内燃机排气排放控制装置的制作方法

文档序号:5242975阅读:93来源:国知局
专利名称:内燃机排气排放控制装置的制作方法
技术领域
本发明涉及一种适用于内燃机的排气排放控制装置,该装置设计成通过由缸筒外浓混合操作产生浓混合峰值,进行被NOx捕集催化剂(NOx trap catalyst)所吸收的NOx的放出和还原。
背景技术
一般说来,当排气中的空气-燃料比为稀混合时,NOx捕集催化剂吸收包含在排气中的NOx(氧化氮),而当排气中的空气-燃料比为浓混合时,则释放和还原所吸收的NOx。具体地说,该催化剂具有这样一种特性,即在氧气过量状态(氧化气氛)下,其以硝酸盐的形式吸收排气中的NOx,在一氧化碳过量状态(还原气氛)下,将所吸收的NOx还原为氮。
在装备了这种催化剂的发动机中,在NOx吸收量(NOxadsorption amount)达到饱和之前,间歇性地转换到浓混合操作,即形成浓混合峰值(rich spike),由此避免催化剂因NOx吸收量增加而引起的性能下降。通过这种方式,催化剂得以再生,从而令人满意地进行排气净化。
该浓混合峰值可以通过缸筒内浓混合操作(in-cylinder richoperation)或者缸筒外浓混合操作(out-of-cylinder rich operation)形成。具体地说,缸筒内浓混合操作可以通过大量排气再循环(EGR)以引起不完全燃烧,利用由于不完全燃烧从汽缸中排出的一氧化碳(CO)作为还原剂的方法,或者在排气冲程中通过后(post)喷射向汽缸中送入未燃烧的燃料(HC)作为还原剂。另一方面,缸筒外浓混合操作可以通过向排气通道添加上述HC,换言之,就是将燃料直接加到上述催化剂处的方法(特开2002-242780号公报)。
在此项技术中,需要检测燃料添加管路的压力,即将HC直接供给上述催化剂的管路中的压力。如果出现了诸如供给HC的燃料泵破损或燃料泄漏等的情况,则控制器会发出停止供给HC的信号。同时,控制器还向驾驶员发出进行报警显示的信号。
但是,仅仅通过停止HC的供给和报警显示并不能避免控制器在计算吸收量方面的错误。而且,还担心排气中的NOx没有经过还原处理就直接流过并排放到大气中,这是因为控制器给出的下一次释放和还原NOx的指令是基于不正确的吸收量做出的。因而,此技术存在当还原剂不能够被加到催化剂的情况下如何进行处理的问题需要解决。

发明内容
本发明的目的是提供一种内燃机的排气排放控制装置,即使在还原剂不能够被添加到NOx捕集催化剂中时,该装置也能够产生令人满意的自动防故障的作用。
本发明的内燃机的排气排放控制装置包括与发动机的汽缸相连接的排气通道;配置在排气通道内的NOx捕集催化转换器,其在排气为稀混合操作时能够吸收排气中的NOx,而在排气为浓混合操作时能够释放和还原所吸收的NOx;配置在排气通道内的供给装置,用来将还原剂直接送到NOx捕集催化转换器;检测装置,用来检测由供给装置供给的还原剂的供给压力;以及,控制器,用来计算被催化转换器吸收的NOx的量。在此装置中,当还原剂的供给压力几乎为零时,控制器就禁止根据还原剂的供给量计算NOx的吸收量,并且在汽缸内生成浓混合状态,根据生成的浓混合状态进行NOx的吸收量的计算,并释放和还原所吸收的NOx。
这样,在根据本发明的排气排放控制装置中,基本上由缸筒外浓混合操作,通过NOx捕集催化转换器释放和还原NOx,另一方面,检测在燃料添加管内的供给压力,当该供给压力几乎为零时,即还原剂不能添加到NOx捕集催化转换器时,就禁止进行根据缸筒外浓混合操作的NOx的吸收量的计算。与此同时,根据对NOx捕集催化转换器给出的浓混合峰值指令,执行缸筒内浓混合操作,以使NOx捕集催化转换器再生。由此,实现还原剂不能添加到NOx捕集催化转换器时的适当的自动防故障作用,以避免NOx的增加。因此,该排气排放控制装置的可靠性得到进一步改善。


图1是表示发动机系统结构的图,该发动机应用了本发明的一个具体实施例涉及的内燃机排气排放控制装置;图2是表示图1中的排气排放控制装置的控制的方框图;图3是表示另外一个具体实施例的控制的方框图。
具体实施例方式
在此参照附图描述本发明的具体实施方式

图1是表示发动机系统结构的图。该系统包括柴油发动机(此后简称为“发动机”)1,作为本发明的具体实施例的排气排放控制装置应用在其中。如图中所示,燃料供给管路16、进气通道8和排气通道20被连接到发动机1的各个汽缸2上。管路16包含燃料喷射装置,当打开进气阀6时,新鲜空气通过管路8送到燃烧室4,当打开排气阀18时,排气从燃烧室4通过管路20被排出。
在进气通道8的上游侧装有增压器14。空气过滤器(图中未示出)连接到通道8的端部。在通道8中还分别装有进气节气阀10和内冷却器12。进气节气阀10调节通道8的气流流通面积,内冷却器12冷却流过通道8的新鲜空气,以提高容积效率。
另一方面,在排气通道20的下游侧装有NOx捕集催化转换器22。当排气中的空气-燃料比为稀混合,即大于化学计算的空气-燃料比时,催化转换器22吸收包含在排气中的NOx,以及,当排气中的空气-燃料比为浓混合,排气中含有作为还原剂的未燃烧的燃料(HC)和/或一氧化碳(CO)时,则释放和还原所吸收的NOx。催化转换器22具有公知的结构。
从排气通道20分支延伸出EGR通道24。通道24的前端部与进气通道8连接。在通道24中装备了EGR冷却器26和EGR阀28。阀28与电子控制单元(ECU)50电连接,调节管道24的气流流通面积。
来自空气过滤器的新鲜空气流过增压器14后进入进气通道8,然后到达冷却器12,再经节气阀10调节流量,之后流入各汽缸2的燃烧室4。利用由管路16供给的燃料的燃烧促成曲轴46和飞轮48工作。在燃烧结束之后,排气被排放到排气通道20,并送到催化转换器22。
在排气通道20中,NOx传感器30和排气温度传感器34分别被设置在催化转换器22的上游侧的适当位置。传感器30根据输出电压检测催化转换器22的上游侧的NOx浓度,换一种说法,也就是NOx的含量。传感器34检测管道20中的排气温度TE。此外,在催化转换器22的下游的适当位置上分别装设了NOx传感器32和催化温度传感器36。传感器32检测在催化转换器22下游的NOx的含量,传感器36检测催化转换器22的温度Tc。这些传感器30、32、34和36与ECU 50电连接。
在排气通道20中,在催化转换器22的上游侧的适当位置处,装设有附加喷射器(供给装置)38,用于将HC直接送到催化转换器22。该喷射器38通过燃料补加管路39连接到泵40。管路39内的压力由燃料压力传感器(检测装置)42检测。该传感器42也与ECU 50电连接。
除了上面所述的传感器30、32、42等之外,用于检测发动机1的工作状态的各种传感器,例如曲轴转角传感器44,都与ECU 50的输入侧电连接。与之相对应,上述的管路16、节气阀10、阀28、喷射器38等各种操作执行机构以及泵40,都与ECU 50的输出侧电连接。
当排气为氧化性气氛时,该催化转换器22吸收包含在排气中的NOx,另一方面,ECU 50定期性地进行浓混合操作。在本具体实施例中,所进行的浓混合操作主要是以缸筒外浓混合操作的形式进行。也就是说,按照浓混合峰值指令,通过设置在通道20中的喷射器38,将由泵40加压送来的HC直接输送到排气中,以产生浓混合操作条件。当浓混合操作条件产生时,NOx就被释放和还原。
更具体地说,如图2所示,ECU 50中包含吸收量运算单元(OU)52和燃烧监控器单元(MU)54。该MU 54根据来自传感器42的检测信号监控管路39中的压力,并且在HC输送压力几乎为零时送出信号到OU 52。“HC输送压力几乎为零”被认为表明燃料从管路39泄漏、泵40出现故障等情况。
OU 52推算被催化转换器22所吸收的NOx的量。具体而言,首先,根据来自传感器30和32的各个输出信号,得到在催化转换器22的入口侧和出口侧的NOx的量,以计算出被吸收的NOx的量(称之为“吸收量”)。然后,从计算出来的吸收量中减去被浓混合峰值释放和还原的NOx的量(称之为“浓混合峰值的放出量”),这样,可推定当前的吸收量。
由上述可知,基本上是把缸筒外浓混合操作时放出的NOx的量(称之为“缸筒外浓混合操作的放出量”),即通过喷射器38加入的HC被释放的和被还原的NOx的量,用作为浓混合峰值的放出量。由缸筒外浓混合操作产生的放出量可以从一些图表中预先得到,例如,根据催化转换器22的温度TC、管道20的温度TE、排气流量SV等预先制成图表,并储存到ECU 50中。由上述可知,该由浓混合峰值的放出量基本上使用由缸筒外浓混合操作产生的放出量。也就是说,该放出量是通过由喷射器38添加的HC而被释放和被还原的NOx的量,例如,可以根据催化转换器22的温度TC、管道20的温度TE、排气流量SV等,使用设置于ECU 50中的图表而预先求出。
在根据来自各个传感器30、32、34、36等的信号给出浓混合峰值指令时,设定由上述缸筒外浓混合操作产生的放出量,并用来推定当前的吸收量。
但是,当传感器42检测到HC的供给压力几乎为零,MU 54发出信号到OU 52时,OU 52就禁止根据缸筒外浓混合操作来计算吸收量。也就是说,放出量切换单元56将缸筒外浓混合操作产生的放出量切换到0侧,以使其不反映在当前吸收量的推定中。
这样一来,当HC的供给压力几乎为零时,将由缸筒外浓混合操作所释放和所还原的NOx的量假设为0。但是,如果不采取措施,NOx就不容易释放和还原。因此,在本具体实施例中,作为一种类型的缸筒内浓混合操作,采用在排气冲程中将HC送到汽缸2的后喷射,并依据后喷射进行吸收量的计算,同时使所吸收的NOx释放和还原。
具体地说,在给出浓混合峰值指令时,由后喷射而放出的NOx的量(称之为“后喷射的放出量”)可基于来自传感器30、32、34、36的输出值设定,并且提供给浓混合峰值切换单元58。由后喷射产生的放出量也可以从设置在ECU 50中的图表中预先得到。
当MU 54发出信号时,切换单元58选择利用后喷射被释放和还原的放出量。然后,OU 52根据来自NOx传感器30和32的各个输出信号计算出吸收量,再从中减去由后喷射产生的放出量,从而推定当前吸收量。
对于本具体实施例的后喷射设置了多种限制条件。具体而言,由后喷射产生的浓混合峰值的执行次数和累积时间被限制为达到发动机1的润滑油的稀释极限之前的次数内或时间内。这是因为由后喷射供给的燃料对于发动机1输出并无帮助,因而它能够稀释停留在曲轴箱内沿着燃烧室4的圆筒壁等处的润滑油。通过规定上述限制条件,就能够防止润滑油的稀释。
此外,后喷射的情况下,要使发动机1负载范围在中等负载或以下的范围内。这是因为当发动机采用高负载工作时,后喷射将导致排气中的NOx增加。通过规定此项限制条件,后喷射的执行次数减少了,包含在排气中的NOx就减少了,不使发动机1立即停止也没关系。
如上所述,本具体实施例着眼于,实现管线39等出现故障时的自动防故障操作。
以由缸筒外浓混合操作使催化转换器22释放和还原NOx为前提,另一方面,设置传感器42检测管线39中的压力,并由MU 54监控此压力。在这里,当此压力几乎为零时,就是说,HC没有加到催化转换器22时,OU 52就禁止依据缸筒外浓混合操作来计算吸收量。与此同时,通过切换单元58的操作,执行后喷射,以便使催化转换器22再生。这样,在HC不能加到催化转换器22上时,实现了适当自动防故障操作,避免了NOx的增加。因此,进一步提高了排气排放控制装置的可靠性。
除此之外,当HC的供给压力几乎为零时,切换单元56将缸筒外浓混合操作的放出量假设为零。因此,与一般情况不同,不继续根据假设的HC正常供给而进行的不正确的吸收量推定。这样一来,与一般情况相比,提高了对于吸收量推定的精确度。因此,不是如现有技术这样,认为HC正常进行供给而进行的不正确的吸收量推定,与现有技术相比,提高了对于吸收量推定的精确度。
另外,在执行作为替代操作的后喷射浓混合峰值操作时,对于后喷射规定了多种限制。这样,将后喷射的不利影响减到最小。
以上是本发明的一种具体实施例的说明,但是,本发明并不局限于上述具体实施例。
例如,在上面的具体实施例中,替代操作是通过改变浓混合峰值形成的方式来实现的,即从缸筒外浓混合操作切换为缸筒内浓混合操作。但是,仅通过缸筒外浓混合操作也可以实现适当的替代操作。如图3所示,在这种具体实施例中,利用的是由缸筒外浓混合操作产生的放出量。
在图3所示的具体实施例中,OU 52根据来自传感器30和32的各个输出信号获得在催化转换器22的入口侧和出口侧的各个NOx的含量,并计算吸收量。然后,在依据来自各种传感器30、32、34、36等的信号给出浓混合峰值指令时,参照图表设置由缸筒外浓混合操作产生的放出量。
在这里,如果传感器42检测到的HC供给压力不是零,但是低于所需要的供给压力时,MU 54就输出信号到OU 52。OU 52根据检测到的HC供给压力设置系数。此系数是表示与管线39等工作正常的情况相比,有多少比例的燃料通过喷射器38实际喷射到排气中的指标。对该系数和由缸筒外浓混合操作产生的放出量进行乘法运算,再参照图表,对预先设置的由缸筒外浓混合操作产生的放出量进行修正。可用这种方法计算由缸筒外浓混合操作而实际释放和还原的放出量,并推定当前吸收量。
这样,在这种具体实施例的情况下,尽管有时会缩短浓混合峰值的周期,但在HC不能被添加到催化转换器22上时,可以实现适当的替代操作,从而避免了NOx的增加。也就是说,在这种具体实施例中,排气排放控制装置的可靠性也得到进一步的提高。
排气排放控制装置可以是上述图2和图3的结合。也就是说,首先,当传感器42检测到的HC供给压力低于所需要的供给压力时,OU 52使用系数校正缸筒外浓混合操作产生的放出量,计算实际放出的(释放的和还原的)NOx的量,并推定当前吸收量。
其次,当传感器42检测到的HC供给压力几乎为零时,即HC没有添加到催化转换器22上时,在OU 52中,通过切换单元56将由缸筒外浓混合操作产生的放出量假设为零。在此之后,HC供给压力保持几乎为零,当给出浓混合峰值指令时,就执行后喷射,减去由后喷射的放出量,推定当前吸收量。在这种具体实施例中,实现了更适当的替代操作。
此外,在上面叙述的具体实施例中,通过MU 54监控由燃料压力传感器42检测的值,但是MU 54也可以监控由流量速率传感器检测的值。此外,切换单元58是把缸筒外浓混合操作切换为后喷射但除此之外,也可以切换到以下的缸筒内浓混合操作,即实施大量EGR,使用阀28及节气阀10,利用由不正常燃烧而放出的一氧化碳(CO)的缸筒内浓混合操作。
除此之外,所用的发动机最好是柴油发动机,但并不局限于这种发动机。本发明的排气排放装置可以应用于在排气通道内装有NOx捕集催化转换器、并且能够浓混合操作的所有的发动机系统中。
权利要求
1.内燃机的排气排放控制装置,包括排气通道(20),其与发动机气缸相连通;NOx捕集催化转换器(22),其配置在所述通道内,在稀混合操作时能够吸收包含在排气中的NOx,而在浓混合操作时能够释放和还原所吸收的NOx;供给装置(38),其装设在所述通道内,用来将还原剂直接供给到所述催化转换器中;检测装置(42),其用来检测由所述供给装置供给的所述还原剂的供给压力;以及控制器(50),其用来计算由所述催化转换器吸收的NOx量,其特征在于当所述还原剂的供给压力几乎为零时(54),该控制器禁止依据该还原剂的供给来进行NOx吸收量的计算(56),并且在所述气缸内产生浓混合状态(58),根据产生的浓混合状态进行NOx吸收量的计算(52),并使所吸收的NOx释放和还原。
2.根据权利要求1所述的内燃机的排气排放控制装置,其特征在于当所述还原剂的供给压力几乎为零时,所述控制器将基于该还原剂的供给而放出的NOx的量假设为零,以使其不反映在对所述NOx的放出量的计算中。
3.根据权利要求1所述的内燃机的排气排放控制装置,其特征在于在所述还原剂的供给压力几乎为零时,所述控制器以规定的限制条件实施由后喷射产生的浓混合峰值。
4.根据权利要求3所述的内燃机的排气排放控制装置,其特征在于由执行后喷射所产生的浓混合峰值被限制在以下范围内,即,使浓混合峰值的次数或累积时间在未超过所述发动机的润滑油稀释极限的次数或时间的范围内。
5.根据权利要求3所述的关于内燃机的排气排放控制装置,其中所述由后喷射产生浓混合峰值被限制在使所述发动机的运行范围为中等负荷或更低负荷的范围内。
6.内燃机的排气排放控制装置,包括排气通道(20),其与发动机的气缸相连通;NOx捕集催化转换器(22),其配置在所述通道内,在稀混合操作时能够吸收包含在排气中的NOx,而在浓混合操作时能够释放和还原所所吸收的NOx;供给装置(38),其装设在所述通道内,用来将还原剂直接供给到所述催化转换器中;检测装置(42),其用来检测由所述供给装置供给的所述还原剂的供给压力;和控制器(50),其用来计算被所述催化转换器吸收的NOx的量,其特征在于当所述还原剂的供给压力低于规定压力时(54),该控制器根据所检测到的供给压力计算出所述还原剂的供给量,再根据该还原剂的供给进行NOx吸收量的计算(52),并使所吸收NOx释放和还原。
全文摘要
内燃机的排气排放控制装置,包括燃料供给单元,其装设在排气通道内,用于将还原剂直接送到NOx捕集催化转换器;附加压力检测单元(42),用于检测由燃料供给单元供给的还原剂的供给压力;和控制器,用于计算由催化转换器吸收的NOx的量。当还原剂的供给压力几乎为零时(54),控制器禁止根据还原剂的供给进行NOx吸收量的计算(56),并且在气缸内产生浓混合状态(58),根据产生的浓混合状态进行NOx吸收量的计算(52),以使所吸收的NOx释放和还原。
文档编号F02D41/04GK1769651SQ200510115549
公开日2006年5月10日 申请日期2005年11月4日 优先权日2004年11月4日
发明者中山真治, 纐缬晋, 田边圭树, 春原大辅 申请人:三菱扶桑卡客车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1