蓄能器系统的制作方法

文档序号:5241668阅读:209来源:国知局
蓄能器系统的制作方法
【专利摘要】本发明涉及一种蓄能器系统,至少包括两个并联的可再充电的蓄能器,其中第一蓄能器包括多个基于铅的储能元件,第二蓄能器(7)包括多个基于锂的储能元件(11)。在0到100%的荷电状态界限之间实现一荷电状态区间,在该荷电状态区间中第二蓄能器(7)的额定电压(12、13、14、21)处于第一蓄能器(6)的最大充电电压(9)与额定电压(10)之间的区域中。
【专利说明】蓄能器系统
【技术领域】
[0001]本发明涉及一种至少包括两个并联的可再充电蓄能器的蓄能器系统,其中第一蓄能器包括多个基于铅的储能元件。
【背景技术】
[0002]在现代机动车中通常设有带有多个并联连接的可再充电的蓄能器的蓄能器系统,其中第一蓄能器通常包括一铅电池,该铅电池的形式为多个基于铅的储能元件,该储能元件也称为单体。在此并联连接的第二蓄能器可能以电容器的形式存在,该电容器例如在机动车启动时产生必需的高电流。当由于第一蓄能器的荷电状态低而不能独立提供高电流强度时,上述方案就特别有利。
[0003]基于铅的蓄能器的基本问题在于一旦把发电机或充电器从电网中取下或关断后便出现的电压降。在通常的构建在机动车上的铅电池中,该电压降可能为:从充电过程中的约14V的充电电压到撤走充电电流后的约12V的额定电压。循环稳定性低同样是基于铅的蓄能器的缺点,也就是说,利用该蓄能器所能执行的充放电循环次数较少。这两方面整体上对具有基于铅的蓄能器的蓄能器系统的工作能力产生了消极的影响。该问题同样在具有24V车载电网的机动车,例如载重汽车或大客车中存在。

【发明内容】

[0004]因此,本发明基于所述问题提出了一种改进的蓄能器系统。
[0005]根据本发明,通过开始提到种类的蓄能器系统解决该问题,其特征在于,第二蓄能器包括多个基于锂的储能元件,其中在0到100%的荷电状态界限之间提供一荷电状态区间,在该荷电状态区间中第二蓄能器的额定电压处于第一蓄能器的最大充电电压与额定电压之间的区域中。
[0006]本发明基于以下认识,给基于铅的第一蓄能器并联连接具有多个基于锂的储能元件的第二蓄能器。在此本发明克服了通常在科学技术中认为不利的两个不同蓄能器种类的并联连接中的问题。根据本发明这样选择第二蓄能器:该第二蓄能器在由从0至100%的荷电状态界限规定出的(第二蓄能器)荷电状态区间中具有处于第一蓄能器的最大充电电压与额定电压之间的额定电压。
[0007]该蓄能器系统优选构成为机动车车载电网的一部分,其中该车载电网包括至少一个特别用于给第一和第二蓄能器以及可能的其它蓄能器充电的发电机以及至少一个消耗电流的用电器。虽然该蓄能器系统明显也能用在其它【技术领域】中,但在以下的实施方案主要用在机动车的蓄能器系统的结构中。
[0008]因此,根据本发明为第一蓄能器连接有第二蓄能器,其中该第一蓄能器具有相对较低的循环稳定性而第二蓄能器具有相对较高的循环稳定性,所述循环稳定性表明蓄能器的可能的充放电过程的次数多少。在机动车运行中连接在机动车车载电网上的用电器优先由第二蓄能器供电。第一蓄能器优先用于启动机动车,更确切地用于启动所配设的动力系统。
[0009]特别是在机动车的牵引阶段中,即在同样为车载电网的一部分并至少产生电能的发电机只产生降低的电压的行驶状态下,尽可能地避免基于铅的第一蓄能器的放电,这是因为在这种情况下所需的能量由基于锂的第二蓄能器提供。这由于在该情况下第二蓄能器较高的额定电压而出现。
[0010]在该机动车的减速滑行阶段/推力运行阶段中,即在发电机产生更高电压的行驶状态下,可对锂蓄能器进行比铅蓄能器更强的充电,该铅蓄能器处于更高的荷电状态下并且因此接收少量的电流。当然设置一合适的控制装置,该控制装置例如可确保第一蓄能器不会低于一可预先确定的或已经预先确定的最低荷电状态,例如80%。
[0011]根据本发明的蓄能器系统保证了明显更长的第一蓄能器使用时间。以下对此作示例性的对比说明。
[0012]一般地,基于铅的蓄能器的寿命大概是其容量的300倍,而基于锂的蓄能器的寿命至少相当于其容量的3000倍。在小放电循环中基于锂的蓄能器的寿命可能达到相当于其容量的20000倍。
[0013]在本发明的一个不例性的实施方式中,第一蓄能器的最大充电电压约为15V,而第一蓄能器的额定电压约为12V,所以第二蓄能器的额定电压在0到100%的荷电状态界限中局部地处于约15V与约12V之间。该电压适用于具有12V车载电网的机动车。对于具有24V车载电网的机动车来说,第一蓄能器的充电电压是约30V,额定电压是约24V。
[0014]上面提到的荷电状态区间在从0到100%的荷电状态界限内也可以更窄,从而使得从0到100%的荷电状态界限内的荷电状态区间也可处于在20%到80%,优选为40%到60%,特别优选为45%到55%。特别当第二蓄能器的荷电状态为50%时,其额定电压应处于第一蓄能器的最大充电电压和额定电压之间的区域中。因此,对该示例的情况,第一蓄能器的最大充电电压为约15V,而第一蓄能器的额定电压为约12V,第二蓄能器的额定电压例如在45%到55%之间的荷电状态界限内处于约12V和约15V之间。相应地在24V车载电网的情况下适用匹配的电压值。
[0015]构成第二蓄能器的储能元件优选串联连接。同类储能元件的串联连接结构已经广泛已知。这样就可以根据所串联的储能元件的数量而将第二蓄能器的电压设定到任意高的值。通常各储能元件的额定电压相叠加,所以第二蓄能器的额定电压相当于各储能元件各自额定电压的总和。
[0016]以下给出第二蓄能器的不同实施方式中的示例性的(储能单元)数目。该数目是非穷举的。
[0017]所以第二蓄能器在用于12V车载电网的设计方案中可包括:六个基于钛酸锂的储能元件,或四个基于锂的储能元件,或三个基于锂的储能元件和一个基于磷酸铁锂化合物的储能元件,或四个基于钛酸锂的储能元件和一个基于锂的储能元件,或三个基于钛酸锂的储能元件和两个基于锂的储能元件,或三个基于钛酸盐的储能元件和两个基于磷酸铁锂化合物的储能元件,或两个基于锂的储能元件和两个基于磷酸铁锂化合物的储能元件,或三个基于锂的储能元件(11)和一个基于钛酸锂的储能元件。
[0018]在用于24V车载电网的第二蓄能器的设计方案的情况中,上述各储能元件的数目翻倍,而不同的元件种类的组合可能性保持相同。[0019]另一特别适用于24V车载电网的第二蓄能器的实施方式可能包括:七个基于锂的储能元件,或七个基于锂的储能元件和一个基于钛酸锂的储能元件,或六个基于锂的储能元件和两个基于钛酸锂的储能元件,或十一个基于钛酸锂的储能元件。
[0020]此外可考虑:第二蓄能器附加于多个基于锂的储能元件至少还包括一个电容器,特别是双层电容器。双层电容器包括两个电极,在这两个电极之间有可导电的电解质。施加电压后,相反极性的电解质离子在电极上聚集。形成一由不可动的带电粒子构成的带电粒子层。具有作为电介质的带电粒子层的电极如两个由电介质串联的电容器那样工作。与电化学蓄能器不同,该电容器以静电方式存储能量。双层电容器通常具有较小的内阻和较高的可能充放电循环次数。
[0021]有利地,将电容器作为另外的储能元件与所述多个基于锂的储能元件串联。由此可使第二蓄能器的额定电压进一步升高。当然也可以考虑,为第二蓄能器的储能元件串联多于一个的电容器。
[0022]如果第二蓄能器至少具有一个串联在基于锂的储能元件上的电容器,则优选下述示例的第二蓄能器的实施方式。用于12V车载电网设计方案的第二蓄能器由此有利地具有:五个基于钛酸锂的储能元件和一个电容器,特别是双层电容器,或四个基于磷酸铁锂化合物的储能元件和一个电容器,特别是双层电容器。如果该第二蓄能器设计用于24V车载电网,则各元件数翻倍。
[0023]合理地是在第一和第二蓄能器之间连接有二极管,特别是准二极管/伪二极管/拟似二极管(Quasidiode)。该二极管的导通方向优选指向第二蓄能器,也就是说,能量(流)可经由第一蓄能器流向第二蓄能器。因此,该二极管不允许能量流(电流)从基于锂的第二蓄能器流向基于铅的第一蓄能器的方向(二极管的阻断方向)。在确定的电路布置或情况下也可以规定:桥接二极管并且这样使能量(流)也能朝向第一蓄能器流动。特别是对于机动车的首次启动或紧急启动便是如此。
[0024]此外合理的是在第一和第二蓄能器之间连接一电开关装置,特别是保险开关/安全开关。该电开关装置例如用于超压保护和/或低电压保护和/或温度保护。该电开关装置可以是故障电流保护开关/错误电流保护开关的形式。可以考虑,通过一连接到该开关装置的合适控制装置能对其进行控制。
【专利附图】

【附图说明】
[0025]本发明的其它优势、特征和细节由下面描述的实施例以及附图表明。其中:
[0026]图1:一根据本发明的不例性实施方式的机动车车载电网的原理图;
[0027]图2:—根据本发明的示例性实施方式的机动车车载电网的原理图;
[0028]图3:—根据本发明的示例性实施方式的机动车车载电网的原理图;
[0029]图4:根据本发明的不同实施方式的第二蓄能器的描述电池电压U相对于荷电状态SOC的曲线图;
[0030]图5:根据本发明的示例实施方式的第二蓄能器在不同的充放电状态下的描述电池电压U相对于荷电状态SOC的曲线图;
[0031]图6:根据本发明的不同实施方式的第二蓄能器的描述电池电压U相对于荷电状态SOC的曲线图;[0032]图7:根据本发明的示例实施方式的第二蓄能器在不同的充放电状态下的描述电池电压U相对于荷电状态SOC的曲线图和;
[0033]图8-11:另外的根据本发明的其它示例实施方式的第二蓄能器在不同的充放电状态下的描述电池电压U相对于荷电状态SOC的曲线图。
【具体实施方式】
[0034]图1示出了根据本发明的一个示例性的实施方式的机动车2的车载电网I的原理图。配属于该车载电网I的有:蓄能器系统3、发电机4和至少一个在运行中消耗电流的用电器5,例如形式为空调。用电器5可由开关15从车载电网2断开。蓄能器系统3包括两个并联的可再充电的蓄能器6、7。蓄能器6、7之间的电联接可由电开关16断开。开关16具有安全功能特别例如:超压保护、低电压保护和/或温度保护。该车载电网I的网络电压大约为13.5V至15.5V。
[0035]第一蓄能器以铅电池(的形式)存在,相应地由多个串联的基于铅的储能元件8 (单体)构成。第一蓄能器6的最大充电电压约为15V(参阅图4,直线9),第一蓄能器6的额定电压约为12V (参阅图4,直线10)。第二蓄能器7以锂电池(的形式)存在,并例如由4个串联的基于锂的储能元件11或单体构成。由4个串联的基于锂的储能元件11构成的第二蓄能器7的额定电压(参阅图4,线12)在0到100%的荷电状态界限内的第二蓄能器7的荷电状态区间中在5%到90%之间处于在第一蓄能器6的最高充电电压(参阅图4,直线9)与额定电压(参阅图4,直线10)之间的区域中。
[0036]第二蓄能器7同样可以由6个串联的由钛酸锂制成的储能元件11构成(参阅图4,线13)。在这种情况下,第二蓄能器7的额定电压在从0到100%的荷电状态界限内的第二蓄能器7荷电状态区间中在20%至65%之间处于第一蓄能器6的最高充电电压(参阅图4,直线9)与额定电压(参阅图4,直线10)之间的区域中。基于钛酸锂的储能元件11的使用有利于第二蓄能器7的安全性,因为该储能元件具有相对高的热稳定性。
[0037]同样可以考虑,由3个串联的基于锂的储能元件11和I个与其串联的基于钛酸锂的储能元件11构成该第二蓄能器7(参阅图4,线14)。在这种情况下第二蓄能器7的额定电压在从0到100%的荷电状态界限内的第二蓄能器7荷电状态区间中在40%至100%之间处于第一蓄能器6的最高充电电压(参阅图4,直线9)与额定电压(参阅图4,直线10)之间的区域中。
[0038]所以有许多不同的该第二蓄能器7的设计方案。但共同点是:第二蓄能器的额定电压在从0到100%的荷电状态界限内的荷电状态区间中从至少40%至60%处于第一蓄能器6的最高充电电压(参阅图4,直线9)与额定电压(参阅图4,直线10)之间的区域中。原则上,在从0到100%的荷电状态界限内的相应荷电状态区间中争取实现第二蓄能器7的额定电压的尽可能平缓的曲线,也就是说,原则上希望第二蓄能器7的额定电压在很宽的荷电状态区间上处在第一蓄能器6的最高充电电压(参阅图4,直线9)与额定电压(参阅图4,直线10)之间。
[0039]像由虚线框17所表示的,蓄能器系统3,也就是第一和第二蓄能器6、7可能布置在一共同的壳体内。这样给出一个特别紧凑的、易控制的以及重量减轻的蓄能器系统3的设计方案。[0040]原则上,第一蓄能器6优先用于机动车I的启动,因为通常在此需要高电流。由于第二蓄能器7相对于第一蓄能器6具有更高的循环稳定性,也就是说第二蓄能器7可以更频繁地充放电,所以该第二蓄能器特别设置用于机动车14的,更确切的说发电机4的再生运行。在机动车I的所谓的起停模式或惯性行驶模式中优先使用第二蓄能器7。必要时设置一控制装置用于控制蓄能器6、7与车载电网I的连接和/或断开。
[0041]根据本发明的蓄能器系统3此外用于使车辆更好地加速,因为当发电机4的电压稍微降低时第二蓄能器7为车载电网I供电。
[0042]图2示出了根据本发明的另一个实施例的机动车2的车载电网I的原理图。与图1所示实施方式主要的不同点在于:连接在第一蓄能器6和第二蓄能器7之间的二极管18,该二级管特别以准二极管的形式存在。该二极管18的导通方向指向第二蓄能器7。该二极管18可为机动车的首次启动或紧急启动而被桥接/跨接。在这种情况下,第二蓄能器7的功率也可附加用于机动车I的启动。
[0043]虚线框19示出了二极管18、开关16以及第二蓄能器7集成在共同的壳体中的可能。也可以考虑,只把开关15和二极管18集成在一共同的壳体中。
[0044]图3示出了根据本发明的另一个实施例的机动车的车载电网I的原理图。与图1、2所示实施方式的主要的不同点在于第二蓄能器7的设计方案,在此该第二蓄能器除3个基于锂的储能元件11外还包括至少I个电容器20。该电容器如图所示地与储能元件11串联。相应地可提高第二蓄能器7的电能容量。电容器20优选为双层电容器。电容器20的额定电压例如约为3V。
[0045]基于锂的储能元件11与电容器的串联结构也可例如由5个基于钛酸锂的储能元件11和I个双层电容器构成(参阅图4,线21)。在这种情况下第二蓄能器7的额定电压在从0到100%的荷电状态界限内的第二蓄能器7的荷电状态区间中在15%至85%之间处于第一蓄能器6的最高充电电压(参阅图4,直线9)与额定电压(参阅图4,直线10)之间的区域中。
[0046]图5示出了在不同的充放电状态下描述根据本发明一示例性实施方式的第二蓄能器7的电池电压U相对于荷电状态SOC (来自英语state of charge)的曲线图,该第二蓄能器基于6个串联的基于钛酸锂的储能元件11。由此可见,争取使第二蓄能器7具有一尽可能居中地处于第一蓄能器6的最高充电电压(参阅图5,直线9)与额定电压(参阅图5,直线10)之间的曲线(参阅图5,线22),因为在这种情况下第二蓄能器7的额定电压曲线不仅在充电状态下(参阅图5,线23)中而且在放电状态(参阅图5,线24)中都在一尽可能宽的荷电状态区间上处于第一蓄能器6的最高充电电压(参阅图5,直线9)与额定电压(参阅图5,直线10)之间。
[0047]在图6、7中示出的图基本上与图4、5所示出的图对应,当然在此第一蓄能器6的额定电压分别大约为12V(参阅图6、7,直线10)。附加地分别示出有与第一蓄能器6的最小运行电压相关的例如约13V的直线37。如图所示,不同实施方式的第二蓄能器7的额定电压(参阅图4,线12、13、14、21)在从0到100%的荷电状态界限内的荷电状态区间中在0或10%与100%之间处于第一蓄能器6的最高充电电压(参阅图4,直线9)与额定电压(参阅图
6、7,直线10)之间的区域中,并且在从0到100%荷电状态界限内的荷电状态区间中在15%与100%之间处于第一蓄能器6的最高充电电压(参阅图6、7,直线10)与最小运行电压(参阅图6、7,直线37)之间区域。对于第二蓄能器7的各充电或放电状态(参阅图6、7,线23、24)也是如此。
[0048]图8-11示出了在不同的充放电状态下描述另外的根据本发明的实施例的第二蓄能器7的电池电压U相对于荷电状态SOC的曲线图。在图6-9中示出的第二蓄能器7的实施方式特别适合于本发明蓄能器系统3作为机动车2的24V车载电网I的一部分的应用情况。在图8-11中,直线9表不第一蓄能器6的最大充电电压,直线10表不第一蓄能器6的额定电压,直线37表不第一蓄能器6的最小运行电压。
[0049]在图8示出的实施方式中涉及由7个基于锂的、串联的储能元件11构成的第二蓄能器7。第二蓄能器7的额定电压的曲线(参阅图8,线25)在约65%至100%的荷电状态区间中处于第一蓄能器6的最高充电电压(参阅图8,直线9)与额定电压(参阅图8,直线10)之间。对于第二蓄能器7的充电过程(参阅图8,线26)和放电过程(参阅图8,线27)也是如此。
[0050]在图9中示出的实施方式中涉及由6个基于锂的储能元件11和2个基于钛酸锂的储能元件构成的第二蓄能器7,这些储能元件相串联。这样构造的第二蓄能器7的额定电压(参阅图9,线28)及其在充电过程中的额定电压(参阅图9,线29)和其在放电过程中的额定电压(参阅图9,线30)对于约50%至90%的荷电状态区间处于第一蓄能器6的最高充电电压(参阅图9,直线9)与额定电压(参阅图8,直线10)之间。
[0051]在图10中示出的实施方式中由7个基于锂的储能元件和I个基于钛酸锂的储能元件11构成的第二蓄能器7也是如此。构成第二蓄能器7的储能元件11还是串联。在此其中一般的额定电压(参阅图10,线31)、充电过程中的额定电压(参阅图10,线32)以及放电过程中的额定电压(参阅图10,线33)处在第一蓄能器6的最高充电电压(参阅图9,直线9)与额定电压(参阅图8,直线10)之间的荷电状态区间在20%的荷电状态已经开始,到大约80%的荷电状态结束。在第二蓄能器7的充电运行中,该荷电状态区间在大约65%已经结束。
[0052]最后图11中示出了一由11个分别基于锂的、串联的储能元件11构成的第二蓄能器7的实施方式。它的额定电压(参阅图11,线34)在约55%至100%的荷电状态区间中也处于第一蓄能器6的最高充电电压(参阅图11,直线9)与额定电压(参阅图11,直线10)之间。在充电过程(参阅图11,线35)和放电过程(参阅图11,线36)中也是如此。特别是充电过程的曲线在此有利地在大约20%至100%的荷电状态区间上表现为在第一蓄能器6的最高充电电压(参阅图11,直线9)与额定电压(参阅图11,直线10)之间平缓上升的曲线。
[0053]可见,第二蓄能器7的额定电压(参阅图8,线25;图9,线28;图10,线31;图11,线34)在贯穿0到100%的荷电状态界限的荷电状态区间内在以至少约60%至100% (参阅图8,线25)直至15%至100% (图10,线31)的荷电状态区间处于第一蓄能器6的最高充电电压(参阅图8-11,直线9)与最低运行电压(参阅图8-11,直线10)之间。对于图6-9所示的第二蓄能器7的实施方式中的充放电过程(参阅图8,线26、27 ;图9,线29、30 ;图10,线32,33 ;图11,线35、36)也是如此。
【权利要求】
1.一种蓄能器系统,至少包括两个并联的可再充电的蓄能器,其中第一蓄能器包括多个基于铅的储能元件,其特征在于,第二蓄能器(7)包括多个基于锂的储能元件(11),其中在O到100%的荷电状态界限之间提供一荷电状态区间,在该荷电状态区间中第二蓄能器(7)的额定电压(12、13、14、21、25、28、31、34)处于第一蓄能器(6)的最大充电电压(9)与额定电压(10)之间的区域中。
2.根据权利要求1所述的蓄能器系统,其特征在于,所述荷电状态区间处于20%至80%的荷电状态之间,优选为40%至60%的荷电状态之间,特别优选为45%至55%的荷电状态之间。
3.根据权利要求1或2所述的蓄能器系统,其特征在于,构成第二蓄能器(7)的多个储蓄元件(11)串联连接。
4.根据前述权利要求所述的蓄能器系统,其特征在于,所述第二蓄能器(7)至少包括: 六个基于钛酸锂的储能元件(11),或 四个基于锂的储能元件(11 ),或 三个基于锂的储能元件(11)和一个基于磷酸铁锂化合物的储能元件(11 ),或 四个基于钛酸锂的储能元件(11)和一个基于锂的储能元件(11),或 三个基于钛酸锂的储能元件(11)和两个基于锂的储能元件(11),或 三个基于钛酸盐的储能元件(11)和两个基于磷酸铁锂化合物的储能元件(11 ),或 两个基于锂的储能元件(11)和两个基于磷酸铁锂化合物的储能元件(11),或 三个基于锂的储能元件 (11)和一个基于钛酸锂的储能元件。
5.根据权利要求1至3中任一项所述的蓄能器系统,其特征在于,所述第二蓄能器(7)至少包括: 七个基于锂的储能元件(11),或 七个基于锂的储能元件(11)和一个基于钛酸锂的储能元件(11 ),或 六个基于锂的储能元件(11)和两个基于钛酸锂的储能元件(11),或 十一个基于钛酸锂的储能元件(11)。
6.根据权利要求1至3中任一项所述的蓄能器系统,其特征在于,所述第二蓄能器(7)附加于多个基于锂的储能元件(11)至少还包括一个电容器(20),特别是双层电容器。
7.根据权利要求6所述的蓄能器系统,其特征在于,所述电容器(20)与多个基于锂的储能元件(11)串联连接。
8.根据权利要求6或7所述的蓄能器系统,其特征在于,所述第二蓄能器(7)至少包括: 五个基于钛酸锂的储能元件(11)和一个电容器(20 ),特别是双层电容器,或 四个基于磷酸铁锂化合物的储能元件(11)和一个电容器(20),特别是双层电容器。
9.根据前述权利要求中任一项所述的蓄能器系统,其特征在于,在第一蓄能器(6)和第二蓄能器(7)之间连接有二极管(18),特别是准二极管。
10.根据前述权利要求中任一项所述的蓄能器系统,其特征在于,在第一蓄能器(6)和第二蓄能器(7)之间连接有电开关件(16),特别是保险开关。
11.根据前述权利要求中任一项所述的蓄能器系统,其特征在于,所述蓄能器系统构成机动车(2)的车载电网(I)的一部分,其中车载电网(I)包括至少一个发电机(4)和至少一个消耗电流的用电器(5),所述至少一个发电机特别是用于给第一蓄能器(6)和第二蓄能器(7)充 电。
【文档编号】F02N11/08GK103608579SQ201280028675
【公开日】2014年2月26日 申请日期:2012年1月27日 优先权日:2011年4月12日
【发明者】J·温克勒 申请人:奥迪股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1