提供扭矩辅助的方法和系统与流程

文档序号:11260362阅读:215来源:国知局
提供扭矩辅助的方法和系统与流程

本发明涉及一种提供扭矩辅助至内燃发动机的旋转轴的方法,并且尤其是,但非唯一地,涉及提供扭矩辅助至涡轮增压内燃发动机。



背景技术:

很大一部分的车辆发动机装备有改进性能以及燃料效率和排放水平的涡轮增压器。装备有涡轮增压器的发动机通常包含废气再循环(egr)系统,该系统通过使一部分废气再循环返回至发动机的进气口来进一步减少排放值。在低压egr(lp-egr)系统中,废气被再引入涡轮增压器压缩机进气口的上游。在该位置的压力是低的,即使在高发动机增压情况下,其也允许废气的低压再循环。相反,在高压egr(hp-egr)系统中,废气被再引入涡轮增压器压缩机出气口的下游并因此废气必须在更高压力下再循环。一些车辆装备有双涡轮增压器,其串联工作以增加进气的压力并且使废气再循环。高压egr气体可被再引入第二压缩机的上游或下游。为了控制egr气体的流动,egr系统可具有配置为控制将egr再引入返回至发动机的进气口的一个或多个egr阀。

当装备有egr系统的发动机在满载(例如最大扭矩输出)或接近满载运行时,egr阀将典型地被关闭,将egr流减少至零。当egr阀被关闭时,冷凝物可以随着egr气体和系统冷却而在阀的上游形成。当对于发动机的扭矩需求减小时,egr阀打开以将egr气体再引入回到发动机的进气口。结果,已经累积在egr阀上游的冷凝物通过阀排出并且进入发动机的进气口。这样的冷凝物排出是并不期望的,尤其是对于lpegr系统,因为大量的冷凝物会损坏涡轮增压器的压缩机。

一个解决方案是定期打开egr阀,例如每30秒打开3秒,以蒸发和排出积累的冷凝物以及重新加热egr系统,其帮助减少冷凝的速度。然而,在发动机满载或接近发动机满载时,egr阀的打开减少了可用于燃烧的空气并因此导致对于驾驶员来说明显的扭矩扰动。



技术实现要素:

根据本发明的一个方面,提供一种提供扭矩辅助至内燃发动机的旋转轴的方法,该方法包含:由于废气再循环阀的操作,例如响应于废气再循环阀的操作,使用电机辅助旋转轴的旋转。旋转轴可以是发动机的任何旋转轴,其可由电机驱动。例如,旋转轴可以是发动机的曲轴、凸轮轴、平衡轴、或任何其它适当的旋转轴。扭矩辅助可被提供以减少和/缓和由废气再循环阀的操作引起的发动机的输出扭矩中的扭矩下降。旋转轴的旋转可通过从电机施加扭矩至旋转轴而进行辅助。由电机提供的辅助可根据废气再循环阀的打开状态进行调节。

方法可包含由于废气再循环阀的操作减少喷射进发动机的汽缸中的燃料量。例如,废气再循环阀的操作可导致进入发动机的进气口的气体中的氧气比例减少。结果是,喷射进汽缸中的燃料量可能减少,例如试图实现汽缸的燃烧室中的反应物的期望的空气燃料比。方法可包含由于喷射进汽缸中的燃料量减少而使用电机辅助旋转轴的旋转。

废气再循环阀的运行样式(operationalprofile)可由以下中的至少一个限定:打开废气再循环阀的程度、通过废气再循环阀的气体的流速、废气再循环打开持续的时段,即,首先允许气体流过阀的阀和阻止气体流动的阀之间的时段、以及打开和/或关闭废气再循环阀的速度。

电机的运行样式可以随着限定废气再循环阀的运行样式的至少一个因素变化。由电机提供的扭矩辅助的量可随着废气再循环阀打开持续的时段变化。由电机提供的扭矩辅助的量可随着废气再循环阀打开的程度变化。由电机提供的扭矩辅助的量可随着通过废气再循环阀的气体流速变化。由电机提供的扭矩辅助的量可随着打开和/或关闭废气再循环阀的速度变化。在废气再循环阀的打开和使用电机辅助旋转轴的旋转之间可以有延迟。例如,电机的激活可延迟再循环的废气达到汽缸的燃烧室所需的时段。

方法可包含响应于减少发动机的扭矩输出的请求而减少由电机提供的扭矩辅助的量。例如,方法可包含在电机已被激活以辅助旋转轴的旋转并且驾驶员请求发动机的输出扭矩的减少的情况下,减少由电机提供的扭矩辅助的量、或停用电机使得不再提供扭矩辅助。

根据本发明的另一方面提供一种提供扭矩辅助至内燃发动机的旋转轴的方法,该方法包含:通过从电机施加扭矩至旋转轴来辅助旋转轴的旋转,由电机提供的辅助根据废气再循环阀的打开状态进行调节。

根据本发明的另一方面提供一种用于内燃发动机的扭矩辅助系统,该扭矩辅助系统包含:废气再循环阀;连接至发动机的旋转轴的电机;和配置为由于废气再循环阀的操作(例如响应于废气再循环阀的操作)而激活电机的控制器。

电机可连接至发动机的曲轴。电机可刚性连接至发动机的曲轴。电机可通过一个或多个中间元件例如辅助驱动元件连接至发动机的曲轴。电机可在发动机的前端——例如同步驱动器和/或一个或多个辅助驱动器连接的发动机的一端——连接至曲轴。

扭矩辅助系统可包含配置为将废气再循环系统可操作地连接至发动机的燃料系统和/或电机的控制器。

废气再循环阀可控制进入发动机的增压进气装置的压缩机的废气流动。例如,废气再循环阀可控制进入涡轮增压器和/或增压器中的废气流动。废气再循环阀可控制进入发动机的进气口的废气流动。废气再循环阀可控制直接进入发动机的进气歧管的废气流动。电机可通过一个或多个中间元件连接至发动机的曲轴。

提供一种包含至少一个上述扭矩辅助系统的发动机。

本发明也提供软件(例如,用于执行任何在此描述的方法的计算机程序或计算机程序产品)以及具有存储在其上的用于执行任何在此描述的方法的程序的计算机可读介质。体现本发明的计算机程序可被存储在计算机可读介质上,或其可,例如,以信号的形式,例如,由互联网站提供的可下载数据信号,或其可以以任何其它形式。

为了避免说明书中效果的不必要重复和文字的重复,某些特征仅关于本发明的一个或多个方面或配置描述。然而,应该理解的是,其在技术上是可行的,关于本发明的任何方面或配置描述的特征也可与本发明的任何其它方面或配置一起使用。

附图说明

为了更好地理解本发明,并且更清楚地展示它如何有效实施,通过举例,现将对附图进行参考,附图中:

图1示出了车辆的发动机的示意图;

图2示出了扭矩输出对发动机转速的图示;以及

图3示出了扭矩辅助系统。

具体实施方式

参照图1,描述了根据本发明的布置的机动车辆的内燃发动机3的发动机总成1。空气可通过进气口7进入进气道5并在之后通过空气过滤器9。空气可在之后通过增压进气装置的压缩机11a,例如涡轮增压器11。涡轮增压器11可改进发动机功率输出并减少排放。典型地,涡轮增压器11设置有驱动安装在相同轴上的压缩机11a的废气驱动涡轮11b。增压空气冷却器可进一步增加进入内燃发动机3的空气的密度,因此改进其性能。空气可在之后通过配置为改变进入内燃发动机的空气质量流的节流阀进入内燃发动机3。

在本发明的特定配置中,内燃发动机3包含柴油机,然而,同样设想发动机3可以是火花点火式发动机。如图1所描述的,内燃发动机3可包含多个汽缸15a-d并且空气可在由一个或多个阀(未示出)决定的发动机的循环中在适当时间流入这些汽缸的每个中。

离开内燃发动机3的废气可进入配置为从发动机接收废气并通过排气口21排出它们的排气道19。排气道19中的废气可通过涡轮增压器的涡轮11b。一个或多个废气处理模块23可被设置在涡轮11b的下游,例如,以减少发动机的废气排放。

还可以设置第一废气再循环回路25,例如低压废气再循环(lp-egr)回路,其配置为选择性地使来自于内燃发动机3的废气再循环返回至内燃发动机中。第一废气再循环回路25可围绕涡轮增压器11设置使得离开涡轮11b的废气可被再循环至压缩机11a的进气口中。第一废气再循环回路25可包含第一废气再循环风道27,其可从主废气流路径分支出,例如,废气可从主废气流路径转向以流过第一废气再循环风道27。第一废气再循环风道27可在废气处理模块23的下游(以及如果提供的话另外的废气处理模块的上游)从主废气流路径分支出。第一废气再循环回路25可进一步包含第一再循环阀29,其可控制通过第一废气再循环管27再循环的量。在图1中示出的布置中,第一再循环阀29控制再循环至涡轮增压器压缩机11a中的废气的流动。此外,废气冷却器(未示出)可被设置在废气再循环回路25中以冷却第一废气再循环回路25中的气体。

还可以设置第二egr回路31,例如高压废气再循环(hp-egr)回路,其配置为选择性地使来自于内燃发动机3的废气再循环返回至内燃发动机中。第二egr回路31可围绕发动机3设置,其中离开发动机3的废气再循环至发动机3的空气进气口,例如直接进入发动机的进气歧管中。第二废气再循环回路31可包含第二废气再循环风道33,其可从主废气流路径分支出,例如,气体可从主废气流路径转向以流过第二废气再循环风道33。第二废气再循环风道33可在发动机3和涡轮增压器的涡轮11b之间的点处从主废气流路径分支出。因此,第二egr回路31中的废气可处于比第一egr回路25中的废气更高的压力下。第二废气再循环回路31可包含第二再循环阀35,其可控制在第二egr回路31中的再循环的量。

当发动机3正在满载或接近满载运行时,例如在一段高或最大扭矩输出期间,egr阀29、35将典型地被关闭,egr流减少至零。当egr阀29、35关闭时,冷凝物可随着egr气体和egr回路25、31冷却而在阀29、35的上游形成。当对于发动机的扭矩需求减少时,egr阀29、35打开以将egr气体再引入返回至发动机的进气口。结果是,已经累积在egr阀29、35上游的冷凝物通过egr阀29、35排出并进入发动机的进气口,这可通过改变发动机汽缸15a-d的燃烧室中反应物的比例来影响发动机的操作。一个问题尤其可发生在lp-egr回路中,因为冷凝物排入涡轮增压器11中,其可损坏涡轮增压器11的压缩机11a。

为了减少靠近egr阀29形成的冷凝物,例如在高发动机输出期间,egr阀29、35可被定期打开以加热egr阀29、35和egr回路25、31的关联的支管,其帮助减少冷凝的速度和因此冷凝物排出的量。例如,egr阀29、35可近似每30秒打开3秒的时间段,或任何其它合适的时段/间隔。

然而,egr流可减少汽缸中的空气燃料比,例如通过增加发动机3的进气口中的氮和/或二氧化碳与氧的比。照此,发动机3的输出扭矩可由于egr流而波动,其可能对驾驶员来说是显而易见的,特别是在满载或接近满载时。而且,为了解决汽缸中的空气燃料比的减少和避免浪费燃料,喷射到汽缸中的燃料量可被减少,试图将空气燃料比恢复至期望比值。然而,这样的动作导致发动机的扭矩输出的减少。

图2示出了发动机3的输出扭矩110相对于具有egr回路25、31中的至少一个的发动机的时间的图示。图2也示出了egr阀29、35——例如lp-egr系统的egr阀——中的一个的阀操作事件120和输出扭矩110的扭矩下降事件130之间的关系。为了克服扭矩下降事件130,本发明提供响应于至少一个egr阀29、35的操作而使用电机辅助旋转轴的旋转的方法100和系统37。

在图2中,发动机3正以最大输出或接近最大输出操作持续时段p0。在时段p0期间,期望将egr阀29、35保持在关闭位置以便使发动机汽缸15a-d的燃烧室中的空气燃料比最大化,使得发动机3以它的最大输出或接近最大输出操作。然而,如上所述,egr阀29、35可被定期打开和关闭,以便减少在egr阀29、35上游形成的冷凝物的量。结果是,发动机3的输出可由于再循环至发动机3的进气口中的废气而下降。

如在图3中示出的,扭矩辅助系统37包含电机39,电机39连接至发动机3的旋转轴41,例如曲轴。电机39可以是任何类型的电机39,其配置为辅助曲轴的旋转。例如电机39可以是电动马达或电动发电机。电机39可直接连接——例如刚性连接——至曲轴。在另一布置中,电机39可通过一个或多个中间元件——例如辅助驱动元件,如齿轮、滑轮、传动带或传动链——连接至曲轴。离合器(未示出)可被设置在电机39和发动机3的曲轴之间,使得电机39可基于来自于电机39的瞬时扭矩需求与曲轴选择性地接合和解离。当无需来自于电机39的扭矩辅助时,解离离合器以减少发动机3的阻力是有利的。

在图3中示出的配置中,电机39连接至发动机3的曲轴的前端43。在本发明的情况下,术语“前端”被理解为意味着发动机3上相对于“后端”45的一端,变速器连接至该端。照此,电机39可以连接至曲轴的延伸通过发动机外壳前面并且可配置为驱动发动机3的同步驱动的一端。然而,在一个或多个可选择的配置中,电机39可连接至曲轴的任何合适的部分。例如,电机39可连接至曲轴上从发动机外壳的后端延伸并且可配置为驱动变速器的一部分。

扭矩辅助系统37包含配置为激活/或停用电机39的控制器47。控制器47可被可操作地连接至egr回路25、31,使得能够确定egr阀29、35的一个或多个运行参数。例如,控制器47可配置为确定以下中的至少一个:打开废气再循环阀的程度、气体通过废气再循环阀的流速、废气再循环阀打开持续的时段,即,首先允许气体流过阀的阀和阻止气体流动的阀之间的时段、以及打开和/或关闭废气再循环阀的速度。

控制器47可被可操作地连接至发动机3,使得控制器47能够确定发动机3的一个或多个运行参数。例如,控制器47可配置为确定来自于发动机3的曲轴的输出扭矩。以这种方式,控制器47可配置为根据egr回路25、31和/或发动机3的一个或多个运行参数来控制扭矩辅助系统37的操作。此外,控制器47可被可操作地连接至发动机的燃料喷射系统49,使得控制器能够控制喷射进发动机的汽缸15a-d的每个的燃料量和/或燃料喷射事件的正时。例如,控制器47可配置为响应于egr阀29、35的操作而减少喷射进汽缸中的一个或多个的燃料量和/或延迟一个或多个燃料喷射事件。

控制器47配置为确定egr阀29、35的运行状态并激活电机39以便增加施加至车辆变速器的扭矩。例如,控制器可配置为做出egr阀29、35是打开还是关闭的决定并相应地控制电机39的操作从而补偿本应发生的扭矩下降事件130。

例如,控制器47可配置为在存在具有运行时段p1的第一阀运行事件120a、和具有运行时段p2的第二阀运行事件120b的情况下,控制电机39,使得第一扭矩辅助事件140a的运行时段p3对应于运行时段p1并且第二扭矩辅助事件140b的运行时段p4对应于运行时段p2。在示出于图2的示例中,第一扭矩辅助事件140a的运行时段p3等于运行时段p1,并且第二扭矩辅助事件140b的运行时段p4等于运行时段p2。然而,扭矩辅助事件140的运行时段可具有与阀运行事件120的运行时段任何适当的关系。扭矩辅助的级别和/或提供扭矩辅助的速度可以类似的方式与egr阀29、35打开的量和/或egr阀29、35打开的速度关联。

在示出于图2的示例中,第一扭矩辅助事件140a的开始从第一阀运行事件120a的开始延迟了时段p5。类似地,第二扭矩辅助事件140b的开始从第二阀运行事件120b的开始延迟了时段p6。时段p5不同于时段p6,如图2所示。然而,时段p5可与p6相同。在一些情况中,延迟激活电机39可能是有利的,因为在egr阀29、35打开和作为结果的进入汽缸15a-d的氧气质量流的减少之间有延迟。而且,喷射的燃料量可与汽缸15a-d中可用于燃烧的实际氧气一致地减少。以这种方式,电机39的操作可被计时以对应于汽缸15a-d的燃烧室中的空气燃料比的变化。

本发明提供一种当egr阀29、35打开,例如以蒸发积累的冷凝物时,抵消扭矩下降130的方法100和系统37。当打开egr阀29、35时,发动机的扭矩输出110可由于发动机的进气口中氧气比例降低而被约束,例如在柴油发电机上的烟度极限。结果是,传送至汽缸的燃料可减少,例如以解决汽缸中的反应物的化学计量比。响应于egr阀29、35和/或燃料喷射系统的操作,电机39被激活以辅助曲轴的旋转。以这种方式,随着发动机3的性能开始降低,电机39提供扭矩辅助至曲轴以便当egr阀29、35打开时补偿经历的扭矩下降130。

使用电机39辅助曲轴的旋转是有利的,因为电机39具有非常快的扭矩响应并因此非常适合平衡发动机的扭矩输出中的变化。通过使用电机39辅助曲轴的旋转,驾驶员将不经历在冷凝物清除期间可能发生的扭矩下降130。本发明因此是有利的,因为其允许定期清除来自于egr回路25、31的冷凝物而没有任何明显的性能损失。这能够帮助阻止涡轮增压器11的压缩机11a由于大量冷凝物进入压缩机11a的进气口而受损。

尽管本发明已经参照一个或多个实施例举例说明,但是本领域的技术人员应该理解本发明并不局限于所公开的实施例,并且在不背离由权利要求所确定的本发明的保护范围的条件下,可以构建替换实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1