内燃机的控制装置的制作方法

文档序号:5198081阅读:113来源:国知局
专利名称:内燃机的控制装置的制作方法
技术领域
本发明涉及推定向内燃机供给的燃料的十六烷值并且根据该推定的十六烷值执行发动机运转控制的内燃机的控制装置。
背景技术
在自燃式内燃机中,由燃料喷射阀向气缸内喷射的燃料从喷射起经过规定时间(所谓的点火延迟)后点火。为了实现内燃机的输出性能及排放性能的提高,在考虑了这样的点火延迟之后,广泛采用控制燃料喷射的喷射时间及喷射量等之类的发动机控制的执行方式的控制装置。在内燃机中,使用的燃料的十六烷值越低时,其点火延迟越长。因此,即使在例如内燃机出厂时想定使用标准的十六烷值的燃料的状况而设定了发动机控制的执行方式,在向燃料箱中补充了冬季燃料等十六烷值相对较低的燃料的情况下,燃料的点火时期也延迟并且其燃烧状态恶化,根据情况会发生失火。为了抑制这样的不良情况的发生,优选基于向气缸内喷射的燃料的实际的十六烷值校正发动机控制的执行方式。例如专利文献I中提出,在具备使流过内燃机的排气通路的排气的一部分返回进气通路而使其再循环的排气再循环(EGR)装置的内燃机中,推定向该内燃机供给的燃料的十六烷值,并且,根据该推定的十六烷值,利用EGR装置校正返回进气通路的排气量(EGR量)。在该装置中,推定的十六烷值越低时,越对EGR量进行减量校正,由此,实现改善燃料的燃烧状态,抑制失火发生。专利文献1:日本特开2007 - 285195号公报

发明内容
通常,EGR装置具备连通内燃机的进气通路和排气通路的EGR通路及变更该EGR通路的通路截面积EGR阀。而且,在EGR装置中,通过EGR阀的动作控制来调节EGR量。在这样的EGR装置中,由于EGR通路的容积及从内燃机的进气通路中的与EGR通路连接的连接部分到内燃机的气缸的部分的容积等,不能避免相对于EGR阀的开度变化的EGR量的变化产生延迟。因此,相对于EGR阀的开度变化的EGR量的变化的响应性及稳定性差,利用EGR装置的EGR量的精确的调节难,因此,可以说在利用该EGR装置进行EGR量的调节时易于产生调节误差。特别是在内燃机刚开始起动后的怠速运转时,进气量的绝对量少,因此,上述EGR量的调节误差对发动机运转状态的影响易于变大,而且,由于内燃机的气缸内的温度低,因此,燃料的燃烧状态易于变得不稳定。因此,此时由于上述调节误差而EGR量过多时,不能适当抑制失火发生的可能性高。另一方面,此时由于上述调节误差而EGR量过少时,气缸内的燃料的燃烧温度变高,因此,相应地导致排气中的氮氧化物(NOx)的增加。本发明是鉴于这样的情况而研发的,其目的在于,提供一种内燃机的控制装置,其能够兼顾抑制使用低十六烷值燃料时的失火发生和抑制氮氧化物的排出量。为了实现上述目的,本发明提供一种内燃机的控制装置,具备使流过内燃机的排气通路的排气的一部分返回到进气通路而进行再循环的EGR装置,推定向内燃机供给的燃料的十六烷值。而且,在由推定部推定出的十六烷值较低且处于内燃机刚开始起动后的执行期间时,与非此情况时相比,减少怠速运转时的所述EGR装置的EGR量。由此,在由推定部推定的十六烷值较低的状况下在内燃机刚开始起动后进行怠速运转时,即在EGR量的调节误差对燃料的燃烧状态的影响易于变大且燃料的燃烧状态易于变得不稳定时,能够以EGR量的绝对量减小的量来减小EGR量的调节误差。因此,能够将EGR量的调节误差对燃料的燃烧状态的影响抑制得较小。而且,对应于这样的EGR量的减小而使燃料喷射时期滞后。因此,通过与EGR量的调节相比能够以高精度设定内燃机的气缸内的燃料的燃烧状态的燃料喷射时期的调节,能够设定燃料的燃烧状态。因此,根据所述装置,能够适当设定使用低十六烷值燃料时的内燃机的气缸内的燃料的燃烧状态,因此,能够兼顾抑制失火发生和抑制氮氧化物(NOx)的排出量。优选控制部将EGR装置的EGR量设为“O”。根据这样的装置,能够排除EGR量的调节误差对燃料的燃烧状态的影响,因此,能够更高精度地设定燃料的燃烧状态。在本发明的一方式中,控制部以外气压为预定的判定压力以上为条件执行燃料喷射时期的滞后。在外气压较低时,由于空气密度较低,因此,进气中所包含的氧的量较少。因此,内燃机的气缸内的燃料的燃烧状态易于恶化,易于导致失火发生。根据所述装置,在外气压较低而易于导致失火发生时,禁止燃料喷射时期的向滞后侧的变更,换句话说,禁止向使燃料的燃烧状态恶化的一侧的变更,因此,能够可靠地抑制失火发生。而且,在外气压较高而比较难以产生失火时,允许燃料喷射时期的向滞后侧的变更,因此能够抑制NOx的排出量。在本发明的一个方式中,设定从内燃机开始起动后到油门操作部件的开启操作开始为止的期间作为所述执行期间。根据这样的装置,在内燃机刚开始起动后该内燃机的气缸内的温度较低时,换句话说,限于在易于导致气缸内的燃料的燃烧状态不稳定的期间,能够执行用于实现高精度的燃烧状态的设定的EGR量的减小和燃料喷射时期的滞后。


图1是表示将本发明具体化的一个实施方式的内燃机的控制装置的概略构成的简图;图2是表示燃料喷射阀的截面构造的剖面图;图3是表示燃料压力的推移和燃料喷射率的检测时间波形的关系的时间图;图4是表示校正处理的执行步骤的流程图;图5是表示检测时间波形和基本时间波形的关系的一个例子的时间图;图6是表示指标值检测处理的具体的执行步骤的流程图;图7是说明旋转变动量的计算方法的说明图;图8是表示EGR控制处理的执行步骤的流程图;图9是表示喷射时期滞后处理的执行步骤的流程图;图10是表示各处理的执行方式的一个例子的时间图。
具体实施例方式下面,对将本发明具体化的一实施方式的内燃机的控制装置进行说明。如图1所示,在车辆10上搭载有作为驱动源的内燃机11。内燃机11的曲轴12经由离合器机构13、手动变速器14与车轮15连结。在车辆10中,当乘员操作离合器操作部件(例如离合器踏板)时,上述离合器机构13成为解除曲轴12和手动变速器14的连结的动作状态。在内燃机11的气缸16上连接有进气通路17。经由进气通路17向内燃机11的气缸16内吸入空气。另外,作为该内燃机11,可采用具有多个(在本实施方式中为四个[# I # 4])气缸16的内燃机。在内燃机11中,对每个气缸16安装有向该气缸16内直接喷射燃料的直喷类型的燃料喷射阀20。利用该燃料喷射阀20的开阀驱动而喷射的燃料在内燃机11的气缸16内与压缩加热后的吸入空气接触,进行点火及燃烧。而且,在内燃机11中,利用随着气缸16内的燃料的燃烧而产生的能量推下活塞18,强制地使曲轴12旋转。在内燃机11的气缸16中燃烧的燃烧气体作为排气排出到内燃机11的排气通路19。在内燃机11安装有使流过排气通路19内的排气的一部分返回进气通路17而进行再循环的排气再循环(EGR)装置50。EGR装置50具备EGR通路51,其连通内燃机11的进气通路17及排气通路19 ;EGR阀52,其安装于EGR通路51并调节该EGR通路51的通路截面积。在该EGR装置50中,通过变更EGR阀52的开度,调节从排气通路19返回进气通路17的排气(EGR气体)的量即所谓的EGR量。各燃料喷射阀20经由分支通路31a分别与公共供油管(Common Rail)34连接,该公共供油管34经由供给通路31b与燃料箱32连接。在该供给通路31b中设有加压输送燃料的燃料泵33。在本实施方式中,利用燃料泵33的加压输送而升压的燃料积蓄于公共供油管34,并且向各燃料喷射阀20的内部供给。另外,各燃料喷射阀20上连接有返回通路35,该返回通路35分别与燃料箱32连接。燃料喷射阀20内部的燃料的一部分经由该返回通路35返回燃料箱32。下面,对燃料喷射阀20的内部构造进行说明。如图2所示,在燃料喷射阀20的壳体21的内部设有针阀22。该针阀22以能够在壳体21内往返移动(沿该图的上下方向移动)的状态设置。在壳体21的内部设有总是向喷射孔23侧(该图的下方侧)对上述针阀22施力的弹簧24。另外,在壳体21的内部中,在一方侧(该图的下方侧)的位置将上述针阀22夹持于中间而形成有喷嘴室25,在另一方侧(该图的上方侧)的位置形成有压力室26。在喷嘴室25形成有连通其内部和壳体21的外部的多个喷射孔23,从上述分支通路31a (公共供油管34)经由导入通路27向喷嘴室25供给燃料。在压力室26中经由连通路28连接有上述喷嘴室25及分支通路31a (公共供油管34)。另外,压力室26经由排出路30与返回通路35 (燃料箱32)连接。作为上述燃料喷射阀20,可采用电驱动式,在其壳体21的内部设有压电执行器29,该压电执行器29由通过驱动信号的输入而进行伸缩的多个压电元件(例如压电陶瓷元件)层叠而成。在该压电执行器29上安装有阀芯29a,该阀芯29a设于压力室26的内部。而且,通过由压电执行器29的动作产生的阀芯29a的移动,连通路28 (喷嘴室25)和排出路30 (返回通路35)中的一方选择性地与压力室26连通。在该燃料喷射阀20中,当向压电执行器29输入闭阀信号时,压电执行器29收缩而阀芯29a移动,成为连通路28和压力室26连通的状态,并且,成为返回通路35和压力室26的连通被隔断的状态。由此,在压力室26内的燃料向返回通路35 (燃料箱32)的排出被禁止的状态下,喷嘴室25和压力室26连通。因此,喷嘴室25和压力室26的压力差变得极小,针阀22利用弹簧24的作用力向堵塞喷射孔23的位置移动,此时,燃料喷射阀20成为不喷射燃料的状态(闭阀状态)。另一方面,向压电执行器29输入开阀信号时,压电执行器29伸长而阀芯29a移动,成为连通路28和压力室26的连通被隔断的状态,并且,成为连通返回通路35和压力室26的状态。由此,在禁止从喷嘴室25向压力室26流出燃料的状态下,压力室26内的燃料的一部分经由返回通路35返回燃料箱32。因此,压力室26内的燃料的压力降低,该压力室26和喷嘴室25的压力差变大,针阀22利用该压力差抵抗弹簧24的作用力进行移动而离开喷射孔23,此时,燃料喷射阀20成为喷射燃料的状态(开阀状态)。在燃料喷射阀20上一体安装有输出与上述导入通路27的内部的燃料压力PQ对应的信号的压力传感器41。因此,与例如检测公共供油管34 (参照图1)内的燃料压力等离开燃料喷射阀20的位置的燃料压力的装置比较,能够检测距燃料喷射阀20的喷射孔23近的部位的燃料压力,能够高精度地检测随着燃料喷射阀20的开阀的该燃料喷射阀20内部的燃料压力的变化。另外,上述压力传感器41逐一设于各燃料喷射阀20,即设于内燃机11的每个气缸16。如图1所示,在内燃机11中设有用于检测运转状态的各种传感器类作为其外围设备。作为这些传感器类,除了上述压力传感器41之外,还设有例如用于检测曲轴12的旋转相位及转速(发动机转速NE)的曲轴传感器42、用于检测油门操作部件(例如油门踏板)的操作量(油门操作量ACC)的油门传感器43。另外,设有用于检测内燃机11的外部空气的压力(外气压)的外气压传感器44、用于检测通过进气通路17的吸入空气的量(通路进气量GA)的进气量传感器45、用于检测进气通路17内的压力(进气压PM)的进气压传感器46。除此之外,还设有用于检测EGR阀52的开度(EGR开度VR)的开度传感器47、在内燃机11运转开始时进行接通操作并且在运转停止时进行切断操作的运转开关48等。另外,作为内燃机11的外围设备,还设有例如具备微型计算机而构成的电子控制单元40等。该电子控制单元40作为推定部及控制部发挥作用,取入各种传感器的输出信号并且以这些输出信号为基础进行各种运算,根据该运算结果执行EGR阀52的动作控制(EGR控制)及燃料喷射阀20的驱动控制(燃料喷射控制)等内燃机11的运转有关的各种控制。基本上,如下执行本实施方式的EGR控制。 首先,基于发动机转速NE、通路进气量GA及进气压PM,算出与吸入到内燃机11的气缸16内的气体量中的EGR量所占的比例(EGR率)有关的推定值(实际EGR率Regr)。另夕卜,实际的EGR率可以以下面那样的思路为基础进行推定。基于进气压PM及发动机转速NE能够推定吸入到内燃机11的气缸16内的气体(包含新气体和EGR气体的气体)的量。另外,基于通路进气量GA和发动机转速NE能够推定曲轴12转一圈的期间吸入到各气缸16内的空气的量(新气体量)。而且,能够将由上述气体量减去新气体量后的量(=气体量一新气体量)作为与实际的EGR量相当的量求得,用该量和气体量能够推定实际的EGR率(=“气体量一新气体量” /气体量)。另外,基于发动机转速NE及燃料喷射量(详细而言,后述的要求喷射量TAU)设定对于EGR率的控制目标值(目标EGR率Tegr )。然后,基于该目标EGR率Tegr设定对于EGR开度VR的控制目标值(目标EGR开度Tvr )。而且,基于目标EGR开度Tvr、目标EGR率Tegr及实际EGR率Regr执行EGR阀52的动作控制。详细而言,执行将目标EGR开度Tvr作为预计控制量的预计控制、和基于目标EGR率Tegr及实际EGR率Regr的偏差的反馈控制作为EGR阀52的动作控制。另外,基本上,如下执行本实施方式的燃料喷射控制。首先,基于油门操作量ACC及发动机转速NE等,算出与用于内燃机11的运转的燃料喷射量有关的控制目标值(要求喷射量TAU)。然后,基于要求喷射量TAU及发动机转速NE,算出燃料喷射时期的控制目标值(要求喷射时期Tst)及燃料喷射时间的控制目标值(要求喷射时间Ttm)。而且,基于这些要求喷射时期Tst及要求喷射时间Ttm执行各燃料喷射阀20的开阀驱动。由此,与其各个时期的内燃机11的运转状态匹配的量的燃料从各燃料喷射阀20喷射而供给到内燃机11的各气缸16内。另外,在本实施方式的燃料喷射控制中,在因油门操作部件的操作解除产生的(油门操作量ACC = “O”)车辆10的行驶速度及发动机转速NE的减速中,该发动机转速NE在规定的速度范围内时,执行使用于内燃机11的运转的燃料喷射暂时性地停止的控制(所谓的燃料切断控制)。另外,在本实施方式的燃料喷射控制中,设定燃料的十六烷值低的区域(低十六烷值区域)、该十六烷值为中程度的区域(中十六烷值区域)和该十六烷值高的区域(高十六烷值区域)这三个区域,并且在这些每个区域中以不同的执行方式执行燃料喷射控制。例如在十六烷值越低侧的区域越将要求喷射时期Tst设定于提前侧的时期。具体而言,对于三个十六烷值区域,均以各种实验及模拟的结果为基础预先求得利用要求喷射量TAU及发动机转速NE确定的发动机运转状态和与十六烷值区域匹配的要求喷射时期Tst的关系,并且,将该关系作为运算映射(ML、丽、MH)存储于电子控制单元40。而且,基于其各个时期的要求喷射量TAU及发动机转速NE,在为低十六烷值区域时,利用运算映射ML算出要求喷射时期Tst,在为中十六烷值区域时,利用运算映射MM算出要求喷射时期Tst,在为高十六烷值区域时,利用运算映射MH算出要求喷射时期Tst。在这样执行从燃料喷射阀20的燃料喷射的情况下,有时由于该燃料喷射阀20的初期个体差异及时效变化等,在其执行时期及喷射量中产生误差。这样的误差使内燃机11的输出转矩变化,故不优选。因此,在本实施方式中,为了以与内燃机11的运转状态对应的形式适当执行从各燃料喷射阀20的燃料喷射,以由压力传感器41检测的燃料压力PQ为基础形成燃料喷射率的检测时间波形,并且基于该检测时间波形执行校正要求喷射时期Tst及要求喷射时间Ttm的校正处理。该校正处理分别对内燃机11的各气缸16执行。燃料喷射阀20内部的燃料压力以随着燃料喷射阀20的开阀而降低并且随着之后的该燃料喷射阀20的闭阀而上升的方式,随着燃料喷射阀20的开闭动作进行变动。因此,通过监视执行燃料喷射时的燃料喷射阀20内部的燃料压力的变动波形,能够高精度地掌握该燃料喷射阀20的实际动作特性(例如,实际的燃料喷射量、开阀动作开始的时期、闭阀动作开始的时期等)。因此,通过基于这样的燃料喷射阀20的实际动作特性校正要求喷射时期Tst及要求喷射时间Ttm,能够以与内燃机11的运转状态对应的形式高精度地设定燃料喷射时期及燃料喷射量。下面,对这样的校正处理进行详细说明。在此,首先对形成执行燃料喷射时的燃料压力的变动方式(在本实施方式中,燃料喷射率的检测时间波形)的步骤进行说明。图3表示燃料压力PQ的推移和燃料喷射率的检测时间波形的关系。如该图3所示,在本实施方式中,分别检测燃料喷射阀20的开阀动作(详细而言,针阀22的向开阀侧的移动)开始的时期(开阀动作开始时期Tos)、燃料喷射率成为最大的时期(最大喷射率到达时期Toe)、燃料喷射率开始降低的时期(喷射率降低开始时期Tcs)、燃料喷射阀20的闭阀动作(详细而言,针阀22的向闭阀侧的移动)结束的时期(闭阀动作结束时期Tee)。首先,算出刚开始燃料喷射阀20的开阀动作之前的规定期间Tl中的燃料压力PQ的平均值,并且,将该平均值作为基准压力Pbs存储。该基准压力Pbs作为与闭阀时的燃料喷射阀20内部的燃料压力相当的压力使用。接着,由该基准压力Pbs减去规定压力Pl后的值作为动作压力Pac (= Pbse 一Pl)算出。该规定压力Pl是与在燃料喷射阀20的开阀驱动或闭阀驱动时与针阀22处于闭阀位置的状态无关地燃料压力PQ变化的量、即无助于针阀22的移动的燃料压力PQ的变化量相当的压力。然后,算出在刚开始执行燃料喷射后燃料压力PQ降低的期间中的该燃料压力PQ的基于时间的一阶微分值d (PQ) / dt。而且,求得该一阶微分值成为最小的点即燃料压力PQ的朝下的斜率成为最大的点处的燃料压力PQ的时间波形的切线LI,并且,算出该切线LI和上述动作压力Pac的交点A。将该交点A与以燃料压力PQ的下述检测延迟量返回到过去时期的点AA对应的时期确定作为开阀动作开始时期Tos。另外,上述检测延迟量是与燃料压力PQ的变化时刻相对于燃料喷射阀20的喷嘴室25 (参照图2)的压力变化时刻的延迟相当的期间,是由于喷嘴室25和压力传感器41的距离等产生的延迟量。另外,算出刚开始执行燃料喷射后在燃料压力PQ暂时降低后上升的期间的该燃料压力PQ的一阶微分值。而且,求得该一阶微分值成为最大的点即燃料压力PQ的朝上的斜率成为最大的点处的燃料压力PQ的时间波形的切线L2,并且,算出该切线L2和上述动作压力Pac的交点B。将该交点B与以检测延迟量返回到过去时期的点BB对应的时期确定作为闭阀动作结束时期Tee。进而,算出切线LI和切线L2的交点C,并且,求得该交点C处的燃料压力PQ和动作压力Pac的差(假想压力降低量ΛΡ [=Pac 一 PQ])。另外,算出对该假想压力降低量ΛΡ乘以基于要求喷射量TAU设定的增益Gl得到的值作为假想最大燃料喷射率VRt (=APXGD0另外,算出对该假想最大燃料喷射率VRt乘以基于要求喷射量TAU设定的增益G2得到的值作为最大喷射率Rt (=VRtXG2)。然后,算出将上述交点C以检测延迟量返回到过去时期的时期CC,并且,在该时期CC中确定成为假想最大燃料喷射率VRt的点D。而且,将与连接该点D及开阀动作开始时期Tos (详细而言,该时期Tos中燃料喷射率成为“O”的点)的直线L3和上述最大喷射率Rt的交点E对应的时期确定作为最大喷射率到达时期Toe。
另外,将与连接上述点D及闭阀动作结束时期Tce (详细而言,该时期Tce中燃料喷射率成为“O”的点)的直线L4和最大喷射率Rt的交点F对应的时期确定作为喷射率降低开始时期Tcs。另外,通过开阀动作开始时期Tos、最大喷射率到达时期Toe、喷射率降低开始时期Tcs、闭阀动作结束时期Tce及最大喷射率Rt形成的梯形形状的时间波形作为与燃料喷射的燃料喷射率有关的检测时间波形使用。接着,参照图4及图5对基于这样的检测时间波形校正燃料喷射控制的各种控制目标值的处理(校正处理)的处理步骤进行详细说明。另外,图4是表示上述校正处理的具体的处理步骤的流程图。该流程图所示的一连串的处理概念性地表示校正处理的执行步骤,实际的处理作为每个规定周期的中断处理由电子控制单元40执行。另外,图5表示检测时间波形和下述的基本时间波形的关系的一个例子。如图4所示,在该校正处理中,首先,如上述,基于燃料压力PQ形成燃料喷射执行时的检测时间波形(步骤S101)。另外,基于油门操作量ACC及发动机转速NE等之类的内燃机11的运转状态,设定与燃料喷射执行时的燃料喷射率的时间波形有关的基本值(基本时间波形)(步骤S 102)。在本实施方式中,基于实验或模拟的结果预先求得内燃机11的运转状态和适于该运转状态的基本时间波形的关系并存储于电子控制单元40中。在步骤S102的处理中,基于其各个时期的内燃机11的运转状态,根据上述关系设定基本时间波形。如图5所示,设定由开阀动作开始时期Tosb、最大喷射率到达时期Toeb、喷射率降低开始时期Tcsb、闭阀动作结束时期Tceb、最大喷射率规定的梯形的时间波形,作为上述基本时间波形(点划线)。而且,比较这样的基本时间波形和上述检测时间波形(实线),并且基于该比较结果分别算出用于校正燃料喷射的开始时期的控制目标值(上述要求喷射时期Tst)的校正项Kl和用于校正该燃料喷射的执行时间的控制目标值(要求喷射时间Ttm)的校正项K2。具体而言,算出基本时间波形中的开阀动作开始时期Tosb和检测时间波形中的开阀动作开始时期Tos的差ATos (=Tosb - Tos),并且,将该差ATos作为校正项Kl存储(图4的步骤S103)。另外,算出基本时间波形中的喷射率降低开始时期Tcsb (图5)和检测时间波形中的喷射率降低开始时期Tcs的差ATcs (= Tcsb - Tcs),并且将该差ATcs作为校正项K2存储(图4的步骤S104)。这样算出各校正项K1、K2后,暂时结束本处理。在执行燃料喷射控制时,算出利用校正项Kl校正要求喷射时期Tst后的值(在本实施方式中,要求喷射时期Tst加上校正项Kl后的值)作为最终的要求喷射时期Tst。通过这样算出要求喷射时期Tst,可将基本时间波形中的开阀动作开始时期Tosb和检测时间波形中的开阀动作开始时期Tos之间的偏差抑制得较小,因此,以与内燃机11的运转状态相应的形式高精度地设定燃料喷射的开始时期。另外,算出利用上述校正项K2校正要求喷射时间Ttm后的值(在本实施方式中,要求喷射时间Ttm加上校正项K2后的值)作为最终的要求喷射时间Ttm。通过这样算出要求喷射时间Ttm,可将基本时间波形中的喷射率降低开始时期Tcsb和检测时间波形中的喷射率降低开始时期Tcs之间的偏差抑制得较小,因此,在燃料喷射中,以与内燃机11的运转状态相应的形式高精度地设定燃料喷射率开始降低的时期。这样,在本实施方式中,基于燃料喷射阀20的实际动作特性(详细而言,检测时间波形)和预定的基本动作特性(详细而言,基本时间波形)的差校正要求喷射时期Tst及要求喷射时间Ttm,因此,可抑制燃料喷射阀20的实际动作特性和基本动作特性(具有标准的特性的燃料喷射阀的动作特性)的偏差。因此,分别以与内燃机11的运转状态匹配的方式适当设定从各燃料喷射阀20的燃料喷射的喷射时期及喷射量。在本实施方式中,执行检测供给于内燃机11中的燃烧的燃料的十六烷值指标值的控制(指标值检测处理)。下面,对该指标值检测处理的概要进行说明。在该指标值检测处理中,设定包含执行上述的燃料切断控制时的条件(后述的[条件I])的执行条件。而且,在该执行条件成立时,执行以预定的少量的规定量FQ(例如,数立方毫米)向内燃机11喷射的燃料喷射,并且,检测随着该燃料喷射的执行产生的内燃机11的输出转矩的指标值(后述的旋转变动量Σ △ NE)作为燃料的十六烷值指标值。另外,作为上述旋转变动量Σ △ NE,在内燃机11中产生越大的输出转矩时检测出越大的值。向内燃机11供给的燃料的十六烷值越高时,燃料点火越容易,该燃料的余烬越少,因此,随着燃料的燃烧产生的发动机转矩越大。在本实施方式的推定控制中,以这样的燃料的十六烷值和内燃机11的输出转矩的关系为基础,检测该燃料的十六烷值指标值。下面,对指标值检测处理的执行步骤进行详细说明。图6是表示上述指标值检测处理的具体的执行步骤的流程图。另外,该流程图所示的一连串的处理是概念性地 表示指标值检测处理的执行步骤,实际的处理作为每个规定周期的中断处理由电子控制单元40执行。如图6所示,在该处理中,首先,判断执行条件是否成立(步骤S201 )。在此,根据全部满足下面的[条件I] [条件3],判断为执行条件成立。[条件I]已执行上述燃料切断控制。[条件2]离合器机构13已成为将曲轴12和手动变速器14的连结解除的动作状态。具体而言,离合器操作部件已被操作。[条件3]已适当执行校正处理。具体而言,校正处理中算出的各校正项K1、K2既未成为上限值,也未成为下限值。在上述执行条件不成立的情况下(步骤S201 Ν0 (否)),不执行下面的处理即检测燃料的十六烷值指标值的处理,暂时结束本处理。然后,反复执行本处理,当上述执行条件成立时(步骤S201 :YES(是)),开始执行检测燃料的十六烷值指标值的处理。具体而言,首先,利用在图4和图5中通过上述的校正处理算出的校正项K1、K2校正预定的燃料喷射时期的控制目标值(目标喷射时期TQst)和燃料喷射时间的控制目标值(目标喷射时间TQtm)(图6的步骤S202)。详细而言,目标喷射时期TQst加上校正项Kl后的值设定作为新的目标喷射时期TQst,并且,目标喷射时间TQtm加上校正项K2后的值设定作为新的目标喷射时间TQtm。而且,执行基于目标喷射时期TQst及目标喷射时间TQtm的燃料喷射阀20的驱动控制,并执行从该燃料喷射阀20的燃料喷射(步骤S203)。通过这样的燃料喷射阀20的驱动控制,在抑制旋转变动量Σ ΛΝΕ的变动的时刻,从燃料喷射阀20喷射规定量FQ的燃料。另外,在本实施方式中,使用多个燃料喷射阀20中预定的燃料喷射阀(在本实施方式中,安装于气缸16[ # I]的燃料喷射阀20)执行步骤S203的处理中的燃料喷射。另外,对于本处理中使用的校正项K1、K2也一样,使用对应于燃料喷射阀20中预定的燃料喷射阀(在本实施方式中,安装于气缸16[ # I]的燃料喷射阀20)算出的值。然后,作为随着以上述规定量FQ的燃料喷射产生的内燃机11的输出转矩的指标值,检测并存储上述旋转变动量Σ Λ NE后(步骤S204),暂时结束本处理。具体而言,该旋转变动量Σ ΛΝΕ的检测如下进行。如图7所示,在本实施方式的装置中,每隔规定时间检测发动机转速NE,并且,在每次该检测时算出该发动机转速NE和在多次前(在本实施方式中,三次前)检测到的发动机转速NEi的差ΛΝΕ (= NE 一 NEi)。而且,算出与随着上述燃料喷射的执行的上述差ΛΝΕ的变化量有关的累计值(在该图7中,与斜线表示的部分的面积相当的值),并且,该累计值作为上述旋转变动量Σ ΛΝΕ存储。另外,为了使旋转变动量Σ ΔΝΕ的计算方法容易理解,而简略化表示图7所示的发动机转速NE及差ΛΝΕ的推移,因此,与实际的推移稍微不同。在本实施方式中,基本上基于通过指标值检测处理检测到的旋转变动量Σ ΔΝΕ,确定为低十六烷值区域、中十六烷值区域及高十六烷值区域中的哪一个区域,并且,将被确定的区域存储于电子控制单元40。详细而言,在旋转变动量Σ △ NE不足规定值PL的情况下(Σ ΛΝΕ < PL),判断为低十六烷值区域,在旋转变动量Σ ΛΝΕ为规定值PL以上且不足规定值PH的情况下(PL彡Σ Λ NE <PH),判断为中十六烷值区域,在旋转变动量ΣΛΝΕ*规定值PH以上的情况下(Σ ΛΝΕ彡ΡΗ),判断为高十六烷值区域。而且,以与这样确定的十六烷值区域匹配的执行方式执行燃料喷射控制。在此,在向内燃机11供给的燃料的十六烷值较低时,点火延迟变长,因此,容易导致燃料的燃烧状态的恶化。另外,在内燃机11刚开始起动后的怠速运转时,喷射到气缸16内的燃料量少,并且该气缸16内的温 度低,因此,容易导致燃料的燃烧状态的恶化。因此,在本实施方式的装置中,可以说特别是在内燃机11刚开始起动后的怠速运转时且判断为低十六烷值区域时,燃料的燃烧状态易于恶化,易于导致失火发生。根据这一点,在本实施方式中,内燃机11刚开始起动后的执行期间且存储有低十六烷值区域时(特定状况),将怠速运转时的目标EGR率Tegr设定为“0”,将EGR装置50的EGR量设定为“O”。由此,在存储有低十六烷值区域的状况下,在内燃机11刚开始起动后进行怠速运转时,即在EGR量的调节误差对燃料的燃烧状态的影响易于变大且燃料的燃烧状态易于变得不稳定时,能够与停止EGR气体的再循环相应地改善内燃机11的气缸16内的燃料的燃烧状态,因此,能够抑制失火发生。另外,在这样的特定状况下,为了改善怠速运转时的燃料的燃烧状态,不限于将怠速运转时的EGR量设为“0”,也可考虑与不在特定状况时相比减少EGR量。在上述EGR装置50中,由于EGR通路51的容积及从进气通路17的与EGR通路51的连接部分到内燃机11的气缸16为止的部分的容积,不能避免相对于EGR阀52的开度变化的EGR量的变化产生延迟。因此,相对于EGR阀52的开度变化的EGR量的变化的响应性及稳定性低,难以精确地调节EGR装置50的EGR量,因此,可以说在调节该EGR装置50的EGR量时易于产生调节误差。而且,由于上述调节误差而EGR量过多时,可能导致燃料的燃烧状态的恶化。另外,由于上述调节误差而EGR量过少时,气缸16内的燃料的燃烧温度变高,可能导致排气中的氮氧化物(NOx)的增加。关于这一点,在本实施方式中,在特定状况即EGR量的调节误差对燃料的燃烧状态的影响易于变大且燃料的燃烧状态易于变得不稳定时,该EGR量的调节误差本身消失,因此,能够排除该调节误差对燃料的燃烧状态的影响。如上述,通过将特定状况下的怠速运转时的EGR量设定为“0”,内燃机11的气缸16内的燃料的燃烧状态得到改善,因此,能够抑制失火发生。但是,只将EGR量设为“O”时,内燃机11的气缸16内的燃料的燃烧温度变得极高,因此,可能导致排气中的NOx量的大幅度增加。根据这一点,在本实施方式中,在特定状况下,对应于将怠速运转时的EGR量设定为“0”,与不在特定状况时相比将怠速运转时的燃料喷射时期设定为滞后侧的时期。另外,本实施方式中,不在特定状况时是指存储有中十六烷值区域时、存储有高十六烷值区域时、或在内燃机11开始起动后经过了执行期间时。通过设定滞后侧的时期作为燃料喷射时期,内燃机11的气缸16内的燃料的点火时期变迟,因此,相应地燃料的燃烧温度降低,排气中的NOx量减少。在本实施方式中,通过燃料喷射控制,可设定兼顾燃烧状态的恶化抑制和NOx排出量的抑制的燃料喷射时期(详细而言,要求喷射时期Tst)。而且,在本实施方式中,能够在特定状况下的怠速运转时,通过与基于EGR量的调节的设定相比可高精度地进行的基于燃料喷射时期的调节的设定,进行内燃机11的气缸16内的燃料的燃烧状态的设定。这样根据本实施方式,能够适当设定使用低十六烷值燃料时的内燃机11的气缸16内的燃料的燃烧状态,因此,能够兼顾抑制失火发生和抑制NOx排出量。下面,对用于在特定状况下将EGR量设为“O”的处理和用于使燃料喷射时期滞后的处理进行详细说明。在此,首先,参照图8对用于将特定状况下的怠速运转时的EGR量设为“O”的处理进行说明。图8表示EGR控制的处理(EGR控制处理)的执行步骤。该图的流程图所示的一连串的处理作为每个规定周期的中断处理由电子控制单元40执行。如图8所示,在该处理中,首先,判断是否同时满足下面的[条件4]及[条件5](步骤 S301)。[条件4]确定低十六烷值区域并存储于电子控制单元40中。[条件5]是从内燃机11开始起动后到油门操作部件的开启操作(使油门操作量ACC比“O”大的操作)开始为止的执行期间。具体而言,是在为了使内燃机11的运转开始而操作运转开关48后油门操作量ACC为“O”的状态持续的情况。而且,在同时满足[条件4]及[条件5]时(步骤S301 :YES),认为此时EGR量的调节误差对燃料的燃烧状态的影响易于变大且燃料的燃烧状态易于变得不稳定,设定“O”作为目标EGR率Tegr,并将EGR量设定为“O”(步骤S302)。另一方面,在不满足[条件4]及[条件5]时(步骤S301 :N0),执行通常控制(详细而言,与基于发动机转速NE及要求喷射量TAU设定的目标EGR率Tegr对应的EGR阀52的动作控制)作为EGR控制处理(步骤S303)。具体而言,在不满足[条件4]的情况下,认为此时中十六烷值区域或高十六烷值区域被确定并存储于电子控制单元40,因此燃料的燃烧状态过度恶化的可能性低,从而执行通常控制作为EGR控制处理。另外,在不满足[条件5]的情况下,认为随着起动后的发动机运转的继续,内燃机11的气缸16内的温度变高,因此燃料的燃烧状态过度恶化的可能性低,从而执行通常控制作为EGR控制处理。接着,参照图9对用于使燃料喷射时期滞后的处理(喷射时期滞后处理)进行说明。图9表示喷射时期滞后处理的执行步骤。该图的流程图所示的一连串的处理作为每个规定周期的中断处理由电子控制单元40执行。如图9所示,在该处理中,首先,判断EGR开度VR是否为规定开度(例如,比闭阀时的开度稍微大的开度)以下(步骤S401)。另外,在该处理中,判断发动机转速NE是否为规定速度(例如,与怠速运转时的发动机转速NE的上限相当的速度[1300转/分])以下(步骤S402),并且,判断要求喷射量TAU是否为规定量(例如,与怠速运转时的燃料喷射量的上限相当的量)以下(步骤S403)。而且,根据EGR开度VR为规定开度以下(步骤S401 :YES),判断为此时EGR量已设定为“O”。另外,根据发动机转速NE为规定速度以下(步骤S402 YES)且要求喷射量TAU为规定量以下(步骤S403 :YES),判断为内燃机11为怠速运转状态。因此,根据这些步骤S401 步骤S403的判断全部是肯定的情况,判断为EGR控制处理(参照图8)中同时满足上述[条件4]及[条件5]而EGR量被设定为“O”。即,此时低十六烷值区域被存储且是从内燃机11开始起动后到油门操作部件的开启操作开始为止的执行期间,因此,判断为为了改善燃料的燃烧状态而抑制失火发生已将EGR量设定为“O”。在该情况下(步骤S401 步骤S403全部为“YES”),进而判断外气压是否比判定压力(例如,80kPa)高(步骤S404)。而且,在外气压为判定压力以上的情况下(步骤S404 YES),执行设定滞后侧的时期作为燃料喷射时期的执行方式中的燃料喷射控制(滞后控制)(步骤 S405)。在本实施方式中,作为要求喷射时期Tst的设定所使用的运算映射,除了上述的运算映射ML、丽、MH以外,还设定与在特定状况下的怠速运转时将EGR量设定为“O”的状况匹配的运算映射中的、设定比较滞后侧的时期的运算映射MLF。详细而言,以各种实验及模拟的结果为基础预先求得由要求喷射量TAU及发动机转速NE确定的发动机运转状态和与在特定状况下的怠速运转时将EGR量设定为“O”的状况匹配的要求喷射时期Tst的关系,并且,该关系作为运算映射MLF存储于电子控制单元40。在步骤S405的处理中,详细而言,选择这些运算映射中的运算映射MLF。而且,在以后的燃料喷射控制中,以该运算映射MLF为基础,基于要求喷射量TAU及发动机转速NE设定要求喷射时期Tst。另一方面,在EGR开度VR比规定开度大的情况下(步骤S401 :N0),认为此时EGR量未设定为“0”,从而执行设定提前侧的时期作为燃料喷射时期的执行方式下的燃料喷射控制(通常控制)(步骤S406)。该通常控制中,详细而言,选择与此时存储的十六烷值区域对应的运算映射即运算映射ML、丽、MH中的任一个,在以后以该选择的运算映射为基础,基于要求喷射量TAU及发动机转速NE设定要求喷射时期Tst。另外,在发动机转速NE比规定速度高时(步骤S402 :N0)及要求喷射量TAU比规定量多时(步骤S403 :N0),认为内燃机11不是怠速运转状态,从而执行通常控制(步骤S406)。
这样根据本实施方式,将EGR量设定为“O”的处理(图8的步骤S302的处理)和设定滞后侧的时期作为燃料喷射时期的处理(图9的步骤S405的处理)限于在从内燃机11开始起动后到油门操作部件的开启操作开始为止的执行期间执行。因此,在刚开始起动后内燃机11的气缸16内的温度较低时,换句话说,限于在易于导致气缸16内的燃料的燃烧状态不稳定的期间,能够执行用于实现高精度的燃料的燃烧状态的设定的处理(将EGR量设定为“O”的处理及设定滞后侧的时期作为燃料喷射时期的处理)。另一方面,在外气压为判定压力以下的情况下(步骤S404 :N0),执行通常控制(步骤S406)。在此,外气压较低时,空气密度较低,因此,进气中所含有的氧的量较少。因此,内燃机11的气缸16内的燃料的燃烧状态易于恶化,易于导致失火发生。根据本实施方式,在外气压较低因而易于导致失火发生时,能够选择运算映射MLF而将要求喷射时期Tst设定为滞后侧的时期,换句话说,能够禁止要求喷射时期Tst向使燃料的燃烧状态恶化的一侧变更,因此,能够可靠地抑制失火发生。另外,在外气压比判定压力高时(步骤S404 =YES),换句话说,在比较难以产生失火时,以运算映射MLF为基础,设定滞后侧的时期作为要求喷射时期Tst,因此,能够适当地抑制NOx的排出量。另外,在本实施方式中,以各种实验及模拟的结果为基础,预先求得能可靠地抑制特定状况下的怠速运转时的失火发生的判定压力,并存储于电子控制单兀40中。下面,参照图10对用于在上述特定状况下的怠速运转时将EGR量设为“O”的处理和用于使燃料喷射时期滞后的处理的执行方式进行说明。图10表示这些处理的执行方式的一个例子。另外,该图中,实线表示本实施方式的装置中的各处理的执行方式,点划线表示不将EGR量设为“O”且不使燃料喷射时期滞后的比较例的装置中的各处理的执行方式。另外,该图中的双点划线表示将EGR量设为“O”且不使燃料喷射时期滞后的情况下的NOx排出量的推移。在图10所示的例子中,在时刻til对运转开关48进行接通操作并开始内燃机11的起动。此时,存储有低十六烷值区域且油门操作部件未被进行开启操作(油门操作量ACC=“ O ”),因此,设定“ O ”作为目标EGR率Tegr,EGR开度VR成为与闭阀状态相当的开度(VR=“O”)。另外,此时,以运算映射MLF为基础,设定与不是发动机刚开始起动后的执行期间时相比以图中空心箭头表示的量靠滞后侧的时期作为要求喷射时期Tst。此时,在图中点划线表示的比较例的装置中,虽然将NOx排出量抑制得极少,但是,导致内燃机11的气缸16内的燃料的燃烧状态的恶化,因此,导致失火及烟的产生。另一方面,在图中双点划线表示的装置中,虽然内燃机11的气缸16内的燃料的燃烧状态足够良好,避免失火及烟的产生,但是,燃料的燃烧温度极高,因此,导致NOx排出量大幅度增加。与此相对,在本实施方式的装置中,在时刻til tl2,将EGR量设定为“0”,并且,设定滞后侧的时期作为燃料喷射时期,因此,不会导致如双点划线表示的装置那样NOx排出量大幅度增加,也不会如点划线表示的比较例的装置那样导致失火及烟的产生。这样根据本实施方式,在使用低十六烷值燃料时,能够适当设定内燃机11的气缸16内的燃料的燃烧状态,因此,能够兼顾抑制失火发生和抑制NOx的排出量。在本例中,在时刻tl2开始油门操作部件的开启操作时,在以后停止执行用于将EGR量设为“O”的处理和用于使燃料喷射时期滞后的处理。而且,在此时,根据基于发动机转速NE及要求喷射量TAU设定的目标EGR率Tegr执行EGR阀52的动作控制,并根据基于油门操作量ACC及发动机转速NE且以运算映射ML、MM、MH的任一项为基础设定的要求喷射时期Tst执行燃料喷射阀20的驱动控制。如以上说明,根据本实施方式,得到下面记载的效果。(I)在内燃机11刚开始起动后的执行期间且存储有低十六烷值区域的特定状况中,将怠速运转时的EGR量设定为“0”,并且,与不是特定状况时相比,将怠速运转时的要求点火时期Tst设定为滞后侧的时期。因此,在使用低十六烷值燃料时能够适当设定内燃机11的气缸16内的燃料的燃烧状态,能够兼顾抑制失火发生和抑制NOx的排出量。(2)由于已将特定状况下的怠速运转时的EGR量设为“0”,因此,能够排除EGR量的调节误差对燃料的燃烧状态的影响,能够更高精度地设定燃料的燃烧状态。(3)以外气压为判定压力以上为条件,执行设定提前侧的时期作为燃料喷射时期的处理(图9的步骤S405的处理)。因此,能够禁止外气压较低而易于导致失火发生时要求喷射时期Tst向使燃料的燃烧状态恶化的一侧变更,从而可靠地抑制失火发生。而且,在外气压较高因而比较难以产生失火时,允许要求喷射时期Tst向滞后侧变更,因此,能够适当抑制NOx的排出量。(4)限于在从内燃机11开始起动后到油门操作部件的开启操作开始为止的执行期间执行将EGR量设定为“O”的处理(图8的步骤S302的处理)和设定滞后侧的时期作为燃料喷射时期的处理(图9的步骤S405的处理)。因此,能够限于在易于导致内燃机11的气缸16内的燃料的燃烧状态不稳定的期间,执行用于实现高精度的燃料的燃烧状态的设定的处理。另外,上述实施方式也可以如下变更而实施。·也可以代替步骤S401 步骤S403的处理,执行判断是否同时满足上述[条件4]及[条件5]的处理。利用这样的装置,在内燃机11刚开始起动后的执行期间且存储有低十六烷值区域的特定状况 下,与不是特定状况时相比,能够将怠速运转时的要求点火时期Tst设定为滞后侧的时期。·不限于使用运算映射执行要求喷射时期Tst的设定,也可以利用运算式执行要求喷射时期Tst的设定。 也可以如下执行特定状况下的怠速运转时的要求喷射时期Tst的设定。S卩,基于发动机转速NE及要求喷射量TAU,根据运算映射ML设定要求喷射时期Tst,并且,基于发动机转速NE及要求喷射量TAU算出滞后校正项,且将利用滞后校正项校正要求喷射时期Tst后的值设定作为最终的要求喷射时期Tst。 也可以省略图9的步骤S404的处理。即,也可以不利用外气压,而执行设定滞后侧的时期作为要求喷射时期Tst的处理(图9的步骤S405的处理)。·在特定状况下,不限于将怠速运转时的EGR量设定为“0”,也可以稍微打开EGR阀52,使少量的EGR气体进行再循环。总之,与不是特定状况时的EGR量相比,只要能够减少特定状况下的怠速运转时的EGR量即可。利用这样的装置,在特定状况下的怠速运转时,即EGR量的调节误差对燃料的燃烧状态的影响易于变大且燃料的燃烧状态易于变得不稳定时,也可以以EGR量的绝对量变少的量减小EGR量的调节误差。因此,能够将EGR量的调节误差对燃料的燃烧状态的影响抑制得较小。·限于在从内燃机11开始起动后到油门操作部件的开启操作开始为止的执行期间,执行将EGR量设定为“O”的处理(图8的步骤S302的处理)和设定滞后侧的时期作为燃料喷射时期的处理(图9的步骤S405的处理)。也可以取而代之,限于在从内燃机11开始起动到经过预定的一定期间为止的执行期间执行这些处理。作为一定期间,可以列举例如一定的时间(例如数秒 数十秒)、到燃料喷射量的累计值达到规定值为止的期间、到进气量的累计值达到规定值为止的期间等。总之,只要能够在到内燃机11的气缸16内的温度足够高且燃料的燃烧状态良好为止的执行期间,执行将EGR量设定为“O”的处理和设定滞后侧的时期作为燃料喷射时期的处理即可。·如果能适当抑制燃料喷射阀20的初期个体差异、时效变化等引起的燃料喷射时期及燃料喷射量的误差,也可以省略利用校正项K1、K2校正目标喷射时期TQst和目标喷射时间TQtm的处理(图6的步骤S202)。·上述实施方式的控制装置也可以在适当变更其结构后应用到判断是利用燃料的十六烷值的指标值(旋转变动量Σ △ NE)划分成的两个区域中的哪一个区域的装置、判断是四个以上的区域中的 哪一个区域的装置中。

·上述实施方式的控制装置也可以在适当变更其结构后应用到将不是基于存储于电子控制单元40的旋转变动量Σ ΛΝΕ确定十六烷值区域而是将该旋转变动量Σ ΛΝΕ作为与供给到内燃机11的燃料的十六烷值相当的值(详细而言,十六烷值指标值)使用的装置中。在这样的装置中,在旋转变动量Σ ΛΝΕ比预定的规定值小时,判断为供给到内燃机11的燃料的十六烷值较低,只要执行将特定状况下的怠速运转时的EGR量设定为“O”的处理和设定滞后侧的时期作为燃料喷射时期的处理即可。·也可以算出旋转变动量Σ ΔΝΕ以外的值作为内燃机11的输出转矩的指标值。例如,在执行指标值检测处理中,可以分别检测执行燃料喷射时的发动机转速NE和刚执行该燃料喷射之前的发动机转速NE,并且算出这些速度的差,将该差作为上述指标值使用。·关于压力传感器41的安装方式,只要能够适当检测成为燃料喷射阀20内部(详细而言,喷嘴室25内)的燃料压力的指标的压力,换句话说随着该燃料压力的变化而变化的燃料压力,就不限于直接安装于燃料喷射阀20的方式,可以任意变更。具体而言,也可以在分支通路31a及公共供油管34上安装压力传感器。 也可以代替利用压电执行器29驱动的类型的燃料喷射阀20,而采用由具备例如螺线管线圈等的电磁执行器驱动的类型的燃料喷射阀。·上述实施方式的控制装置不限于搭载有离合器机构13和手动变速器14的车辆10,也可以适用于搭载有液力变矩器和自动变速器的车辆。在这样的车辆中,只要在例如满足[条件I]及[条件3]时执行用于推定燃料的十六烷值的燃料喷射即可。另外,在采用内置锁止离合器的装置作为液力变矩器的车辆中,只要重新设定锁止离合器未成为卡合状态的[条件6]并且以满足该[条件6]为条件执行用于检测燃料的十六烷值指标值的燃料喷射即可。·本发明不限于执行用于推定供给到内燃机的燃料的十六烷值的燃料喷射的装置,只要是执行推定该燃料的十六烷值的处理的装置就可以应用。作为这样的装置,可以列举例如下面的装置。即,首先,在执行用于内燃机的运转的燃料喷射时,利用筒内压传感器检测该内燃机的气缸内的压力(筒内压)。而且,基于该筒内压算出燃料实际点火的时期,并且,基于该时期算出点火延迟时间。然后,基于该算出的点火延迟时间算出十六烷值指标值。·本发明不限于适用于具有四个气缸的内燃机,在单气缸的内燃机、具有两个气缸的内燃机、具有三个气缸的内燃机或具有五个以上气缸的内燃机中也可以适用。标号说明10…车辆、11···内燃机、12…曲轴、13···离合器机构、14···手动变速器、15…车轮、16…气缸、17…进气通路、18…活塞、19···排气通路、20···燃料喷射阀、21···壳体、22···针阀、23…喷身寸孔、24···弹簧、25···喷嘴室、26···压力室、27···导入通路、28···连通路、29···压电执行器、29a···阀芯、30···排出路、31a···分支通路、31b···供给通路、32···燃料箱、33···燃料泵、34…公共供油管、35···返回通路 、40···电子控制单兀、41···压力传感器、42···曲轴传感器、43…油门传感器、44···外气压传感器、45…进气量传感器、46···进气压传感器、47…开度传感器、48…运转开关、50…EGR装置、51...EGR通路、52...EGR阀。
权利要求
1.一种内燃机的控制装置,其特征在于,具备 EGR装置,使流过内燃机的排气通路的排气的一部分返回到进气通路而进行再循环; 推定部,推定向所述内燃机供给的燃料的十六烷值 '及 控制部,在由所述推定部推定出的十六烷值较低且处于所述内燃机刚开始起动后的执行期间时,与非此情况时相比,减少怠速运转时的所述EGR装置的EGR量并且使燃料喷射时期滞后。
2.如权利要求1所述的内燃机的控制装置,其特征在于, 所述控制部将所述EGR量设为“O”。
3.如权利要求1或2所述的内燃机的控制装置,其特征在于, 所述控制部以外气压为预定的判定压力以上为条件执行所述燃料喷射时期的滞后。
4.如权利要求1 3中任一项所述的内燃机的控制装置,其特征在于, 所述执行期间是从所述内燃机开始起动后到油门操作部件的开启操作开始为止的期间。
全文摘要
一种内燃机的控制装置,内燃机中安装有使流过排气通路的排气的一部分返回进气通路而进行再循环的EGR装置。电子控制单元执行确定并存储向内燃机供给的燃料的十六烷值所属的十六烷值区域的处理。在内燃机刚开始起动后的执行期间且存储有低十六烷值区域的特定状况时(t11~t12),电子控制单元将怠速运转时的EGR开度(VR)设定为“0”,并且,与不是特定状况时相比将怠速运转时的要求喷射时期(Tst)设定为滞后侧的时期。
文档编号F02D41/40GK103038489SQ20118002631
公开日2013年4月10日 申请日期2011年8月10日 优先权日2011年8月10日
发明者大越章裕 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1