一种高活性镍基多孔催化剂的制备方法及其应用与流程

文档序号:18898460发布日期:2019-10-18 21:36阅读:138来源:国知局

本发明涉及催化剂制备领域,具体涉及一种高活性镍基多孔催化剂的制备方法及其应用。



背景技术:

c10重芳烃是目前化工生产中的副产品,其是具有很大价值的有机化工原料,组成比较复杂,共有100多个组分,如将其进行分离,可生产高沸点芳烃溶剂油、均四甲苯、石油萘、混合甲基萘等化工产品,同时,重芳烃中许多组分能与甲醛反应生成带有活性基团的低分子聚合物,该低聚物再与其它物质反应,得到一系列的高性能聚合物产品,提高产品的附加值,实现良好的经济效益。

目前。国内外对c10芳烃的开发利用情况可分为三种途径:(1)重芳烃组分不分离直接利用,以低价出售或掺混燃料油,这种方法一方面造成资源的浪费,另一方面也造成了环境的污染,随着环保要求的日益严格,汽柴油升级换代加速,这一方面的利用会越来越少;(2)对其按不同组分分离出利用价值较高的化工产品如均四甲苯、二乙苯、萘、甲基萘等,然后再进一步加工成精细化工产品;(3)重质芳烃轻质化,将重芳烃烷基化生成附加值较高的苯、甲苯、二甲苯等基本石油化工产品,再将不能转化的均四甲苯、萘、甲基萘等分离出来,这是一条更有竞争力的利用途径。

高沸点芳烃溶剂油是以重整重芳烃为原料经精馏精制而成,具有芳烃含量高,溶解力强、毒性低、气味小、闪点高、挥发速度适中、化学物理性能稳定等特点,是生产油漆、涂料、稀释剂、油墨、胶粘剂、石油添加剂和高温反应的理想溶剂,还可作为葸醌法生产双氧水的萃取剂。特别是烘烤型涂料中,在成膜的后阶段发挥高溶解力。另外,由于该产品对农药有良好的溶解梯度和乳化性能,用其配制农药及其乳化剂可提高药效、降低毒性和成本。该方法一般需要对c10芳烃进行加氢裂解处理,然后再进行精馏。目前采用的催化剂活性不够,导致目标产品收率低。



技术实现要素:

本发明要解决的技术问题之一是:针对现有技术的不足,提供一种高活性镍基多孔催化剂的制备方法,该制备方法成本低,制得的催化剂活性大,稳定性好。

本发明要解决的技术问题之二是:提供一种高活性镍基多孔催化剂的应用,该镍基多孔催化剂可用于c10芳烃加氢裂解制备高沸点芳烃溶剂,可有效提高高沸点芳烃溶剂的产率。

为解决上述第一个技术问题,本发明采用的技术方案如下:

一种高活性镍基多孔催化剂的制备方法,包括以下步骤:

(1)将硝酸镁、硝酸铝溶于去离子水中制得混合溶液a,将十二烷基硫酸钠溶于去离子水中制得十二烷基硫酸钠溶液;将氢氧化钠溶于去离子水中制得氢氧化钠溶液;

(2)常温条件下将氢氧化钠溶液和十二烷基硫酸钠溶液分别缓慢滴加到混合溶液a中,边滴加边搅拌,滴加结束后升温至40~60℃,在1500~1800转/分的状态下搅拌反应10~15h,然后冷却至室温,过滤,将固体洗涤至中性后,干燥,制得层状金属氢氧化物前驱体;

(3)将丙烯酸单体和质量浓度为25~30%的氢氧化钠溶液混合均匀,然后依次加入n,n'-亚甲基双丙烯酰胺、过硫酸铵,搅拌均匀后升温至60~70℃,反应1~3h,制得聚丙烯酸凝胶;

(4)将纳米纤维素晶体分散于去离子水中,然后加入层状金属氢氧化物前驱体,500~600w功率下超声处理25~35min,然后加入硝酸镍、硝酸钴的混合溶液,搅拌混合均匀,加入质量浓度为25%的氯化铵溶液,60~65℃下搅拌回流反应,反应结束后,冷却至室温,过滤,将过滤得到的固体直接加入到步骤(3)制得的聚丙烯酸凝胶中,然后在烘箱中120~150℃下干燥处理3~5h,之后在马弗炉内空气气氛300~400℃下煅烧2.5~3.5h,制得高活性镍基多孔催化剂。

作为上述技术方案的优选,步骤(1)中,所述混合溶液a中,硝酸镁的浓度为1.35~1.65mol/l,硝酸铝的浓度为0.45~0.55mol/l;所述十二烷基硫酸钠溶液的浓度为0.015~0.02mol/l;所述氢氧化钠溶液的浓度为1~1.5mol/l。

作为上述技术方案的优选,步骤(2)中,所述混合溶液a、十二烷基硫酸钠溶液、氢氧化钠溶液的体积比为1:1:1。

作为上述技术方案的优选,步骤(3)中,所述丙烯酸单体、氢氧化钠溶液、n,n'-亚甲基双丙烯酰胺、过硫酸铵的质量比为10:(3~6):0.15:(0.08~0.12)。

作为上述技术方案的优选,步骤(4)中,所述纳米纤维素晶体、层状金属氢氧化物前驱体、硝酸镍、硝酸钴、聚丙烯酸凝胶的质量比为(1~3):23:(5~8):6:10。

为解决上述第二个技术问题,本发明采用的技术方案如下:

一种高活性镍基多孔催化剂在c10芳烃加氢裂解制备高沸点芳烃溶剂中的应用,具体为:

1)将c10芳烃加入到装有上述制得的高活性镍基多孔催化剂的固定反应器中,通入氢气进行加氢裂解反应,制得加氢生成油;

2)将上述制得的加氢生成油泵入到精馏塔内,开启精馏塔的加热系统,调节精馏塔塔顶的温度和塔釜温度,调节精馏塔的真空度,进行减压精馏,精馏过程的气相经塔顶冷凝器冷凝,冷凝液进入回流罐中,未冷凝气相经塔顶冷凝捕集器冷凝捕集,捕集后的冷凝液进入回流罐中,经回流罐冷却器冷却后送至中间罐,经分析合格后泵入到成品罐中,即得高沸点芳烃溶剂。

作为上述技术方案的优选,所述加氢裂解反应时的氢压力为4.5~7.5mpa,氢油比为400~600,体积空速为7.5~10.3h-1

作为上述技术方案的优选,步骤2)中,开启精馏塔的加热系统,调节精馏塔塔顶的温度为140~165℃,塔釜温度为185~205℃。

作为上述技术方案的优选,步骤2)中,减压蒸馏时,调节精馏塔的真空度为-0.085~-0.095mpa。

由于采用上述技术方案,本发明具有以下有益效果:

本发明首先以硝酸镁、硝酸铝为原料滴加碱液和表面活性剂溶液制备层状氢氧化物前驱体,然后将其与纳米纤维素晶体分散液混合,超声作用下,纳米纤维素晶体均匀分散于层状金属氢氧化物的层间以及层表面;并加入硝酸镍和硝酸钴的混合水溶液,在氢氧化钠的作用下,镍离子和钴离子发生沉淀,制得的物质包覆于纳米纤维素晶体表面,最后加入自制的聚丙烯酸凝胶,干燥后进行煅烧,制得的催化剂比表面大,具有较高的活性,且分散性好。

本发明以c10芳烃为原料,首先采用自制的加氢催化剂进行加氢裂解反应,然后进行减压蒸馏制得高沸点芳烃溶剂,目标产物的收率高达96.8%以上,而采用市售的普通催化剂,目标产物的收率仅为73.5%。

具体实施方式

下面通过实施例对本发明进一步说明,实施例只用于解释本发明,不会对本发明构成任何的限定。

实施例1

(1)将硝酸镁、硝酸铝溶于去离子水中制得混合溶液a,将十二烷基硫酸钠溶于去离子水中制得十二烷基硫酸钠溶液;将氢氧化钠溶于去离子水中制得氢氧化钠溶液;其中,所述混合溶液a中,硝酸镁的浓度为1.35mol/l,硝酸铝的浓度为0.45mol/l;所述十二烷基硫酸钠溶液的浓度为0.015mol/l;所述氢氧化钠溶液的浓度为1mol/l;

(2)常温条件下将氢氧化钠溶液和十二烷基硫酸钠溶液分别缓慢滴加到混合溶液a中,边滴加边搅拌,滴加结束后升温至40℃,在1500转/分的状态下搅拌反应10h,然后冷却至室温,过滤,将固体洗涤至中性后,干燥,制得层状金属氢氧化物前驱体;

(3)将丙烯酸单体和质量浓度为25%的氢氧化钠溶液混合均匀,然后依次加入n,n'-亚甲基双丙烯酰胺、过硫酸铵,搅拌均匀后升温至60℃,反应1h,制得聚丙烯酸凝胶;其中,所述丙烯酸单体、氢氧化钠溶液、n,n'-亚甲基双丙烯酰胺、过硫酸铵的质量比为10:3:0.15:0.08;

(4)将纳米纤维素晶体分散于去离子水中,然后加入层状金属氢氧化物前驱体,500w功率下超声处理25min,然后加入硝酸镍、硝酸钴的混合溶液,搅拌混合均匀,加入质量浓度为25%的氯化铵溶液,60℃下搅拌回流反应,反应结束后,冷却至室温,过滤,将过滤得到的固体直接加入到步骤(3)制得的聚丙烯酸凝胶中,然后在烘箱中120℃下干燥处理3h,之后在马弗炉内空气气氛300℃下煅烧2.5h,制得高活性镍基多孔催化剂;其中,所述纳米纤维素晶体、层状金属氢氧化物前驱体、硝酸镍、硝酸钴、聚丙烯酸凝胶的质量比为1:23:5:6:10;

(5)将c10芳烃加入到装有上述制得的高活性镍基多孔催化剂的固定反应器中,通入氢气进行加氢裂解反应,制得加氢生成油;其中,所述加氢裂解反应时的氢压力为4.5mpa,氢油比为400,体积空速为7.5h-1

(6)将上述制得的加氢生成油泵入到精馏塔内,开启精馏塔的加热系统,调节精馏塔塔顶的温度为140℃,塔釜温度为185℃,调节精馏塔的真空度为-0.085mpa,进行减压精馏,精馏过程的气相经塔顶冷凝器冷凝,冷凝液进入回流罐中,未冷凝气相经塔顶冷凝捕集器冷凝捕集,捕集后的冷凝液进入回流罐中,经回流罐冷却器冷却后送至中间罐,经分析合格后泵入到成品罐中,即得高沸点芳烃溶剂,其收率为96.8%。

实施例2

(1)将硝酸镁、硝酸铝溶于去离子水中制得混合溶液a,将十二烷基硫酸钠溶于去离子水中制得十二烷基硫酸钠溶液;将氢氧化钠溶于去离子水中制得氢氧化钠溶液;其中,所述混合溶液a中,硝酸镁的浓度为1.65mol/l,硝酸铝的浓度为0.55mol/l;所述十二烷基硫酸钠溶液的浓度为0.02mol/l;所述氢氧化钠溶液的浓度为1.5mol/l;

(2)常温条件下将氢氧化钠溶液和十二烷基硫酸钠溶液分别缓慢滴加到混合溶液a中,边滴加边搅拌,滴加结束后升温至60℃,在1800转/分的状态下搅拌反应15h,然后冷却至室温,过滤,将固体洗涤至中性后,干燥,制得层状金属氢氧化物前驱体;

(3)将丙烯酸单体和质量浓度为30%的氢氧化钠溶液混合均匀,然后依次加入n,n'-亚甲基双丙烯酰胺、过硫酸铵,搅拌均匀后升温至70℃,反应3h,制得聚丙烯酸凝胶;其中,所述丙烯酸单体、氢氧化钠溶液、n,n'-亚甲基双丙烯酰胺、过硫酸铵的质量比为10:6:0.15:0.12;

(4)将纳米纤维素晶体分散于去离子水中,然后加入层状金属氢氧化物前驱体,600w功率下超声处理35min,然后加入硝酸镍、硝酸钴的混合溶液,搅拌混合均匀,加入质量浓度为25%的氯化铵溶液,65℃下搅拌回流反应,反应结束后,冷却至室温,过滤,将过滤得到的固体直接加入到步骤(3)制得的聚丙烯酸凝胶中,然后在烘箱中150℃下干燥处理5h,之后在马弗炉内空气气氛400℃下煅烧3.5h,制得高活性镍基多孔催化剂;其中,所述纳米纤维素晶体、层状金属氢氧化物前驱体、硝酸镍、硝酸钴、聚丙烯酸凝胶的质量比为3:23:8:6:10;

(5)将c10芳烃加入到装有上述制得的高活性镍基多孔催化剂的固定反应器中,通入氢气进行加氢裂解反应,制得加氢生成油;其中,所述加氢裂解反应时的氢压力为7.5mpa,氢油比为600,体积空速为10.3h-1

(6)将上述制得的加氢生成油泵入到精馏塔内,开启精馏塔的加热系统,调节精馏塔塔顶的温度为165℃,塔釜温度为205℃,调节精馏塔的真空度为-0.095mpa,进行减压精馏,精馏过程的气相经塔顶冷凝器冷凝,冷凝液进入回流罐中,未冷凝气相经塔顶冷凝捕集器冷凝捕集,捕集后的冷凝液进入回流罐中,经回流罐冷却器冷却后送至中间罐,经分析合格后泵入到成品罐中,即得高沸点芳烃溶剂,其收率为97.5%。

实施例3

(1)将硝酸镁、硝酸铝溶于去离子水中制得混合溶液a,将十二烷基硫酸钠溶于去离子水中制得十二烷基硫酸钠溶液;将氢氧化钠溶于去离子水中制得氢氧化钠溶液;其中,所述混合溶液a中,硝酸镁的浓度为1.45mol/l,硝酸铝的浓度为0.47mol/l;所述十二烷基硫酸钠溶液的浓度为0.016mol/l;所述氢氧化钠溶液的浓度为1.1mol/l;

(2)常温条件下将氢氧化钠溶液和十二烷基硫酸钠溶液分别缓慢滴加到混合溶液a中,边滴加边搅拌,滴加结束后升温至45℃,在1600转/分的状态下搅拌反应11h,然后冷却至室温,过滤,将固体洗涤至中性后,干燥,制得层状金属氢氧化物前驱体;

(3)将丙烯酸单体和质量浓度为26%的氢氧化钠溶液混合均匀,然后依次加入n,n'-亚甲基双丙烯酰胺、过硫酸铵,搅拌均匀后升温至65℃,反应1.5h,制得聚丙烯酸凝胶;其中,所述丙烯酸单体、氢氧化钠溶液、n,n'-亚甲基双丙烯酰胺、过硫酸铵的质量比为10:3.5:0.15:0.09;

(4)将纳米纤维素晶体分散于去离子水中,然后加入层状金属氢氧化物前驱体,550w功率下超声处理30min,然后加入硝酸镍、硝酸钴的混合溶液,搅拌混合均匀,加入质量浓度为25%的氯化铵溶液,60℃下搅拌回流反应,反应结束后,冷却至室温,过滤,将过滤得到的固体直接加入到步骤(3)制得的聚丙烯酸凝胶中,然后在烘箱中130℃下干燥处理3.5h,之后在马弗炉内空气气氛350℃下煅烧2.7h,制得高活性镍基多孔催化剂;其中,所述纳米纤维素晶体、层状金属氢氧化物前驱体、硝酸镍、硝酸钴、聚丙烯酸凝胶的质量比为1.5:23:5.5:6:10;

(5)将c10芳烃加入到装有上述制得的高活性镍基多孔催化剂的固定反应器中,通入氢气进行加氢裂解反应,制得加氢生成油;其中,所述加氢裂解反应时的氢压力为5mpa,氢油比为400,体积空速为8h-1

(6)将上述制得的加氢生成油泵入到精馏塔内,开启精馏塔的加热系统,调节精馏塔塔顶的温度为145℃,塔釜温度为190℃,调节精馏塔的真空度为-0.09mpa,进行减压精馏,精馏过程的气相经塔顶冷凝器冷凝,冷凝液进入回流罐中,未冷凝气相经塔顶冷凝捕集器冷凝捕集,捕集后的冷凝液进入回流罐中,经回流罐冷却器冷却后送至中间罐,经分析合格后泵入到成品罐中,即得高沸点芳烃溶剂,其收率为97.8%。

实施例4

(1)将硝酸镁、硝酸铝溶于去离子水中制得混合溶液a,将十二烷基硫酸钠溶于去离子水中制得十二烷基硫酸钠溶液;将氢氧化钠溶于去离子水中制得氢氧化钠溶液;其中,所述混合溶液a中,硝酸镁的浓度为1.5mol/l,硝酸铝的浓度为0.5mol/l;所述十二烷基硫酸钠溶液的浓度为0.015~0.02mol/l;所述氢氧化钠溶液的浓度为1.2mol/l;

(2)常温条件下将氢氧化钠溶液和十二烷基硫酸钠溶液分别缓慢滴加到混合溶液a中,边滴加边搅拌,滴加结束后升温至40℃,在1700转/分的状态下搅拌反应13h,然后冷却至室温,过滤,将固体洗涤至中性后,干燥,制得层状金属氢氧化物前驱体;

(3)将丙烯酸单体和质量浓度为27%的氢氧化钠溶液混合均匀,然后依次加入n,n'-亚甲基双丙烯酰胺、过硫酸铵,搅拌均匀后升温至65℃,反应2h,制得聚丙烯酸凝胶;其中,所述丙烯酸单体、氢氧化钠溶液、n,n'-亚甲基双丙烯酰胺、过硫酸铵的质量比为10:5:0.15:0.1;

(4)将纳米纤维素晶体分散于去离子水中,然后加入层状金属氢氧化物前驱体,500w功率下超声处理30min,然后加入硝酸镍、硝酸钴的混合溶液,搅拌混合均匀,加入质量浓度为25%的氯化铵溶液,63℃下搅拌回流反应,反应结束后,冷却至室温,过滤,将过滤得到的固体直接加入到步骤(3)制得的聚丙烯酸凝胶中,然后在烘箱中130℃下干燥处理4h,之后在马弗炉内空气气氛400℃下煅烧3h,制得高活性镍基多孔催化剂;其中,所述纳米纤维素晶体、层状金属氢氧化物前驱体、硝酸镍、硝酸钴、聚丙烯酸凝胶的质量比为2.5:23:7:6:10;

(5)将c10芳烃加入到装有上述制得的高活性镍基多孔催化剂的固定反应器中,通入氢气进行加氢裂解反应,制得加氢生成油;其中,所述加氢裂解反应时的氢压力为6mpa,氢油比为600,体积空速为9h-1

(6)将上述制得的加氢生成油泵入到精馏塔内,开启精馏塔的加热系统,调节精馏塔塔顶的温度为150℃,塔釜温度为195℃,调节精馏塔的真空度为-0.09mpa,进行减压精馏,精馏过程的气相经塔顶冷凝器冷凝,冷凝液进入回流罐中,未冷凝气相经塔顶冷凝捕集器冷凝捕集,捕集后的冷凝液进入回流罐中,经回流罐冷却器冷却后送至中间罐,经分析合格后泵入到成品罐中,即得高沸点芳烃溶剂,其收率为97.2%。

实施例5

(1)将硝酸镁、硝酸铝溶于去离子水中制得混合溶液a,将十二烷基硫酸钠溶于去离子水中制得十二烷基硫酸钠溶液;将氢氧化钠溶于去离子水中制得氢氧化钠溶液;其中,所述混合溶液a中,硝酸镁的浓度为1.6mol/l,硝酸铝的浓度为0.53mol/l;所述十二烷基硫酸钠溶液的浓度为0.017mol/l;所述氢氧化钠溶液的浓度为1.3mol/l;

(2)常温条件下将氢氧化钠溶液和十二烷基硫酸钠溶液分别缓慢滴加到混合溶液a中,边滴加边搅拌,滴加结束后升温至55℃,在1700转/分的状态下搅拌反应14h,然后冷却至室温,过滤,将固体洗涤至中性后,干燥,制得层状金属氢氧化物前驱体;

(3)将丙烯酸单体和质量浓度为28%的氢氧化钠溶液混合均匀,然后依次加入n,n'-亚甲基双丙烯酰胺、过硫酸铵,搅拌均匀后升温至70℃,反应2.5h,制得聚丙烯酸凝胶;其中,所述丙烯酸单体、氢氧化钠溶液、n,n'-亚甲基双丙烯酰胺、过硫酸铵的质量比为10:5.5:0.15:0.1;

(4)将纳米纤维素晶体分散于去离子水中,然后加入层状金属氢氧化物前驱体,600w功率下超声处理30min,然后加入硝酸镍、硝酸钴的混合溶液,搅拌混合均匀,加入质量浓度为25%的氯化铵溶液,63℃下搅拌回流反应,反应结束后,冷却至室温,过滤,将过滤得到的固体直接加入到步骤(3)制得的聚丙烯酸凝胶中,然后在烘箱中140℃下干燥处理4.5h,之后在马弗炉内空气气氛380℃下煅烧3h,制得高活性镍基多孔催化剂;其中,所述纳米纤维素晶体、层状金属氢氧化物前驱体、硝酸镍、硝酸钴、聚丙烯酸凝胶的质量比为2.5:23:7:6:10;

(5)将c10芳烃加入到装有上述制得的高活性镍基多孔催化剂的固定反应器中,通入氢气进行加氢裂解反应,制得加氢生成油;其中,所述加氢裂解反应时的氢压力为7mpa,氢油比为600,体积空速为10h-1

(6)将上述制得的加氢生成油泵入到精馏塔内,开启精馏塔的加热系统,调节精馏塔塔顶的温度为155℃,塔釜温度为200℃,调节精馏塔的真空度为-0.09mpa,进行减压精馏,精馏过程的气相经塔顶冷凝器冷凝,冷凝液进入回流罐中,未冷凝气相经塔顶冷凝捕集器冷凝捕集,捕集后的冷凝液进入回流罐中,经回流罐冷却器冷却后送至中间罐,经分析合格后泵入到成品罐中,即得高沸点芳烃溶剂,其收率为97.5%。

对比例1

对c10芳烃采用普通市售催化剂进行加氢裂解反应,然后再进行精馏处理,其他条件和实施例5相同,经检验,目标产物的收率为73.5%。

虽然已经对本发明的具体实施方案进行了描述,但是本发明的许多其他形式和改变对本领域技术人员而言是显而易见的。应理解所附权利要求和本发明通常涵盖本发明真实精神和范围内的所有这些明显的形式和改变。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1