用于风力涡轮机推力限制的系统的制作方法

文档序号:12286139阅读:255来源:国知局
用于风力涡轮机推力限制的系统的制作方法与工艺

本发明涉及一种用于风力涡轮机推力限制的控制系统,所述风力涡轮机包括至少一个塔架,所述塔架携带至少一个吊舱,所述吊舱包括一个旋转轴,所述轴通过一个或多个叶片旋转,所述叶片通过螺距控制系统进行螺距调节。



背景技术:

WO 2011/042369公开了一种控制风力涡轮机的方法,在所述方法中测定风力涡轮机的可控参数的控制信号,并且在时间间隔估计风力涡轮机的转子功率系数、转矩系数和/或推力系数。由此确定反映估计的转子功率系数、转矩系数和/或推力系数随着时间的变化的变化参数。那么只要变化参数超过警报阈值就根据控制信号控制风力涡轮机,并且在其他时候根据修改的控制策略来控制。控制信号可具有用于控制涡轮机的旋转速度的功率或转矩参考信号,或者叶片螺距参考信号。修改的控制方法可例如需要停止或调降风力涡轮机。还公开了一种被构造来执行以上方法的控制系统和一种包括此类系统的风力涡轮机。本文件在第5页第9-30行公开了“直接基于测量或估计的风速的控制方法可类似地为不准确且不适合的,因为那么控制仅基于空间内的一点的风速并且因为此参数的变化不能反映整体风速的类似变化”。

发明目的

本发明的目的为减小风力涡轮机的机械负荷和应力。另一个目的为减小风力涡轮机的塔架上的最大负荷。



技术实现要素:

所述目的可通过一种如权利要求1的前言所公开的系统来满足并且通过一种执行螺距角控制的推力限制控制系统来进一步修改,所述推力限制控制系统基于至少来自风估计器的第一输入和来自湍流估计器的第二输入来执行螺距角的调节,所述第一输入和第二输入被组合来形成输出(54),所述输出(54)被传送至减法功能,其中表示估计的推力的信号从所述信号中减去,所述减法功能生成另一个信号,所述另一个信号被发送通过后处理功能,以生成用于执行风力涡轮机的推力限制的信号。

通过推力限制控制,塔架、叶片、或者也可能是吊舱上的最大机械负荷的减小可通过相对高百分比的负荷以它对风力涡轮机的功率产生仅具有极有限的影响的方式来实现。通过测量和分析螺距控制的风力涡轮机,发现塔架上的最大负荷不是由最大风速引起的,而实际上是由调节范围内的风速引起的,在所述调节范围内螺距调节开始对功率产生有影响。通常,这在8-12米/秒的风速范围内发生,因为在风强于此范围的情况下,通过调节螺距来执行功率产生的下调。通过更高的风速,螺距调节或多或少完美地控制了负荷并且没有峰值推力负荷出现,甚至在最大风速下都没有出现,所述最大风速是风力涡轮机执行安全关闭时的速度,通常为25米/秒。推力限制的控制高度有效地工作,因为不同参数的输入是可能的。通过本发明的第一个可能的实施方案中,所述推力限制的控制系统使用来自风估计器的数据和来自湍流估计器的输入运行,所述数据在给定情况下计算最大风速,因为最大推力将以来自这两个参数的负荷的组合来实现。通过相对高的风速和高湍流强度,此湍流将向所述推力增加正效应和负效应。因此,通过湍流活动,必需通过调节螺距角来执行推力的有效限制。当然,对于推力限制,大量参数对于实现最大效应具有影响,其中推力在大量不同的运行情况下减小。不仅塔架受到最大负荷的压力,而且板受到最大推力的高度影响。通过本发明,可以在极小产生区域内执行推力剪切并且以该方式获得在风力涡轮机中测量的最大推力的极大减小。所述系统可通过各种运行模式来执行,仅因为通过极弱负荷,不需要任何推力限制,并且在最大负荷的情况下,存在的安全机制也将提供推力限制。因此,本发明对于风速的平均范围为高度有效的。

通过本发明的另一个优选实施方案,风估计器可接收来自叶片间平均螺距角的测量值的第三输入,所述风估计器接收来自由转矩控制器设定的发生器转矩参考的第四输入,其中所述风估计器接收来自所测量的发生器角速度的第五输入。由此可实现的是来自运行的风力涡轮机的其他参数用作推力限制系统的输入。还明显地使用来自例如转矩控制器的数据,因为此类数据存在于大部分风力涡轮机中。而且发生器的角速度为已经存在于风力涡轮机的控制系统中的参数。因此,通过将这两个关键性参数组合,可实现的是推力限制的系统可以是更有效的。

通过本发明的另一个优选实施方案,风估计器的第六输入可从转子惯性加速度来推导。特此,可获得用于风力涡轮机推力限制的另一个参数的实际转子惯性加速度。

通过本发明的另一个优选实施方案,湍流估计器接收来自所测量的吊舱首尾加速度的第六输入。特此,可实现的是来自置于例如吊舱内的加速计或者可能是来自直接置于塔架内的加速计的其他信号可对推力限制过程具有影响。

通过本发明的另一个优选的实施方案,风估计器可基于所估计的转子平均风速来生成第一内部信号,所述第一内部信号被传送至湍流估计器和条件适应性推力限制器系统。通过使用不同计算模块的相同输入,所述系统可以进一步处理数据并且还可能减小数据段的影响。

通过本发明的另一个优选实施方案,推力限制系统可包括至少以下运行活动,诸如条件适应性推力限制器前馈功能,所述条件适应性推力限制器前馈功能接收来自基于所估计转子平均风速的第一内部信号的输入和来自所测量发生器角速度的输入,所述前馈功能具有一个输出。通过使用前馈调节,可以加速调节过程,以使得推力限制可在已检测到参数变化后非常快速地执行。特别是平均风速和发生器角速度的组合给出一些参数,所述参数如果以一种关键方式改变则需要非常快的操作。

通过本发明的另一个优选实施方案,所述控制系统还可包括安全模式开关功能,所述安全模式开关功能接收控制推力限制的输入,所述安全模式开关功能进一步接收来自由湍流检测器给出的湍流标度推力限制器的输入,所述安全模式开关功能基于所述输入生成一个输出,所述输出被传送至条件适应性推力限制器前馈功能。特此,可实现的是如果已经存在的安全开关启动成安全模式,则此安全模式立即对推力限制器前馈功能具有影响,因为由于安全开关已启动,螺距角的快速变化可能是必需的。因此,推力减小可以是必需的。

通过本发明的另一个优选实施方案,所述输出可被传送至减法功能,其中表示估计的推力的信号从所述信号中减去,所述减法功能生成一个信号,所述信号被发送通过后处理功能,以生成一个信号。特此,可实现的是表示或多或少相同的参数的不同信号对调节具有减小的影响,因为它们的值彼此相减。

通过本发明的另一个优选实施方案,信号可被传送至PID控制功能,所述PID控制功能进一步接收来自前馈功能的输出的输入,所述PID控制功能进一步接收来自叶片间平均螺距角的测量值的输入,所述PID控制功能生成一个输出。向此输出,添加用于形成表示最小螺距角的信号的信号。特此,可实现的是这些信号进一步被传送至PID调节,并且然后这些信号为直接用于调节螺距角的信号。特此,获得一种在风力涡轮机中具有多个测量的参数的高度有效的推力限制系统。所有这些输入参数在内部计算;一些参数在现有控制模块中处理,其他参数在新的推力限制模块中处理。然而,总之,获得高度有效且可减小在塔架、吊舱和转子上的额外负荷的风力涡轮机的推力限制。

等待审批的专利申请还公开了一种适用于如先前描述中所公开的风力涡轮机推力限制的方法,由此所述方法公开了至少以下操作步骤:

a.接收来自风估计器的第一输入,

b.接收来自湍流估计器的第二输入,

c.将第一输入信号和第二输入信号组合以形成一个输出,

d.执行从所述输出信号中减去表示所估计推力的信号,

e.生成一个信号,所述信号被发送通过后处理功能,以用于生成用于执行风力涡轮机的推力限制的信号。

特此,有效推力限制可基于风力涡轮机中的许多测量的参数来执行;在本专利申请中未公开的其他参数可并入推力限制方法中。

在下文中,描述了湍流标度的条件适应性推力限制器的一个可能的实施方案。湍流标度的条件适应性推力限制器为控制器中限制可允许的最小螺距角以限制最大运行转子推力的特征件。存在若干推力相关外部条件,所述外部条件需要在叶片设计负荷可减小之前为负荷减轻的。这是条件适应性推力限制器本身的动机。然而,它将一直是有利于将此推力限度设定低的负荷,这将引起年度能源生产(AEP)减少。在一定程度上,所得AEP减少通过基于负荷指示器放大推力限度来补充。

涡轮机被配备有管理涡轮机运行的控制系统(这些运行为螺距、功率和速度)。控制器关于螺距和功率的行为(运行策略)管理转子上的运行推力。

以最佳功率轨迹运行的涡轮机在额定工作中将经历高且陡峭的推力峰值。在主要部件上的一些负荷主要与具体地说转子推力、叶片和塔架相关联,因此这些部件将被设计来经受住此推力峰值的极端外部事件。峰值推力与部件上的负荷之间的相关性为用于开发推力限制的控制特征件的主要动机。除与高平均推力相关的极端负荷之外,推力的陡峭峰值还将影响疲劳负荷,尤其是塔架的疲劳负荷。这是由于湍流,所述湍流将重复地驱动推力超过推力峰值,因此引起过量的推力疲劳负荷。

为了限制最大运行推力,控制策略以测定可允许的最小螺距角的方式进行修改。

条件适应性推力限制器本身由几种子功能组成:

-使用螺距、功率转子速度、转子加速度、转子惯性来估计转子风,

-基于转子风和转子的气动模型,估计转子推力,

-基于推力估值和推力限度(通过湍流标度设定),计算推力误差,

-在PID控制器中使用推力误差,当所估计推力高于由湍流标度设定的推力限度时所述控制器将叶片去掉,

-还在前馈功能中使用推力估值,所述前馈功能基于气动模型计算预期的螺距角,所述螺距角将推力估值保持低于由湍流标度设定的限度。

以上列出的条件适应性推力限制器将能够限制最大运行推力。高频湍流驱动的转子推力超过所述限度的波动将不能完全去除。此推力限制的控制方法根据现有湍流水平的估值来进行标度。这允许条件适应性推力限制器在高湍流情况下具有低推力限度并且在低湍流中具有高推力限度。与无湍流标度的条件适应性推力限制器相比,此行为的增加增大了低湍流中的功率产生。标度必需被实现来使得在低湍流情况下极端负荷仍得到控制,在所述情况下平均推力随着标度而增加。

所述标度由以下组成:

-使用螺距、功率和转子速度以及转子空气动力学的知识和系统中的损失来估计转子风

-测量塔架顶部中的吊舱首尾加速度

为了评价涡轮机运行条件,在转子上施用的风力必须为已知的。这通过估计转子平均风速的风估计器来获得,从而产生与轮毂高度风速计相比可靠的风“测量值”。此估计的转子平均风速将被供应至用于推力限制控制的涡轮机推力估计和用于标度所施用推力限度的湍流估计,这取决于涡轮机运行的风湍流条件。

风估计器的不同设计是可能的。风估计器的一般概念为使用转子空气动力学行为模型估计穿过转子的风的代表性风速。这使用涡轮机螺距、功率和转子速度的主要运行参数的知识来进行。

至少以下参数可用于风估计器:

1.侧转误差灵敏度。因为风估计器基于螺距、功率和转子速度来‘感测’所得/代表性风,所以它将不能区分低风与高侧转误差中的运行。

2.空气动力学变化灵敏度。由于频繁使用气动模型估计风,所以估计器将对模型中的变化敏感。此类变化可源自各种来源,包括结冰、污垢、螺距误差或改变转子特征的其他现象。

3.密度相关性。转子功率/转矩与空气密度成线性比例。目前这作为风估计器中的参数包括在内,但是直接包括此作为输入。那么挑战为准确估计空气密度。根据环境改变的变量,针对空气密度的灵敏度相当高。随着时间变化的唯一的另一参数是由于叶片上的冰、磨耗及损伤等引起的。这可通过在组合控制系统中包括空气密度测量来减轻。

附图说明

图1示出关于静电发生器功率的曲线。

图2示出显示静推力的曲线。

图3示出包括推力限制功能的框图。

图4示出指示推力限制功能可能的公开内容的框图。

图5示出风力涡轮机。

具体实施方式

图1示出指示风速对比功率的一条可能的曲线。在曲线处,可看出以下所公开的发明对所生成的功率具有极有限的影响。仅在极小风速窗口内存在一些变化。这表明推力限制系统将仅减少此极有限区域内的功率产生,并且在此影响小于1百分比的功率产生。

图2反而指示风速对比推力。两条曲线指示最大推力通过仅超过10米/秒的风速来获得。上曲线指示由下曲线减小的峰值。下曲线指示活动推力限制,因为螺距具有另外的优点,诸如仅具有少量二次负荷变化的反应速度和转动选项。反应时间为推力限制控制特征的动机,以便减小推力峰值,并且以便减小与极端外部事件相关的负荷。由于反应时间,螺距减小推力的轻微变化仅对这样的系统的功率产生具有极有限的影响。因此,在功率产生仅具有极小变化的情况下,执行推力限制,但是因为在其中风力涡轮机通常运行大部分时间的区域内执行推力限制,即在约10米/秒的范围内,推力限制可对例如塔架或者也可能是整体转子系统上的总负荷具有主要影响。以这种方式,减小塔架以及也可能是叶片上的机械应力。

图3指示包括推力限制功能2的系统。此限制功能接收来自风估计器20的第一输入18。第二输入21通过湍流估计器22来生成。信号21控制功率减小和推力减小的水平。此风估计器20具有基于叶片间平均螺距角的测量值的第一输入26。另外,风估计器20接收来自发生器转矩参考的输入30。另外,风估计器20接收来自所测量发生器角速度的输入34。风估计器20生成发送至湍流估计器22并直接发送至条件适应性推力限制器2的输出40。湍流估计器22接收基于所测量吊舱首尾加速度的输入36。

如图3可看出的,存在多个信号输入,所述信号输入用作风估计器20和湍流估计器22的输入,所述输入用于条件适应性推力限制器,所述条件适应性推力限制器具有输出27,所述输出27为控制实际螺距位置的信号。

图4示出条件适应性推力限制器2的更详细公开内容。条件适应性推力限制器2包括至少条件适应性推力限制器前馈功能42、软安全开关48、后处理程序60以及PI控制器64。条件适应性推力限制器接收由图3中可见的风估计器20所生成的输入40。另外,条件适应性推力限制器前馈功能42接收表示所测量发生器角速度的另一个输入34。另外,安全模式开关48可具有第一输入50,所述输入可控制推力限制功能。以这种方式,可从外部控制器启动或关闭推力限制系统。另外,安全模式开关接收由湍流检测器所给予的来自湍流标度的条件适应性推力限制器的输入52。安全模式开关48具有输出54,所述输出54首先被传送至条件适应性推力限制器前馈功能42,并进一步传送至减法功能56。在此,信号59表示从来自安全模式开关48的信号54中减去的估计的推力。特此,生成被传送至后处理模块60的新信号58。此模块生成信号62。此信号被发送至PI控制器64。此PI控制器进一步接收由条件适应性推力限制器前馈模块42生成的输入46。另外,信号26表示也发送至PI控制器的叶片间平均螺距角的测量值。PI控制器具有发送至加法器70的输出68,在所述加法器70中由条件适应性推力限制器前馈模块42所生成的信号46被添加至信号46,从而生成用于控制螺距位置的输出信号72。

图5示出包括塔架6、吊舱8和具有叶片12的转子的风力涡轮机4。另外,指示功率和螺距控制系统14。

通过本发明,可以减小在塔架6和在旋转系统12处的最大推力。本发明的优点在于可执行推力的这种减小。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1