的后端12-1与从微通道的后端12-1排出的片材碰撞的出口13的壁面之间的最小距离是指在通过微通道12的流体行进的方向上从微通道的后端到出口壁面的距离。更具体地,是指从微通道12的后端12-1到微通道12的长度方向的延长线与出口13的壁面相交的点的距离。例如,出口13可以是圆柱形的,并且在这种情况下,微通道12的后端12-1连接到圆柱形出口的侧面,并且因此,从微通道的后端12-1到从微通道的后端12-1排出的片材碰撞的出口13的壁面的最小距离是指圆柱的直径。

同时,在常用的片材剥离装置中,由于微通道中使用的材料的机械强度的限制,微通道中的操作压力为约100巴至约3000巴。此外,为了在微通道中均质化,微通道的横截面积被控制在约1.00×102μm2至1.44×108μm2的范围内,并且根据操作压力和横截面积来确定微通道的后端处的片材的速度,即排出速度。

因此,当排出速度较高时,微通道的后端与从微通道的后端排出的片材碰撞的出口壁面之间的最小距离应该长。同时,在石墨烯与出口壁面碰撞时的碰撞压力为40巴或更小的情况下,不会发生石墨烯的研磨,并且因此,应当控制排出速度以及微通道的后端与从微通道的后端排出的片材碰撞的出口壁面之间的最小距离,使得碰撞压力可以变为40巴或更小。

在本发明中,微通道的后端与从微通道的后端排出的片材碰撞的出口壁面之间的最小距离被指定为变量y(单位m),并且微通道的后端处的片材的速度被指定为变量x(单位m/s),根据各个变量的控制来测量碰撞压力,并且结果示于图3中。

如图3所示,可以得到碰撞压力为40巴的情况的图,并且因此,如果满足方程式1,则不会发生石墨烯的研磨。同时,方程式1中的x和y值表示除了各个单位之外的数值。

优选地,最小距离y为0.001m至0.050m。更优选地,最小距离y为0.005m或更大、0.006m或更大、0.007m或更大、0.008m或更大、0.009m或更大、0.010m或更大、0.011m或更大、0.012m或更大、0.013m或更大、0.014m或更大或者0.015m或更大。

优选地,微通道的后端处的片材的速度x为10m/s至600m/s。如上所述,可以通过微通道中的操作压力和微通道的横截面积来控制微通道的后端处的片材的速度。

此外,根据本发明的片材剥离装置可以配备有用于将片材供应到入口10的供应线。通过供应线,可以控制片材的输入等。

此外,本发明还提供一种使用上述片材剥离装置制备石墨烯的方法,所述方法包括以下步骤:

1)将包含石墨的溶液供应到入口10;

2)用高压泵11对入口10施加压力以使包含石墨的溶液通过微通道12;以及

3)从出口13回收石墨烯分散体。

如上所述,制备石墨烯的所述方法是为了满足上述方程式1的要求而进行的,由此防止石墨烯与出口壁面碰撞并被研磨。

步骤2的压力优选为100巴至3000巴。此外,在从出口13回收石墨烯分散体之后,可以将其重新引入到入口10中。重新引入过程可以重复进行2到30次。重新引入过程可以使用所使用的片材剥离装置或使用多个片材剥离装置来进行。此外,重新引入过程可以根据过程分开进行,或者可以连续进行。

同时,制备石墨烯的方法还可以包括从回收的石墨烯分散液中回收石墨烯并使其干燥的步骤。回收步骤可以通过离心、真空过滤或加压过滤来进行。此外,干燥步骤可以在约30℃至200℃的温度下通过真空干燥或一般干燥进行。

此外,根据本发明制备的石墨烯的尺寸大且均匀,并且因此,有利于实现石墨烯的独特性能。所制备的石墨烯可以再分散在各种溶剂中并用作各种用途,例如导电浆料组合物、导电油墨组合物、用于形成散热基板的组合物、导电复合物、导热复合物、用于屏蔽emi的复合物或用于电池的导体或浆液等。

在下文中,为了更好地理解本发明,呈现了优选的示例。然而,这些示例仅作为本发明的说明而呈现,并且本发明不限于此。

示例1

1)片材剥离装置

使用如图1所示的微通道。使用如图1所示的包括入口10、微通道12和出口13的装置。使用具有圆柱形形状(直径1.5mm并且高度2.5mm)的入口10和出口13,并且使用具有矩形横截面(12-1和12-2)的宽度320μm、高度100μm并且长度2400μm的微通道12。

2)石墨的剥离

将2.5g石墨(bnb90)和1g作为分散剂的pvp58k(聚乙烯吡咯烷酮,重均分子量58k)与500g蒸馏水混合以制备进料溶液。在通过入口10施加730巴的高压的同时供应进料溶液,并从出口13回收进料溶液。

示例2

使用与示例1相同的装置制备石墨烯,不同之处在于使用15mm的增大的直径的出口13。

实验例1

测量各示例中获得的样品中的石墨烯的尺寸。具体而言,使用la-960激光粒度分析仪测量分散的石墨烯的横向尺寸分布,并且结果示于图3中。如图2所示,已证实由于将出口距离增加了10倍,因此剥离10次的片材的尺寸增大了约2倍,并且增大了约4倍的面积。

实验例2

使用示例1中使用的片材剥离装置,不同之处在于使用能够测量可以控制与微通道的后端的距离的碰撞压力的装置,而不是出口。将从微通道的后端排出的片材的速度控制为特定值,并且测量与在各个排出速率的碰撞压力变为40巴的微通道的后端的距离,并且结果示于图3中。

在图3中,在由蓝色表示的区域中,碰撞压力变为40巴或更小,并且确认在上述范围内没有发生石墨烯的研磨。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1