轴流式涡轮及其运转方法

文档序号:5153548阅读:197来源:国知局
轴流式涡轮及其运转方法
【专利摘要】提供一种轴流式涡轮及其运转方法,在将内燃机的燃烧用空气压缩并将高密度的空气强制性地向所述内燃机的燃烧室内送入的涡轮增压器(10)的气体入口壳体(27)中,在内侧壳体(21)和外侧壳体(22)之间形成的空间形成用于使从所述内燃机排出的废气导向涡轮喷嘴(25)的外周侧的第一废气流路(26)。在所述内侧壳体(21)的内周侧形成用于将在所述第一废气流路(26)的中途分支的废气导向所述涡轮喷嘴(25)的内周侧的第二废气流路(36)。所述第一废气流路(26)的中途和所述第二废气流路(36)的气体入口经由废气管(38)连通,在所述废气管(38)的中途连接有开闭阀(41)。由此,利用简单的构成减少了制造费用和维护费用,并提高了涡轮的性能。
【专利说明】轴流式涡轮及其运转方法
[0001]本申请为2011年3月15日提交的、申请号为201080002632.1的、发明名称为“涡轮增压器”的申请的分案申请。
【技术领域】
[0002]本发明涉及例如与船用内燃机、发电用内燃机等大型内燃机组合使用的涡轮增压器。
【背景技术】
[0003]作为压缩内燃机的燃烧用空气并强制性地将密度高的空气向燃烧室内送入的涡轮增压器,例如周知专利文献I所公开的涡轮增压器。
[0004]专利文献I JP特开2007-64126号公报

【发明内容】

[0005]上述专利文献I所公开的涡轮增压器,是通过使喷嘴叶片(涡轮喷嘴)转动而变更喷嘴开度(喷嘴部的开口面积),从而能够调整向排气涡轮叶轮流入的排气的流速的装置。
[0006]但是,这种涡轮增压器中,需要用于使喷嘴叶片转动的复杂机构,存在制造费用和维护费用提高的问题。另外,这种涡轮增压器中,需要用于使喷嘴叶片转动的间隙,还存在废气从该间隙漏出而导致涡轮的性能下降的问题。而且,这种涡轮增压器中,有可能在用于使喷嘴叶片转动的间隙中进入废气中的粉尘等而使喷嘴叶片不能顺利地转动。
[0007]本发明鉴于上述的问题而创立,其目的在于提供一种具有简单的构成且能够降低制造费用和维护费用并提高涡轮的性能的涡轮增压器。
[0008]本发明为了解决上述课题,采用了以下的手段。
[0009]本发明的第一方式的涡轮增压器,将内燃机的燃烧用空气压缩并将高密度的空气强制性地向所述内燃机的燃烧室内送入,其中,在内侧壳体和外侧壳体之间形成的空间形成用于将从所述内燃机排出的废气导向涡轮喷嘴的外周侧的第一废气流路,在所述内侧壳体的内周侧形成用于将在所述第一废气流路的中途分支的废气导向所述涡轮喷嘴的内周侧的第二废气流路,所述第一废气流路的中途和所述第二废气流路的气体入口经由废气管连通,在该废气管的中途连接有开闭阀。
[0010]本发明的第二方式的涡轮增压器,将内燃机的燃烧用空气压缩并将高密度的空气强制性地向所述内燃机的燃烧室内送入,其中,在内侧壳体和外侧壳体之间形成的空间形成用于将从所述内燃机排出的废气导向涡轮喷嘴的内周侧的第一废气流路,在所述内侧壳体的外周侧形成用于将在所述第一废气流路的中途分支的废气导向所述涡轮喷嘴的外周侧的第二废气流路,所述第一废气流路的中途和所述第二废气流路的气体入口经由废气管连通,在该废气管的中途连接有开闭阀。
[0011]根据本发明的第一方式或第二方式的涡轮增压器,不需要用于使涡轮喷嘴转动的复杂机构,因此能够减少制造费用和维护费用。[0012]另外,在这种涡轮增压器中,也不需要用于使涡轮喷嘴转动的间隙,也没有如现有技术那样废气从该间隙漏出的情况,因此能够提高涡轮的性能。
[0013]而且,在这种涡轮增压器中,也不需要用于使涡轮喷嘴转动的间隙,没有如现有技术那样废气中的粉尘等进入该间隙的情况,因此能够避免不能调整流入涡轮动叶片的排气的流速之类的现象。
[0014]在上述涡轮增压器中,更优选所述内侧壳体和所述外侧壳体作为一体结构而构成。
[0015]根据这种涡轮增压器,不需要用于组合内侧壳体和外侧壳体而使其一体化的构成及组装作业,因此能够进一步减少制造费用和维护费用,能够实现作业工序的简化。
[0016]在上述涡轮增压器中,更优选位于所述涡轮喷嘴一侧的所述内侧壳体的一端内周部为中空圆筒状的另一部件。
[0017]在上述涡轮增压器中,更优选位于所述涡轮喷嘴一侧的所述内侧壳体的一端内周部为中空圆锥状的另一部件。
[0018]根据这种涡轮增压器,在铸型(砂型)的形状上没有细长的部分(形成狭窄间隙的部分),能够使铸型(砂型)的形状为简单的形状,因此能够使铸造工序的脱模容易进行。
[0019]本发明的第三方式的涡轮增压器的运转方法,所述涡轮增压器将内燃机的燃烧用空气压缩并将高密度的空气强制性地向所述内燃机的燃烧室内送入,并且,所述涡轮增压器具备气体入口壳体,在内侧壳体和外侧壳体之间形成的空间形成用于将从所述内燃机排出的废气导向涡轮喷嘴的外周侧的第一废气流路,在所述内侧壳体的内周侧形成用于将在所述第一废气流路的中途分支的废气导向所述涡轮喷嘴的内周侧的第二废气流路,所述第一废气流路的中途和所述第二废气流路的气体入口经由废气管连通,且在该废气管的中途连接有开闭阀,其中,在所述内燃机的负荷低且废气量少的情况下使所述开闭阀为全闭状态,在所述内燃机的负荷高且废气量多的情况下使所述开闭阀为全开状态。
[0020]本发明的第四方式的涡轮增压器的运转方法,所述涡轮增压器将内燃机的燃烧用空气压缩并将高密度的空气强制性地向所述内燃机的燃烧室内送入,并且,所述涡轮增压器具备气体入口壳体,在内侧壳体和外侧壳体之间形成的空间形成用于将从所述内燃机排出的废气导向涡轮喷嘴的内周侧的第一废气流路,在所述内侧壳体的外周侧形成用于将在所述第一废气流路的中途分支的废气导向所述涡轮喷嘴的外周侧的第二废气流路,所述第一废气流路的中途和所述第二废气流路的气体入口经由废气管连通,且在该废气管的中途连接有开闭阀,其中,在所述内燃机的负荷低且废气量少的情况下使所述开闭阀为全闭状态,在所述内燃机的负荷高且废气量多的情况下使所述开闭阀为全开状态。
[0021]根据本发明的第三方式或第四方式的涡轮增压器的运转方法,例如在内燃机的负荷低且废气量少的情况下使开闭阀为全闭状态,在内燃机的负荷高且废气量多的情况下使开闭阀为全开状态。
[0022]S卩,在内燃机的负荷低且废气量少的情况下,从气体入口壳体的气体入口导入的废气的全部量通过废气流路而导向气体出口。导向气体出口的废气从在旋转方向的全周上开口的气体出口被吸入到涡轮喷嘴的外周侧,在通过涡轮动叶片时膨胀而使转子盘和转子轴旋转。
[0023]另一方面,在内燃机的负荷高且废气量多的情况下,从气体入口壳体的气体入口导入的废气的大半(约70?95%)通过第一废气流路导向至气体出口,从气体入口壳体的气体入口导入的废气的一部分(约5?30%)通过废气管、开闭阀、第二废气流路而导向至气体出口。导向气体出口的废气从在旋转方向的全周上开口的气体出口被吸入到涡轮喷嘴的外周侧,导向气体出口的废气从在旋转方向的全周上开口的气体出口被吸入到涡轮喷嘴的内周侧,在通过涡轮动叶片时膨胀而使转子盘和转子轴旋转。
[0024]由此,能够不需要用于使涡轮喷嘴转动的复杂机构,能够减少制造费用和维护费用。
[0025]另外,能够不需要用于使涡轮喷嘴转动的间隙,能够消除如现有技术那样废气从该间隙漏出的情况,能够提高涡轮的性能。
[0026]而且,能够不需要用于使涡轮喷嘴转动的间隙,能够消除如现有技术那样废气中的粉尘等进入该间隙的情况,能够避免不能调整流入涡轮动叶片的排气的流速之类的现象。
[0027]发明效果
[0028]根据本发明的涡轮增压器,取得了如下效果:能够构成简单且降低制造费用和维护费用,并能够提高涡轮的性能。
【专利附图】

【附图说明】
[0029]图1是以剖面表示本发明的第一实施方式的涡轮增压器的、涡轮侧的内部构成例的局部剖面构成图。
[0030]图2是以剖面表示本发明的第二实施方式的涡轮增压器的、涡轮侧的内部构成例的局部剖面构成图。
[0031]图3是以剖面表示本发明的第三实施方式的涡轮增压器的、涡轮侧的内部构成例的局部剖面构成图。
[0032]图4是以剖面表示本发明的第四实施方式的涡轮增压器的、涡轮侧的内部构成例的局部剖面构成图。
【具体实施方式】
[0033]以下,对于本发明的第一实施方式的涡轮增压器(也称为“排气涡轮增压器”。),参照图1进行说明。
[0034]图1是以剖面表示将涡轮和压缩机同轴设置的大型内燃机用的涡轮增压器10的、涡轮侧的内部构成例的局部剖面构成图。
[0035]涡轮增压器10是例如如下构成的轴流式的涡轮:利用导入至轴流式涡轮20的内燃机的废气膨胀得到的轴输出使同轴的压缩机(未图示)旋转,将压缩成高密度的压缩空气向内燃机供给。
[0036]另外,在图1中以格子状的剖面线表示的部分是以绝热和隔音为目的而设置的绝热材料11。
[0037]轴流式涡轮20具备如下构成的气体入口壳体27:通过连结单元(例如双头螺栓23和螺母24)使分体的内侧壳体21和外侧壳体22形成一体,在内侧壳体21和外侧壳体22之间形成的空间作为用于将废气导向涡轮喷嘴25的废气流路(第一废气流路:主废气流路)26。
[0038]这种双层结构的气体入口壳体27中,废气流路26在轴流式涡轮20的旋转方向的全周上形成,从气体入口壳体27的气体入口 27a如图1中箭头Gi所示导入的废气通过废气流路26导向气体出口 27b后,如图1中箭头Go所示从气体出口壳体28的出口向外部排出。另外,气体出口 27b在旋转方向的全周上开口设置以向涡轮喷嘴25供给废气。
[0039]另外,图1中的标号29是在涡轮动叶片30的下游侧设置的气体引导筒。
[0040]另外,轴流式涡轮20具备在转子轴31的一端部设置的转子盘32和在该转子盘32的周缘部沿周方向安装的多个涡轮动叶片30。涡轮动叶片30接近作为涡轮喷嘴25的出口的下游侧设置。并且,从涡轮喷嘴25喷出的高温废气通过涡轮动叶片30而膨胀,从而使转子盘32和转子轴31旋转。
[0041]在上述的双层结构的气体入口壳体27中,内侧壳体21的一端部通过连结单元(例如双头螺栓23和螺母24)固定支承于外侧壳体22的一端部。即,对于内侧壳体21,形成使在作为转子盘32相反一侧的纸面右侧的壳体端部形成的凸缘面21a和与该凸缘面21a相对地形成的外侧壳体22的凸缘面22a重合的状态,在该状态下通过拧紧连结单元(例如螺母24)而进行固定支承。这些凸缘面21a、22a都成为与和转子盘32 —体旋转的转子轴31的轴方向正交的面。
[0042]另外,内侧壳体21的另一端(转子盘32侧的端部)内周部(另一端部内周侧)成为经由螺栓34与中空圆筒状的部件33结合(安装)的结构,在部件33的端面(转子盘32侧的端面)上经由螺栓35而结合(安装)有形成涡轮喷嘴25的环状部件(喷嘴环)的内周侧部件25a。一般称为喷嘴环而形成涡轮喷嘴25的环状部件成为利用分隔部件将具有规定的间隔的内周侧部件25a和外周侧部件25b的环部件之间连结的双层环结构。
[0043]另一方面,形成涡轮喷嘴25的喷嘴环的外周侧部件25b中,气体入口侧(气体出口27b 一侧)的端部内周面25c以喇叭形状扩径。另外,在外侧壳体22的转子盘32侧的端部设有台阶部22b,所述台阶部22b使外侧壳体22的内周面向转子盘32的方向弯曲而形成。并且,构成为该台阶部22b和在喷嘴环25的气体入口侧的端部设置的台阶部25d在轴方向扣合(嵌合)。
[0044]而且,在涡轮喷嘴25的外周侧部件25b上,在作为气体出口侧(涡轮动叶片30 —侦D的端部连结有气体引导筒29。涡轮喷嘴25的外周侧部件25b和气体引导筒29之间的连结部形成使彼此的端部相互嵌合的凹窝结构。
[0045]在本实施方式的内侧壳体21的内周侧(半径方向内侧),将在废气流路26的中途分支的废气导向涡轮喷嘴25的内周侧(半径方向内侧)的废气流路(第二废气流路:副废气流路)36在轴流式涡轮20的旋转方向的全周上形成。该废气流路36设置在废气流路26的内周侧(半径方向内侧),废气流路26和废气流路36被形成内侧壳体21的隔壁(分隔壁)37分隔。
[0046]另外,在内侧壳体21的一端内周部(一端部内周侧)设有用于连接配管(废气管)38的凸缘39,在配管38的中途连接有通过控制装置40而自动地开闭的开闭阀(例如蝶阀)41。并且,在废气流路26的中途分支的废气通过在凸缘39和配管38的内部形成的流路(未图示)而被导向废气流路36。
[004 7]而且,在涡轮喷嘴25的根部侧(内周侧部件25a—侧)设有隔壁(分隔壁)42,该隔壁42的内周面(半径方向内侧的表面)42a与隔壁37的内周面(半径方向内侧的表面)37a形成同一平面,并且该隔壁42将涡轮喷嘴25的内周侧和外周侧分隔。
[0048]另外,在设涡轮喷嘴25的根部的位置(与内周侧部件25a接合的位置)为叶片长度0%、设涡轮喷嘴25的前端的位置(与外周侧部件25b接合的位置)为叶片长度100%时,隔壁42设置在叶片长度约10%的位置。
[0049]这样构成的涡轮增压器10中,例如在内燃机的负荷低且废气量少的情况下使开闭阀41为全闭状态,在内燃机的负荷高且废气量多的情况下使开闭阀41为全开状态。
[0050]S卩,在内燃机的负荷低且废气量少的情况下,从气体入口壳体27的气体入口 27a导入的废气的全部量通过废气流路26而被导向至气体出口 27b。导向至气体出口 27b的废气从在旋转方向的全周开口的气体出口 27b被吸入到涡轮喷嘴25的外周侧(利用外周侧部件25b和隔壁42分隔的空间内),在通过涡轮动叶片30时膨胀而使转子盘32和转子轴31旋转。
[0051]另一方面,在内燃机的负荷高且废气量多的情况下,从气体入口壳体27的气体入口 27a导入的废气的大半(约70?95%)通过废气流路26而被导向气体出口 27b,从气体入口壳体27的气体入口 27a导入的废气的一部分(约5?30%)通过凸缘39、配管38、开闭阀41、废气流路36而被导向气体出口 36a。导向气体出口 27b的废气从在旋转方向的全周上开口的气体出口 27b被吸入到涡轮喷嘴25的外周侧(利用外周侧部件25b和隔壁42分隔的空间内),导向气体出口 36a的废气从在旋转方向的全周上开口的气体出口 36a被吸入到涡轮喷嘴25的内周侧(利用内周侧部件25a和隔壁42分隔的空间内),在通过涡轮动叶片30时膨胀而使转子盘32和转子轴31旋转。
[0052]并且,通过使转子盘32和转子轴31旋转,驱动在转子轴31的另一端部设置的压缩机(未图示),将供给到内燃机的空气压缩。
[0053]另外,由压缩机压缩的空气通过过滤器(未图示)而被吸入,通过涡轮动叶片30膨胀的废气被导向气体出口引导筒29和气体出口壳体28而向外部流出。
[0054]另外,对于开闭阀41,例如在从压缩机送出(排出)的空气的压力、或向内燃机的燃烧室供给的空气的压力以绝对压力计低于0.2MPa (2bar)的情况下,即在内燃机低负荷运转的情况下,使开闭阀41为全闭状态,在从压缩机送出(排出)的空气的压力、或向内燃机的燃烧室供给的空气的压力以绝对压力计为0.2MPa (2bar)以上的情况下,即在内燃机高负荷运转的情况下,使开闭阀41为全开状态。
[0055]根据本实施方式的涡轮增压器10,不需要用于使涡轮喷嘴25转动的复杂的机构,因此能够减少制造费用和维护费用。
[0056]另外,在这种涡轮增压器10中,也不需要用于使涡轮喷嘴25转动的间隙,也不存在像现有结构那样从该间隙漏出废气的情况,因此能够提高涡轮的性能。
[0057]而且,在这种涡轮增压器10中,也不需要用于使涡轮喷嘴25转动的间隙,不存在像现有结构那样废气中的粉尘等进入该间隙的情况,因此能够避免不能调整向涡轮动叶片30流入的排气的流速之类的现象。
[0058]另外,为了易于进行铸造工序的脱模,内侧壳体21形成二分割结构,即,使内侧壳体21的另一端内周部为另一部件(部件33),并经由螺栓34将该部件33结合的结构。
[0059]并且,形成这种废气的流路的双层结构的气体入口壳体27中,废气与内侧壳体21和外侧壳体22两方直接接触而流动,因此内侧壳体21和外侧壳体22从废气受到的热影响没有产生差别。因此,不会在内侧壳体21和外侧壳体22之间产生大的热膨胀差,作用于轴流式涡轮20的构成零件的热应力较小,容易维持适当的涡轮间隙。
[0060]由此,在轴流式涡轮20和涡轮增压器10中,缓和了考虑到热膨胀差的困难的设计,并且提高了性能和可靠性。
[0061]另外,在内侧壳体21和外侧壳体22之间没有大的温度差的双层壳体结构中,半径方向的热延伸得以均一化,因此能够形成上述的涡轮喷嘴25和气体引导筒29的凹窝结构。这种凹窝结构,不仅能够提高嵌合部的密封性而防止气体泄漏,而且在维护等中进行轴流式涡轮20的组装、开放时,凹窝部成为弓I导件而使作业容易。
[0062]并且,双层结构的废气流路26、36在涡轮旋转方向的全周上设置,在内侧壳体21和外侧壳体22双方没有无用的部件,因此也能够使气体入口壳体27轻量化。
[0063]对于本发明的第二实施方式的涡轮增压器(也称为“排气涡轮增压器”),参照图2进行说明。
[0064]图2是以剖面表示将涡轮和压缩机同轴设置的大型内燃机用涡轮增压器50的涡轮侧内部构成例的局部剖面构成图。
[0065]如图2所示,本实施方式的涡轮增压器50取代气体入口壳体27而具备气体入口壳体51,在这一点上与上述第一实施方式的结构不同。对于其他的构成要素与上述的第一实施方式的结构相同,因此在此处省略对于这些构成要素的说明。
[0066]另外,对于与上述第一实施方式相同的部件标注同一标号。
[0067]气体入口壳体51是在第一实施方式中说明的内侧壳体21和外侧壳体22作为一体结构而铸造成形的部件。因此,本实施方式中,不需要在第一实施方式中说明的凸缘面21a、22a、双头螺栓23和螺母24,不需要组合内侧壳体21和外侧壳体22而使其一体化之类的组装作业。
[0068]根据本实施方式的涡轮增压器50,能够进一步减少制造费用和维护费用,能够实现在维护等进行轴流式涡轮20的组装、开放时的作业工序的简化。
[0069]其他的作用效果与上述的第一实施方式的作用效果相同,因此在此处省略其说明。
[0070]另外,上述的涡轮增压器10、50不是仅与船用内燃机、发电用内燃机等大型内燃机组合而使用,还能够与其他各种内燃机组合而使用。
[0071]对于本发明的第三实施方式的涡轮增压器(也称为“排气涡轮增压器”。),参照图3进行说明。
[0072]图3是以剖面表示将涡轮和压缩机同轴设置的小型内燃机用的涡轮增压器60的涡轮侧的内部构成例的局部剖面构成图。
[0073]如图3所示,本实施方式的涡轮增压器60在取代轴流式涡轮20而具备轴流式涡轮70这一点上与上述的第一实施方式不同。对于其他的构成要素与上述的第一实施方式相同,因此在此处对于这些构成要素省略说明。
[0074]另外,对与上述第一实施方式相同的部件标注同一标号。
[0075]轴流式涡轮70具备如下构成的气体入口壳体77:通过连结单元(例如双头螺栓23和螺母24 (参照图1))使分体的内侧壳体71和外侧壳体72形成一体,在内侧壳体71和外侧壳体72之间形成的空间作为用于将废气导向至涡轮喷嘴25的废气流路(第二废气流路:副废气流路)76。
[0076]这种双层结构的气体入口壳体77中,废气流路76在轴流式涡轮60的旋转方向的全周上形成,从气体入口壳体77的气体入口 77a如图3中箭头Gi所示导入的废气通过废气流路76而被导向气体出口 77b后,如图3中箭头Go所示从气体出口壳体28的出口向外部排出。另外,气体出口 77b在旋转方向的全周上开口设置以向涡轮喷嘴25供给废气。
[0077]另外,在内侧壳体71的一端(转子盘32侧的端部)内周部(一端部内周侧)上设有中空圆锥状的部件78,在部件78的端面(转子盘32侧的端面)上经由螺栓35和紧固件79而结合(安装)形成涡轮喷嘴25的环状部件(喷嘴环)的内周侧部件25a。
[0078]在本实施方式的内侧壳体71的内周侧(半径方向内侧),将从气体入口 77a导入的废气导向涡轮喷嘴25的内周侧(半径方向内侧)的废气流路(第一废气流路:主废气流路)80在轴流式涡轮60的旋转方向的全周上形成。该废气流路80在废气流路76的内周侧(半径方向内侧)设置,废气流路76和废气流路80被形成内侧壳体71的隔壁(分隔壁)37分隔。
[0079]另外,在内侧壳体71的长度方向的中央部外周侧设有用于连接配管(废气管)38的一端的凸缘39,在外侧壳体72的一侧部设有用于连接配管38的另一端的凸缘39,在配管38的中途连接有通过控制装置40而自动地开闭的开闭阀(例如蝶阀)41。并且,在废气流路80的中途分支的废气通过在凸缘39和配管38的内部形成的流路(未图示)而导向废气流路76。
[0080]而且,在涡轮喷嘴25的前端侧(外周侧部件25b —侧)设有隔壁(分隔壁)81,该隔壁81的外周面(半径方向外侧的表面)81a与隔壁37的外周面(半径方向外侧的表面)37b形成同一平面,并且该隔壁81将涡轮喷嘴25的内周侧和外周侧分隔。
[0081]另外,在设涡轮喷嘴25的根部的位置(与内周侧部件25a接合的位置)为叶片长度0%、设涡轮喷嘴25的前端的位置(与外周侧部件25b接合的位置)为叶片长度100%时,隔壁81设置在叶片长度约90%的位置。
[0082]这样构成的涡轮增压器60中,例如在内燃机的负荷低且废气量少的情况下使开闭阀41为全闭状态,在内燃机的负荷高且废气量多的情况下使开闭阀41为全开状态。
[0083]S卩,在内燃机的负荷低且废气量少的情况下,从气体入口壳体77的气体入口 77a导入的废气的全部量通过废气流路80被导向至气体出口 77b。被导向气体出口 77b的废气从在旋转方向的全周开口的气体出口 77b被吸入到涡轮喷嘴25的内周侧(利用内周侧部件25a和隔壁81分隔的空间内),在通过涡轮动叶片30时膨胀而使转子盘32和转子轴31旋转。
[0084]另一方面,在内燃机的负荷高且废气量多的情况下,从气体入口壳体77的气体入口 77a导入的废气的大半(约70?95%)通过废气流路80被导向至气体出口 77b,从气体入口壳体77的气体入口 77a导入的废气的一部分(约5?30%)通过凸缘39、配管38、开闭阀41、废气流路76而被导向气体出口 76a。被导向气体出口 77b的废气从在旋转方向的全周上开口的气体出口 77b被吸入到涡轮喷嘴25的内周侧(利用内周侧部件25a和隔壁81分隔的空间内),被导向气体出口 76a的废气从在旋转方向的全周上开口的气体出口 76a被吸入到涡轮喷嘴25的外周侧(利用外周侧部件25b和隔壁81分隔的空间内),在通过涡轮动叶片30时膨胀而使转子盘32和转子轴31旋转。[0085]并且,通过使转子盘32和转子轴31旋转,驱动在转子轴31的另一端部设置的压缩机(未图示),将供给到内燃机的空气压缩。
[0086]另外,由压缩机压缩的空气通过过滤器(未图示)而被吸入,通过涡轮动叶片30膨胀的废气被导向气体出口引导筒29和气体出口壳体28而向外部流出。
[0087]另外,对于开闭阀41,例如在从压缩机送出(排出)的空气的压力、或向内燃机的燃烧室供给的空气的压力以绝对压力计低于0.2MPa (2bar)的情况下,即在内燃机低负荷运转的情况下,使开闭阀41为全闭状态,在从压缩机送出(排出)的空气的压力、或向内燃机的燃烧室供给的空气的压力以绝对压力计为0.2MPa (2bar)以上的情况下,即在内燃机高负荷运转的情况下,使开闭阀41为全开状态。
[0088]本实施方式的涡轮增压器60的作用效果与上述的第一实施方式的作用效果相同,因此在此处省略其说明。
[0089]对于本发明的第四实施方式的涡轮增压器(也称为“排气涡轮增压器”。),参照图4进行说明。
[0090]图4是以剖面表示将涡轮和压缩机同轴设置的小型内燃机用的涡轮增压器90的涡轮侧的内部构成例的局部剖面构成图。
[0091]如图4所示,本实施方式的涡轮增压器90在取代轴流式涡轮70而具备轴流式涡轮100这一点上与上述的第三实施方式不同。对于其他的构成要素与上述的第三实施方式相同,因此在此处对于这些构成要素省略说明。
[0092]另外,对与上述的第三实施方式相同的部件标注同一标号。
[0093]轴流式涡轮100具备如下构成的气体入口壳体107:通过连结单元(例如双头螺栓23和螺母24(参照图1))使分体的内侧壳体101和外侧壳体102形成一体,在内侧壳体101和外侧壳体102之间形成的空间作为用于将废气导向至涡轮喷嘴25的废气流路(第二废气流路:副废气流路)76。
[0094]这种双层结构的气体入口壳体107中,废气流路76在轴流式涡轮100的旋转方向的全周上形成,从气体入口壳体107的气体入口 107a如图4中箭头Gi所示导入的废气通过废气流路76而被导向气体出口 107b后,如图4中箭头Go所示从气体出口壳体28的出口向外部排出。另外,气体出口 107b在旋转方向的全周上开口设置以向涡轮喷嘴25供给废气。
[0095]另外,在内侧壳体101的一端(转子盘32侧的端部)内周部(一端部内周侧)上设有中空圆锥状的部件108,在部件108的端面(转子盘32侧的端面)上经由螺栓35和紧固件79而结合(安装)形成涡轮喷嘴25的环状部件(喷嘴环)的内周侧部件25a。
[0096]在本实施方式的内侧壳体101的内周侧(半径方向内侧),将从气体入口 107a导入的废气导向涡轮喷嘴25的内周侧(半径方向内侧)的废气流路(第一废气流路:主废气流路)80在轴流式涡轮100的旋转方向的全周上形成。该废气流路80在废气流路76的内周侧(半径方向内侧)设置,废气流路76和废气流路80被形成内侧壳体101的隔壁(分隔壁)37分隔。
[0097]另外,在内侧壳体101的一端侧的一侧部设有用于连接通过控制装置40自动地开闭的开闭阀(例如蝶阀)41的凸缘39,在外侧壳体102的一侧部设有用于连接配管38的另一端的凸缘39,配管(废气管)38的一端连接于开闭阀41。并且,在废气流路80的中途分支的废气通过在凸缘39和配管38的内部形成的流路(未图示)被导向废气流路76。
[0098]这样构成的涡轮增压器90中,例如在内燃机的负荷低且废气量少的情况下使开闭阀41为全闭状态,在内燃机的负荷高且废气量多的情况下使开闭阀41为全开状态。
[0099]S卩,在内燃机的负荷低且废气量少的情况下,从气体入口壳体107的气体入口107a导入的废气的全部量通过废气流路80被导向气体出口 107b。被导向至气体出口 107b的废气从在旋转方向的全周上开口的气体出口 107b被吸入到涡轮喷嘴25的内周侧(利用内周侧部件25a和隔壁81分隔的空间内),在通过涡轮动叶片30时膨胀而使转子盘32和转子轴31旋转。
[0100]另一方面,在内燃机的负荷高且废气量多的情况下,从气体入口壳体107的气体入口 107a导入的废气的大半(约70?95%)通过废气流路80导向至气体出口 107b,从气体入口壳体107的气体入口 107a导入的废气的一部分(约5?30% )通过凸缘39、配管38、开闭阀41、废气流路76而导向至气体出口 76a。导向气体出口 107b的废气从在旋转方向的全周上开口的气体出口 107b被吸入到涡轮喷嘴25的内周侧(利用内周侧部件25a和隔壁81分隔的空间内),导向气体出口 76a的废气从在旋转方向的全周上开口的气体出口 76a被吸入到涡轮喷嘴25的外周侧(利用外周侧部件25b和隔壁81分隔的空间内),在通过涡轮动叶片30时膨胀而使转子盘32和转子轴31旋转。
[0101]并且,通过使转子盘32和转子轴31旋转,驱动在转子轴31的另一端部设置的压缩机(未图示),将供给到内燃机的空气压缩。
[0102]本实施方式的涡轮增压器90的作用效果与上述的第一实施方式的作用效果相同,因此在此处省略其说明。
[0103]另外,上述的涡轮增压器60、90不是仅与船用内燃机、发电用内燃机等小型内燃机组合而使用,还能够与其他各种内燃机组合而使用。
[0104]另外,本发明不限于上述的实施方式,在不脱离本发明的主旨的范围内能够适宜进行变更。
[0105]而且,上述的实施方式中,以如下情况为例进行了说明:在内燃机的负荷低且废气量少的情况下使开闭阀41为全闭状态,而在内燃机的负荷高且废气量多的情况下使开闭阀41为全开状态,即将开闭阀41在全开位置或全闭位置中任一位置下使用的情况。但是,本发明不限于此,例如也可以是控制装置40按照内燃机的负荷调整开闭阀41的开度。SP,也可以是如下情况:在内燃机的负荷处于第一规定值以下的低负荷区域的情况下使开闭阀41为全闭状态,在内燃机的负荷超过大于第一规定值的第二规定值而处于高负荷区域的情况下使开闭阀41为全开状态,在内燃机的负荷超过第一规定值且处于第二规定值以下的中负荷区域的情况下,控制装置40按照内燃机的负荷例如使开闭阀41的开度线性地变化。
[0106]由此,能够使涡轮增压器10、50、60、90的转速按照内燃机的负荷无级且细致地变化,能够更有效地防止涡轮增压器10、50、60、90的喘振、振动。
[0107]另外,包括配管38和开闭阀41的气体入口壳体27、51、77、107不仅可应用于图1至图4中任一个所示的轴流式涡轮20、70、100、及涡轮增压器10、50、60、90,还能够应用于离心式/斜流式的涡轮、动力涡轮等旋转机械。
[0108]标号说明
[0109]10涡轮增压器[0110]21内侧壳体
[0111]22外侧壳体
[0112]25涡轮喷嘴
[0113]26废气流路(第一废气流路)
[0114]33 部件
[0115]36废气流路(第二废气流路)
[0116]38配管(废气管)
[0117]41开闭阀
[0118]50涡轮增压器
[0119]60涡轮增压器
[0120]71内侧壳体
[0121]72外侧壳体
[0122]76废气流路(第二废气流路)
[0123]78 部件
[0124]80废气流路(第一废气流路)
[0125]90涡轮增压器
[0126]101内侧壳体
[0127]102外侧壳体
[0128]108 部件
【权利要求】
1.一种轴流式涡轮,被从内燃机排出的废气驱动旋转,其特征在于, 在内侧壳体与外侧壳体之间形成的空间形成用于将从所述内燃机排出的所述废气导向涡轮喷嘴的外周侧的第一废气流路, 在所述内侧壳体的内周侧形成用于将在所述第一废气流路的中途分支的废气导向所述涡轮喷嘴的内周侧的第二废气流路, 所述第一废气流路的中途和所述第二废气流路的气体入口经由废气管连通,且在该废气管的中途连接有开闭阀。
2.一种轴流式涡轮,被从内燃机排出的废气驱动旋转,其特征在于, 在内侧壳体的内周侧形成的空间形成用于将从所述内燃机排出的所述废气导向涡轮喷嘴的内周侧的第一废气流路, 在所述内侧壳体与外侧壳体之间形成的空间形成用于将在所述第一废气流路的中途分支的废气导向所述涡轮喷嘴的外周侧的第二废气流路, 所述第一废气流路的中途和所述第二废气流路的气体入口经由废气管连通,且在该废气管的中途连接有开闭阀。
3.一种轴流式涡轮的运转方法, 所述轴流式涡轮具备气体入口壳体, 所述气体入口壳体构成为在内侧壳体与外侧壳体之间形成的空间形成用于将从内燃机排出的废气导向涡轮喷嘴的外周侧的第一废气流路, 在所述内侧壳体的内周侧形成用于将在所述第一废气流路的中途分支的废气导向所述涡轮喷嘴的内周侧的第二废气流路, 所述第一废气流路的中途和所述第二废气流路的气体入口经由废气管连通,且在该废气管的中途连接有开闭阀,所述轴流式涡轮的运转方法的特征在于, 在所述内燃机的负荷低且废气量少的情况下使所述开闭阀为全闭状态,在所述内燃机的负荷高且废气量多的情况下使所述开闭阀为全开状态。
4.一种轴流式涡轮的运转方法, 所述轴流式涡轮具备气体入口壳体, 所述气体入口壳体构成为在内侧壳体的内周侧形成的空间形成用于将从内燃机排出的废气导向涡轮喷嘴的内周侧的第一废气流路, 在所述内侧壳体与外侧壳体之间形成的空间形成用于将在所述第一废气流路的中途分支的废气导向所述涡轮喷嘴的外周侧的第二废气流路, 所述第一废气流路的中途和所述第二废气流路的气体入口经由废气管连通,且在该废气管的中途连接有开闭阀,所述轴流式涡轮的运转方法的特征在于, 在所述内燃机的负荷低且废气量少的情况下使所述开闭阀为全闭状态,在所述内燃机的负荷高且废气量多的情况下使所述开闭阀为全开状态。
【文档编号】F01D25/24GK103850732SQ201410050313
【公开日】2014年6月11日 申请日期:2010年2月8日 优先权日:2009年2月18日
【发明者】白石启一 申请人:三菱重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1