中空纤维膜与中空纤维膜模件组合及其净化槽的制作方法

文档序号:5011222阅读:166来源:国知局
专利名称:中空纤维膜与中空纤维膜模件组合及其净化槽的制作方法
技术领域
本发明涉及一种对液体进行过滤的中空纤维膜模件,特别是一种适合于对污浊性高的液体(特殊情况下是含有有机物的污浊物)进行过滤的中空纤维膜模件及采用该中空纤维膜模件的中空纤维膜模件组合,以及在内部配置该中空纤维膜模件组合的净化槽。
背景技术
近年来,中空纤维膜模件可以使用到无菌水、饮料水、高纯度水的制造,空气的净化等很多领域,除了这些用途之外,在近些年里还在研究其它各种不同用途,例如,废水处理厂中的二次处理、三次处理,净化槽中的固液分离,工业废水中的浮游悬浊物质(ss)的固液分离,净水厂中的河水直接过滤,工业用管道水的过滤,水池水的过滤等的高污浊水的处理。
对于进行高污浊性水的处理用的中空纤维膜模件,如特开平5-261253号公报、特开平6-340号公报、特开平6-342号公报等所示,公开了一种中空纤维膜模件或者将该中空纤维膜叠层而形成的中空纤维膜模件组合。
图9示出了以往中空纤维膜模件的一个实例,该中空纤维膜模件50大致由将多根中空纤维3a、3a…平行配置而构成的中空纤维膜3和设置在中空纤维膜的两端的两个相对的集水管1构成。
上述集水管1由于在内部形成有内部通路,其一端被封闭,另一端上设置有与图中未示的抽吸泵相连接的管路4。这样,在该集水管1的侧壁上沿着其长度方向形成开口部5。在该开口部5中插入中空纤维膜3的端部,充填固定用树脂2,固化之后被封闭住,从而使中空纤维膜3牢固地支撑固定。在这种情况下,中空纤维膜3的端部就是中空纤维3a的纤维方向的两端部,各中空纤维3a、3a…的两端部朝集水管1的内部通路内形成开口。
采用上述中空纤维膜模件50,在进行抽吸过滤的情况下,将上述中空纤维膜模件50配置在盛满被处理液的被处理液槽内,将该管路4连接在抽吸泵上。
这样,一旦该抽吸泵驱动,中空纤维3a、3a…内形成负压,将被处理液槽中盛满的被处理液抽吸到中空纤维3a、3a…内,在通过它的同时被过滤,其过滤液通过该中空纤维3a、3a…进入到集水管1的内部通路中,进而通过管路4由抽吸泵抽吸排出。
将这种结构的中空纤维膜模件50在被处理水槽内配置多个,可以形成中空纤维膜模件组合。通过将中空纤维膜模件50配置多个,可以增大整体的膜面积,从而可提高处理能力,或者用空气洗涤法进行清洗时,由于水或者空气很容易在中空纤维膜3之间移动,因而可以很有效地进行膜面的清洗。
然而,在这种中空纤维膜模件50的制造过程中,将中空纤维3a、3a…固定在集水管1上,对其两端部进行开口,将中空纤维3a、3a…的两端部通过固定树脂2固定之后,再将该固定树脂与中空纤维膜3的两端部通过在集水管1的内部插入特殊形状的刀来进行切割,而使中空纤维膜的两端部开口,因此,不能获得具有长尺寸集水管1的中空纤维膜模件。另外,必须使用外径较大的集水管1,由此使中空纤维膜模件50的耐压性降低,在将该中空纤维膜模件50进行叠层而组装成中空纤维膜模件组合时,出现中空纤维膜模件组合单位体积的叠层率降低的问题。
另一方面,近年来净化槽中的装置可以便宜地设置,施工周期也可以很短,从而使FRP制的净化槽得以普及。
图6表示的是该FRP制净化槽的一个实施例,图中的符号70表示净化槽。该净化槽70呈FRP制成的圆筒状,在其内部灌满有效水深在1.6m以上的被处理水。该净化槽70埋设有地下,而在其地上一侧的侧面设置有圆筒状的检修孔71,其前端开口,该开口部分与地上所设的外部相连通。该检修孔71的外径最少约为600mm。
这种FRP制的净化槽并不普及,将带有上述这种优异处理能力的中空纤维膜模件组合作为FRP制的净化槽的膜处理过滤装置来使用是非常有益的,在上述FRP制的净化槽70中,由于只能从检修口71进行过滤处理装置的设置及更换,在上述中空纤维膜模件组合进行排水的净化处理的情况下,则不能进行这种设置,从而使中空纤维膜模件组合的大小受到了限制。另外,即使受到大小的限制,也不得不使用可进行最低为5人槽(1m3/天)程度的过滤处理的过滤处理装置,在以往的纤维膜装置中,由于上述这种大小或叠层率不良,会出现朝FRP净化槽的大小受到限制处设置上的问题。
因些本发明的目的是在FRP制的净化槽的大小受到限制的情况下,提供一种作为过滤处理装置而有高耐压性的中空纤维膜模件及中空纤维膜模件组合,以及设置该装置的净化槽。
发明的内容在解决上述问题的本发明权利要求1中,将中空纤维展开成平面状的中空纤维膜的至少一侧的端部通过固定树脂以密封住液体的方式固定在集水管上,形成中空纤维膜模件,其中,在设置有集水管的开口部上插入端部开口的中空纤维膜,在这种状态下通过充填固定树脂进行固化,从而将集水管与端部开口状态下的中空纤维膜固定在一起。
在权利要求2的中空纤维膜模件中,上述集水管开口部的外周部上设置有阻挡堰坝。
在权利要求3的中空纤维膜模件中,上述集水管采用外径为5~30mm、长度为30~2000mm。
在权利要求4的中空纤维膜模件中,上述固定树脂采用初期粘度为150~450cPs。
在权利要求5的中空纤维膜模件中,上述固定树脂采用了聚胺酯。
在权利要求6的中空纤维膜模件中,中空纤维膜采用了中空纤维织物。
在权利要求7的中空纤维膜模件中,上述中空纤维膜的膜长为100~2000mm。
在权利要求8的中空纤维膜模件组合中,将权利要求1至7中任何一项所记载的中空纤维膜模件配置多个,将它们的集水管连接在集水连管箱上形成一体,进入中空纤维膜内的滤液通过形成于集水管中的内部通路收集到集水连管箱中。
在权利要求9的中空纤维膜模件组合中,将权利要求1至7中任何一项所记载的中空纤维膜模件配置多个,将它们的集水管连接在集水连管箱上,通过支柱和挡板形成一体,从而将进入中空纤维膜内的滤液通过形成于集水管中的内部通路收集到集水连管箱中。
在权利要求10的净化槽中,将权利要求8或者9所记载的中空纤维膜模件组合设置于其内部,将上述中空纤维膜模件组合以让该中空纤维膜模件的集水管以及中空纤维膜的膜面相对于水面呈垂直的方向配置于净化槽内部,该中空纤维膜模件组合的大小(A)沿着中空纤维膜模件叠层方向,装置的长度为20~500mm,(B)沿着中空纤维膜模件的中空纤维长度方向,装置的长度为100~500mm,(C)沿着中空纤维膜模件的集水管长度方向,装置的高度为100~1500mm。
在权利要求11的净化槽中,将权利要求8或者9所记载的中空纤维膜模件组合设置于其内部,将上述中空纤维膜模件组合以让该中空纤维膜模件的集水管相对于水平方向配置于净化槽内部,而让其中空纤维膜的膜面相对于水面垂直配置于净化槽内部,该配置的中空纤维膜模件组合的大小(A)沿着中空纤维膜模件的叠层方向,装置的长度为20~500mm,(B)沿着中空纤维膜模件的集水管长度方向,装置的长度为100~500mm,(C)沿着中空纤维膜模件的中空纤维长度方向,装置的高度为100~1500mm。
在权利要求12的净化槽中,在配置于内部的中空纤维膜模件组合中固定有散气管形成一体。
图面的简单说明

图1是表示本发明中空纤维膜模件的一个实施例的立体图,图2及图3均是表示本发明中空纤维膜模件的集水管断面结构的一个实施例的剖视图,图4是表示本发明中空纤维膜模件组合的一个实施例的剖视图,图5是表示本发明中空纤维膜模件组合的集水连管箱的一个实施例的立体图,图6是表示本发明中空纤维膜模件组合在净化槽内的设置方法的结构简图,图7及图8均是表示本发明中空纤维膜模件组合的一个实施例的立体图,图9表示以住的中空纤维膜模件的一个实例的立体图。
实施本发明的最佳形态下面参照附图对本发明进行详细说明。
图1示出了本发明中空纤维膜模件的一个实施例,图2及图3示出了本发明中空纤维膜模件一个实施例的集水管部分的断面结构。该中空纤维膜模件51由集水管11、固定树脂12、中空纤维膜13构成。
上述集水管11由于在内部形成筒状的内部通路,设置有在其至少一端开口的管路14。另外,在该集水管11的侧壁上沿着长度方向形成狭缝状的开口部15。
该集水管11的材质最好是具有机械强度以及耐久性的那种,例如,最好采用聚碳酸酯、聚磺酰胺、聚烯烃、聚氯乙烯、丙烯腈树脂、ABS树脂、变性PPE树脂等,通过使用后的烧掉能够进行不排放有毒气体的完全燃烧的炭化氢系树脂。
这时,为了得到高的收集率以具有真空泵抽吸所要求的强度,对集水管11的内部通路流动的流体的阻抗小,加工没有困难范围内的集水管11最好其外径为5~30mm,长度为30~2000mm。另外,对于其壁厚只要满足上述条件并没有特别的限制,最好在1~5mm。
另外,图中所示的集水管11是圆筒状的,但不限于此,例如也可以是四梭柱状的。
在上述集水管11中所设的开口部15上插入中空纤维膜13的开口的端部,在该状态下通过在开口部15中流入固定树脂12进行固化,而使中空纤维膜13牢固地支撑固定。该开口部15可以从外侧插入中空纤维膜13,并具有不致将中空纤维膜13拔出程度的压力来夹持住中空纤维膜13的宽度,由于中空纤维13a的外径是不同的,但最好在0.3~5mm的范围内。一旦处于该范围内,不同中空纤维膜13的中空纤维13a容易被拉齐而并为整齐的一列。没有拉齐中空纤维13a的中空纤维膜会很乱,经过污泥等的附着而使多根中空纤维13a固化为一体变成束,无法有效地运用分离膜的表面积,从而降低了分离性能。然而,在开口部15的宽度窄的中空纤维膜13插入的情况下,插入时可以采用扩张开口部15的手段。
图3所示的集水管11在上述集水管11开口部15的外周壁上形成有堰坝16。集水管11可以构成带有这种堰坝16的结构。设置堰坝16用来在将固定树脂12流入开口部15而固化时,使固定树脂12不易沿集水管11的外周面展开。
上述开口部15中充填的固定树脂12将中空纤维膜13的各中空纤维13a在保持其端部开口状态下集成一束固定在开口部15中,同时,让集水管11的内部通路以与密封住外部液体的方式封闭住。
该固定树脂12可以采用环氧树脂、不饱和聚酯树脂、聚胺酯树脂、硅酮系充填材料、各种热融性树脂等。其中,聚胺酯树脂固化时收缩率小,其中所含的添加物难于溶解在滤液中,因而适合于作固定树脂12使用。
另外,上述固定树脂12最好采用其初期粘度为150~450cPs的那种。固定树脂12的初期粘度不足150cPs,就会出现在开口部15上涂布固定树脂12时,固定树脂12从开口部15容易流入到集水管11内的问题,而一旦粘度超过450cPs,固定树脂12朝中空纤维膜13的浸入便会不完全,从而容易出现泄漏问题。固定树脂12的粘度由于上述范围内,在热硬性树脂的情况下,例如可以控制其反应性,而在热塑性树脂的情况下,例如可以通过控制温度进行调节。
另外,固定树脂12涂布在开口部15上十分钟之后的粘度最好在700~1300cPs之内。
上述中空纤维膜13可以采用各种类型,例如赛璐珞系、聚烯烃系、聚乙烯醇系、聚甲基丙烯酸系、聚磺酰胺系等各种材料制成。其中,最好采用聚乙烯、聚丙烯等拉伸强度高的材料。
另外,如果没有特别的限定,中空纤维13a的外径可以在0~2000μm,孔径在0.01~1μm,空径率在20~90%,中空纤维膜13的膜压最好在5~300μm。
将该中空纤维膜13插入到开口部15中时,是把中空纤维拉伸排齐插入的,采用一片以中空纤维为纬纱的织物,或者使用将该织物多片叠层的叠层体,则容易向集水管上固定,可容易并且高效地制造带有任意膜面积的中空纤维膜模件51。
另外,也可以采用与中空纤维膜13的膜壁一部分相邻的中空纤维膜侧面相接合的一片中空纤维膜片或者将多片该中空纤维膜片叠层而形成的叠层体。
此外,这里所说的叠层体还包括不将织物切断,而是以适当的长度进行折叠重叠形成的叠层体。织物的叠层的数目根据织物的厚度、即中空纤维的外径或织成织物时的中空纤维膜合线的支数而变化,最好为5支左右。
另外,中空纤维膜13的膜长最好在100~2000mm范围,200~1000mm的范围更好。如果处于该范围内,中空纤维膜模件51的叠层化形成的中空纤维膜模件组合可以与紧凑化相对应,同时有很强的过滤处理能力。
此外,作为中空纤维膜13的形状,由于中空纤维膜并不相互固化成一体,因此只要能够容易地固定在集水管11上,在此并没有特别的限制。
作为朝上述中空纤维膜13的集水管11的固定方法,首先,将要向集水管11的开口部15中插入的一侧中空纤维膜13的端部预先切断并开口。这时,如要在将中空纤维膜13的两端部插入集水管11的情况下,则将其两端部切断开口。由此,与以往的中空纤维膜模件制造工艺相比,可以削减工序数。
接着,将中空纤维膜13的至少一个端部以将开口部15位于集水管11内部通路中的方式插入集水管11的开口部15中,如图2或者图3所示,将液体状的固定树脂12从集水管11的外方充填到开口部15中固化,从而将中空纤维膜13固定。这时,如图3所示,在集水管11上设置有堰坝16的情况下,可以将固定树脂12滞留在堰坝16的内部固化。在这种情况下,固定树脂12注入开口部15中时,集水管11的外周面上难以展开固定树脂12,同时,又容易将固定树脂12浸入中空纤维膜13的表面。
这样,端部预先开口的中空纤维膜13插入到集水管11的开口部15中,通过固定树脂12对开口部15部分的中空纤维膜13进行固定,因此,不需要象以往的方法那样必须在集水管11的内部为了让中空纤维膜13的端部开口而对树脂固定部进行切断。因而可以让集水管11的直径更细,从而能够提高中空纤维膜模件51的耐压性。此外,也可以将集水管11的尺寸做得很长。
另外,由于将集水管11的直径变细,以及尺寸变长,将中空纤维膜模件51叠层而作为中空纤维膜模件组合使用时,可以提高收集率,从而提高耐压性和过滤处理能力,并且可以制造出紧凑化的中空纤维膜模件组合。
图4表示的是本发明中空纤维膜模件组合的一个实施例。中空纤维膜模件组合61是将多个上述中空纤维膜模件51配置在一起,将它们的集水管11由集水连管箱17相连接而形成一体。
图5表示的是上述中空纤维膜模件组合61的集水连管箱17的一个实例。集水连管箱17带有与中空纤维膜模件51、51…的集水管11的管路14相连通的多个连接孔17a,由于其内部呈带有供滤液通过的导管的筒状,其连通孔17a上连接多个中空纤维膜模件51、51…将它们固定形成一体。另外,上述导管连在集水连管箱17的外部,形成与抽水泵相连接的抽水口18。
对于其形状,最好采用可以将多个中空纤维膜模件51集中进行简单连接、固定的那种总管型的,对于从中空纤维膜模件51、51…中抽出滤液的结构并没有特别的限定。
另外,图4所示的中空纤维膜模件组合61是通过将各中空纤维膜模件51、51…的集水管11一个侧面的端部由集水连管箱17形成一体而构成的,将集水管11两侧的端部由集水连管箱17固定来形成也是可以的。这时,抽水口18设置有至少连接着集水管11的管路14的集水连管箱17上。
这样,本发明的中空纤维膜模件组合61由于是将多个上述中空纤维膜模件51进行配置的,由集水连管箱17形成一体,因此可以与小型化相适应,并且具有高的耐压性和过滤处理能力,同时能够很简单地进行中空纤维膜的更换,可以很好地用于净化槽中。
图6表示的是本发明的净化槽的一个实施例。该净化槽70是小型合并净化槽,本体是FRP制的水箱,其内部贮留有水深为1.6m以上的被处理水。通常,净化槽70本体是埋在地下的,设置有作为外部连通通路的圆筒状检修口(人孔)71。另外,在其内部作为膜分离装置的中空纤维膜模件组合62设置在检修口71的下方。这时,中空纤维膜模件组合62可以是如图所示设置成一整段,也可以是沿纵向多个重叠设置。
在该净化槽70中设置有中空纤维膜模件组合62的情况下,在设置到净化槽70中之后,只能仅通过上述检修口71对其内部装置维护。这是因为设置于内部的中空纤维膜模件组合62要根据其处理量、设置空间而对其大小进行调节。
一般,最小的维修孔71其外径为600mm。这样,中空纤维膜模件组合62的大小就必须是能够插入外径至少为600mm的检修口71中的程度。本发明的中空纤维膜模件组合62是可以从最小外径为600mm的检修口2进行设置的大小。
图7表示的是设置于上述净化槽中的中空纤维膜模件组合的一个实施例。该中空纤维膜模件组合62具有与上述本发明的中空纤维膜模件组合61相同的结构部件,为了与上述净化槽装置相配合,对应于更为紧凑化,而带有支柱29和挡板20。
在中空纤维膜模件组合62中,配置有多个中空纤维膜模件52、52…,这些中空纤维膜模件52、52…的集水管21、21…及中空纤维膜23、23…的膜面由于是沿着垂直方向设置有净化槽内部的,因此是由集水连管箱27、支柱29、挡板20保持为一体的长方体形状。
该长方体形状的中空纤维膜模件组合62,(A)沿着中空纤维膜模件52的叠层方向,装置的长度为20~500mm,(B)沿着中空纤维膜模件52的中空纤维膜23长度方向,装置的长度为100~500mm,(C)沿着中空纤维膜模件52的集水管23长度方向,装置的高度为100~1500mm。
这时,装置的长度(A)由集水管21的外径、配置它们的间隔、支柱29的外径、支柱29与集水管21的间隔、集水连管箱27的长度以及挡板20的厚度来确定。另外,装置的长度(B)由与中空纤维膜模件组合62相面对的集水管21的间隔,即中空纤维膜23的长度来确定。另外,装置的高度(C)由集水管21以及支柱29的长度、集水连管箱27的外径来确定。中空纤维膜模件组合61的大小通过对这些相关联的物件的大小进行适当的调节确定。
这时,中空纤维膜模件组合62的装置高度(C)或者装置长度(A)与集水管21的大小有关,在上述的本发明中空纤维膜模件52中,由于可以使集水管21的直径变细,从而能够在上述范围内更紧凑地叠层来形成中空纤维膜模件组合62。
上述中空纤维膜模件组合62是将上述中空纤维膜21、21…平行于净化槽70的水面,或者将集水管21与中空纤维膜23的膜面相对于净化槽70的水面垂直的方向配置着多个,两侧集水管21、21…的两端部连接设置在集水连管箱27上的。这时,集水管21、21…的管路与集水连管箱27的内部相连通。这些中空纤维膜模件52、52…的配置数目根据该中空纤维膜模件组合62所必须的收集率而定。例如,在进行5人槽的净化槽70的过滤处理情况下,标准的排水量为1m3/天。在进行这种过滤处理情况下要求的中空纤维膜的膜面积在所使用的中空纤维膜的过滤处理能力为0.2m/天(m3/m2/天)的情况下,为5m3。因此,在中空纤维膜模件组合62中配置着由5m3的膜面积的中空纤维膜23来叠层的多个中空纤维膜模件52。
在上述集水连管箱27的集水管21与连接部的反面中央部上设置有与外部抽水泵相连接的抽水口28。该抽水口28设置在至少连接着集水管21的管路的集水连管箱27上。
另外,上述集水连管箱27的两端,即中空纤维膜模件组合62的四角配置有支柱29,在固定集水连管箱27的同时,支撑中空纤维膜模件组合62。通过设置该支柱29,可以让中空纤维膜模件组合62很牢固地保持。
另外,在设置上述支柱29的中空纤维膜模件组合62的两侧面上设置有与中空纤维膜23相平行的板状挡板20。
该挡板20在中空纤维膜模件组合62中进行空气洗涤清洗的情况下,不会让空气扩散到中空纤维膜模件组合62的外部,对提高中空纤维膜23的效率十分有效,并且可以促进清洗的平顺进行。
在通过中空纤维膜模件组合62进行过滤处理的情况下,为了除去中空纤维膜23上附着的污泥被,提高过滤处理率,要通过空气洗涤进行清洗。以往的这种清洗是通过设置于净化槽下方的散气装置发出气泡,通过这些气泡的上升使中空纤维膜摆动,通过这种摆动让中空纤维相互磨擦或者通过中空纤维膜与水的相对流动而使附着在中空纤维膜表面的污泥被去除。在散气装置中安装着中空纤维膜的情况下,要在工作现场进行对位。
本发明中省去了这种工序,其散气管可以预先设置在中空纤维膜模件组合62的下方。这样,便不需要对散气管的位置进行对位,从而能够将中空纤维膜模件组合62从检修口71很容易地设置到净化槽70中。
另外,在使用该中空纤维膜模件组合62时,将上述交货槽70中所设的中空纤维膜模件组合62通过集水连管箱27的抽水口28连接在外部所设的抽水泵上,通过该抽水泵的动作,而进行抽吸过滤。另外,不使用抽吸泵,连接比净化槽的水位更低位置的抽水口28,由两者的水头压差进行抽吸过滤的方法也是可以的。
这时的被处理水通过中空纤维膜模件组合62的中空纤维膜23进行过滤,其过滤的液体通过集水管21的管路,收集到集水连管箱27中通过抽水口28排出到净化槽70的外部。
另外,为了不降低净化槽70内部中空纤维膜模件组合62的过滤处理率,而去掉中空纤维膜模件组合62的中空纤维膜23上所附着的污泥,将上述的空气洗涤清洗与过滤处理同时进行。
这样,在本发明的净化槽70中,由于将相应于上述FRP制的净化槽的大小而构成的中空纤维膜模件组合62如上所述配置在其内部,因此提高了过滤处理能力,中空纤维膜模件组合62的更换或维护也可以通过检修口72进行,从而非常适用于对高污浊水进行过滤处理。
图8表示的是本发明净化槽70内部所设的中空纤维膜模件组合的一个实施例。该中空纤维膜模件组合63配置有多个中空纤维膜模件53、53…,这些中空纤维膜模件53、53…的集水管31以呈水平方向的方式设置在净化槽内部,而中空纤维膜33、33…的膜面则在相对于水面垂直的方向设置于净化槽内,因而通过集水连管箱37、支柱39、挡板30形成了一体化的长方体形状。其结构部件与图7所示中空纤维膜模件组合62相同。
该长方体的中空纤维膜模件组合63,其大小(A)沿着中空纤维膜模件53的叠层方向,装置的长度为20~500mm,(B)沿着中空纤维膜模件53的集水管31长度方向,装置的长度为100~500mm,(C)沿着中空纤维膜模件53的中空纤维33长度方向,装置的高度为100~1500mm。
这时,装置的长度(A)由集水管31的外径、配置它们的间隔、支柱39的外径、支柱39与集水管31的间隔、集水连管箱37的长度以及挡板30的厚度来确定。另外,装置的长度(B)由集水管31以及支柱39的长度、集水连管箱37的外径来确定。另外,装置的高度(C)由与中空纤维膜模件组合63相面对的集水管31的距离,即中空纤维膜33的长度来确定。中空纤维膜模件组合63的大小通过对这些相关联的物件的大小进行适当的调节确定。
在上述中空纤维膜模件组合63中,集水连管箱37的抽水口38在将中空纤维膜模件组合63设置于净化槽中时,其开口部作为上方设置在集水连管箱52上。
另外,支柱39配置在上述集水连管箱37的两端部,即中空纤维膜模件组合63的四角。
另外,挡板30与上述中空纤维膜模件组合62相同,设置在侧面。
通过采用这些支柱39及挡板30,可以与中空纤维膜模件组合63小型化相对应。
上述中空纤维膜模件组合63朝净化槽内部设置的方法以及使用的方法除了设置方向不同之外,均与上述中空纤维膜模件组合62的方法相同,并能获得相同的效果。
产业上应用的可能性在本发明的中空纤维膜模件中,可以使集水管的直径更细,耐压性更好。因此,在这种多个叠层的本发明中空纤维膜模件组合中,其耐压性优良,具的高的收集率,过滤处理能力优良,可使其小型化,并可以设置在FRP制的净化槽中。
另外,在本发明的净化槽中设置上述中空纤维膜模件组合,可以将该中空纤维膜模件组合设计成从检修口进出,此外,还具有高的收集率,因此非常适用于作为具有高处理能力的净化槽的排水处理装置。特别是在FRP制的小型净化槽或处理装置中,可以通过检修口进行中空纤维膜模件组合的维护及安装,因此可以适用于高污浊性水的过滤处理。
权利要求
1.一种中空纤维膜模件,其特征在于将中空纤维展开为平面状的中空纤维膜的至少一侧的端部通过固定树脂以密封住液体的方式固定在集水管上,形成中空纤维膜模件,其中,在设置有集水管的开口部上插入端部开口的中空纤维膜,在这种状态下通过充填固定树脂进行固化,从而将集水管与端部开口状态下的中空纤维膜固定在一起。
2.如权利要求1所述的中空纤维膜模件,其特征在于上述集水管开口部的外周部上设置有堰坝。
3.如权利要求1或2所述的中空纤维膜模件,其特征在于上述集水管采用外径为5~30mm、长度为30~2000mm。
4.如权利要求1至3之一所述的中空纤维膜模件,其特征在于上述固定树脂采用初期粘度为150~450cPs的。
5.如权利要求1至4之一所述的中空纤维膜模件,其特征在于上述固定树脂采用了聚胺酯。
6.如权利要求1至5之一所述的中空纤维膜模件,其特征在于中空纤维膜采用了中空纤维织物。
7.如权利要求1至6之一所述的中空纤维膜模件,其特征在于上述中空纤维膜的膜长为100~2000mm。
8.一种中空纤维膜模件组合,其特征在于将权利要求1至7中任何一项所记载的中空纤维膜模件配置多个,将它们的集水管连接在集水连管箱上形成一体,进入中空纤维膜内的滤液通过形成于集水管中的内部通路收集到集水连管箱中。
9.一种中空纤维膜模件组合,其特征在于将权利要求1至7中任何一项所记载的中空纤维膜模件配置多个,将它们的集水管连接在集水连管箱上,通过支柱和挡板形成一体,从而将进入中空纤维膜内的滤液通过形成于集水管中的内部通路收集到集水连管箱中。
10.一种净化槽,其特征在于将权利要求8或者9所记载的中空纤维膜模件组合设置于其内部,将上述中空纤维膜模件组合以让该中空纤维膜模件的集水管以及中空纤维膜的膜面相对于水面呈垂直的方向配置于净化槽内部,该中空纤维膜模件组合的大小(A)沿着中空纤维膜模件的叠层方向,装置的长度为20~500mm,(B)沿着中空纤维膜模件的中空纤维长度方向,装置的长度为100~500mm,(C)沿着中空纤维膜模件的集水管长度方向,装置的高度为100~1500mm。
11.一种净化槽,其特征在于将权利要求8或者9所记载的中空纤维膜模件组合设置于其内部,将上述中空纤维膜模件组合以让该中空纤维膜模件的集水管相对于水平方向配置于净化槽内部,而让其中空纤维膜的膜面相对于水面垂直配置于净化槽内部,该配置的中空纤维膜模件组合的大小(A)沿着中空纤维膜模件的叠层方向,装置的长度为20~500mm,(B)沿着中空纤维膜模件的集水管长度方向,装置的长度为100~500mm,(C)沿着中空纤维膜模件的中空纤维长度方向,装置的高度为100~1500mm。
12.如权利要求10或11所述的净化槽,其特征在于在配置于内部的中空纤维膜模件组合中固定有散气管形成一体。
全文摘要
提供一种小型化过滤处理装置而带有高耐压性的中空纤维膜模件及中空纤维膜模件组合,以及设置该装置的净化槽。在解决上述问题的本发明权利要求1中,将中空纤维展开成平面状的中空纤维膜的至少一侧的端部通过固定树脂以密封住液体的方式固定在集水管上,形成中空纤维膜模件,其中,在设置有集水管的开口部上插入端部开口的中空纤维膜,在这种状态下通过充填固定树脂进行固化,将集水管与端部开口状态下的中空纤维膜固定在一起,制造出一种中空纤维膜模件与中空纤维膜模件组合及净化槽。
文档编号B01D63/00GK1228035SQ97197305
公开日1999年9月8日 申请日期1997年8月22日 优先权日1996年8月22日
发明者小林真澄, 本城贤治, 宫下聪史, 矢之根胜行, 板仓正则, 冈崎博行 申请人:三菱丽阳株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1