用于调试内燃机的方法和带有内燃机的机动车与流程

文档序号:19157527发布日期:2019-11-16 01:00阅读:201来源:国知局
用于调试内燃机的方法和带有内燃机的机动车与流程

本发明涉及一种用于调试内燃机的方法,尤其涉及一种用于改善在调试内燃机的情形中的冷起动废气特性(kaltstartabgasverhalten)的方法。此外,本发明涉及一种带有内燃机且优选带有被设置用于执行根据本发明的用于调试内燃机的方法的控制器的机动车。



背景技术:

排放法规(abgasgesetzgebung)的持续严苛(kontinuierlicheverscharfung)对车辆制造商提出了高要求,这些要求必须通过用于减少发动机的原始排放的相应措施和通过相应的废气后处理来满足。尤其随着法规阶段eu6的引入,针对带有汽油发动机的车辆的排放极限值被再次大幅加严。此外,rde法规考虑紧邻在发动机起动之后的更高动力,因此如下越来越重要,即,紧邻在发动机起动之后同样确保最小的废气排放。

对于汽油发动机的废气成分(abgaszusammensetzung)而言,除了如点火角度和所使用的燃料的因素之外尤其空燃比是重要的,即,在发动机燃烧室中由空气和燃料构成的质量比。该比例通常作为无量纲的参数λ来说明,其表示由实际在燃烧室中供使用的空气质量和对于完全燃烧而言至少必要的空气质量构成的商。对于λ=1而言谈及化学计量运行,在其中与理论上对于被喷入的燃料的完全转化而言所需一样多的空气质量在燃烧室中可供使用。在λ<1的情形中存在在燃烧室中的空气不足(luftmangel)且谈及浓的混合物。在λ>1的情形中存在在燃烧室中的空气过量且谈及稀的混合物。

为了可高效地后发动机式地(nachmotorisch)转化不可完全避免的原始排放,在内燃机的排气装置中安装有被涂覆以贵金属的催化器。在正常的发动机运行中,这样的催化器在带有在0.97与1.03之间的λ的所谓的λ窗口中呈现最佳的效率,也就是说通过高效废气转化的最佳的净化能力。此外,催化器需要最小的废气温度水平,以便于可转化在其中所包含的有害物质。如下是已知的,即,为了加热催化器使用电加热元件或内发动机式的措施。在此,内发动机式的加热措施通常与确定的空燃比、也就是说确定的额定λ(solllambda)的调整相联系。

在所有已知的用于调试内燃机的方法的情形中,额定λ值被预控制,因为为了确定λ值而布置在排气通道中的λ探子(lambdasonde)通常在发动机起动的情形中尚不可投入使用。在预控制的情形中,实际测得的λ值通常以百分之一至二处于额定值旁边。这例如在于如下,即,用于预控制的模型不可能精确考虑所有对内燃机的影响。



技术实现要素:

在已知的方法中,λ探子的未定义的温度水平在发动机起动的情形中因此不仅导致增加的原始排放,而且导致用于加热催化器的内发动机式的措施的降低的效率。因此本发明基于如下任务,即,提供一种用于调试内燃机的方法,其减少或克服现有技术的缺点且改善紧邻在发动机起动之后的废气质量。

该任务通过一种用于调试内燃机的根据本发明的方法来解决,其中,该内燃机具有被联接在其处的排气系统且与控制器相连接。在排气系统中布置有可电加热的λ探子和催化器,其中,催化器具有氧气存储器(oxygenstoragecapacity-osc)。该氧气存储器优选地至少包含具有氧化铈和/或氧化锆的陶瓷部件。对于本领域的技术人员而言,带有氧气存储器的合适的催化器是已知的。

在根据本发明的方法的第一步骤中,在已经起动内燃机之前的第一阶段期间、即在关闭内燃机的情形中反应于第一控制信号通过控制器的接收实现λ探子的电加热。优选地,电加热元件布置在λ探子处或中且可借助于控制器来运行。一旦达到λ探子的运行温度,内燃机在根据本发明的方法的第二步骤中才被起动。因此,在起动内燃机的情形中已存在λ探子的完全的调节准备且可有利地取消燃料空气混合物的预控制。

基于λ探子的在发动机起动的情形中已可供使用的调节准备,内燃机紧邻在起动之后在精确地λ调节的稀燃运行(magerbetrieb)中被运行。在发动机起动的情形中由如下出发,即,布置在排气系统中的催化器还处在其起燃温度(light-off)之下且因此尚不可完全使用,也就是说尚不可完全用于转化原始排放。内燃机的可精确调整的稀燃运行尤其降低了hc-和co-原始排放,而不实现nox-原始排放的显著升高。如下被证实,即,在被起动的内燃机的稀燃运行中的最佳废气质量以在1.05与1.15之间、特别优选地大约1.1的额定λ来获得。

在根据本发明的方法的第三步骤中,在达到催化器的第一运行温度之后实现内燃机的精确λ调节的化学计量运行。在此,催化器的第一运行温度优选地是催化器的起燃温度,自该温度起可耗尽催化器的完全的转化潜能。在此,内燃机的化学计量运行的调节优选地持续地实现,也就是说内燃机如此来运行,以至于在时间上恒定的目标λ值以布置在排气通道中的λ探子来确定。

在根据本发明的方法的第四步骤中,在达到催化器的第二运行温度之后实现带有振荡的额定λ值的内燃机的精确λ调节的化学计量运行。催化器的第二运行温度优选地是布置在催化器中的氧气存储器的激活温度t3。该氧气存储器可在激活温度上方动态地将氧气装入到其结构中且将氧气移除。在氧气存储器的超过的激活温度的情形中,最佳的废气转化结果在催化器处以振荡调节的额定λ值来达到。在此,1.0的额定λ被加载以例如+/-10%、优选地+/-5%且特别优选地+/-2%的强迫幅度。因此,额定λ值在达到第二运行温度之后例如可在0.98与1.02之间交替。

如下被证实,即,根据本发明的方法的步骤组合使得紧邻在起动内燃机之后有害的hc-、co-和nox-原始排放的明显降低以及在后置的催化器处的较高的转化率的特别快速的达到成为可能。在根据本发明的方法的一种优选的设计方案中,这些正面效果还以如下方式被增强,即,内燃机直至达到催化器的第一运行温度以增加的点火能量在稀燃运行中被运行。增加的点火能量优选地通过火花带点火(funkenbandzündung)作为按需要的多重点火来提供且提高了内燃机的运转平稳以及燃烧废气的时间上的均匀性。因此,原始排放被进一步降低且在催化器中的废气转化可特别有规律地实现。

在根据本发明的方法中,陶瓷的传感器元件优选地作为λ探子、尤其作为跃变探子(sprungsonde)或作为宽带探子得到使用。λ探子优选地包含固体电解质,其布置在内燃机的废气流中且取决于在废气与参考气体之间的氧气分压差输出电压信号。优选地,固体电解质基于二氧化锆。同样优选地,耐水冲击的λ探子被使用。耐水冲击性(wasserschlagsfestigkeit)可通过λ探子在排气通道中、例如在向下倾斜的排气管件中的布置,通过λ探子的测量开口例如逆着废气流的合适定向,且/或通过在探子表面上的多孔陶瓷保护层实现。对于本领域的技术人员而言,λ探子的耐水冲击性可如何被确保是已知的。在根据本发明的方法中得到使用的λ探子优选地具有电阻加热元件(widerstandsheizelement)。

在根据本发明的方法的一种此外优选的实施方式中,在内燃机的排气系统中所布置的催化器具有电加热元件且一旦控制器已接收第一控制信号同样被电加热。因此,催化器在起动内燃机之前已可被加热到在其中已实现有害物质通过催化器的部分转化的温度上。同样优选地,催化器通过电加热在发动机起动之前至少达到如下阈值温度,自该阈值温度起进入到催化器中的废气成分的至少15%、此外优选地至少25%且特别优选地至少35%被转化。在根据本发明的方法的一种备选的实施方式中,催化器的加热仅通过由废气到催化器上的热过渡实现。

在根据本发明的方法中,催化器的第一和第二运行温度充当触发事件,以便于逐步匹配被起动的内燃机的运行。在此,运行温度优选地借助于布置在可电加热的催化器处或中的温度传感器来获取。备选地可取消温度传感器且第一和第二运行温度可借助废气温度模型来确定。这样的废气温度模型例如在文件de102013216024a1中描述且有规律地基于在废气流中测得的实际λ值。在根据本发明的方法中,λ探子的调节准备、也就是说其测量准备在发动机起动的情形中已存在。因此,借助废气温度模型紧邻在发动机起动之后已可可靠预测废气温度。

在根据本发明的方法中,第一控制信号通过控制器的接收充当针对加热λ探子的触发事件。优选地,第一控制信号是由门接触开关、由用于无钥匙闭锁系统(schlüsselloseschließsystem)的接收器、由用于中央锁住装置(zentralverriegelung)的接收器或由安全带锁触点(gurtschlosskontakt)被传输到控制器处的第一控制信号。通常,驾驶员紧邻在内燃机的冷起动之前登上该车辆中且系上安全带。通过门接触开关、无钥匙闭锁系统(keyless-go-system)或中央锁住装置的接收器或通过安全带接触开关,在机动车处存在的传感器可被用于在起动内燃机之前已触发第一控制信号且以λ探子的电加热开始。备选地,第一控制信号可由电池系统的充电状态传感器来生成。

在混合动力车辆(例如phev-plug-inhybridelectricvehicle)中可以以按照根据本发明的方法的第一步骤的预热来开始,当驱动电动机的电池系统的充电状态(stateofcharge-soc)降到确定的极限值之下且内燃机的起动因此即将来临时。同样优选地,第一控制信号可借助导航数据来生成,例如通过在电动模式中phev的平均可到达范围与在该模式中已经经过的距离的关系。备选地,尤其在自动驾驶模式中以及在电动运行中预测可被用于产生第一控制信号。尤其在最后所提及的情况中,第一控制信号可在控制器自身中生成,其中,控制器可具有多个功能模块且/或可包括多个单控制器。

此外,本发明的对象是一种带有内燃机和被联接在其处的排气系统的机动车,其中,后者具有可电加热的λ探子和带有氧气存储器的催化器。此外,该机动车具有控制器,其被设立用于如先前所描述的那样执行根据本发明的方法。优选地,该机动车具有通过电池系统供电的电驱动马达,其中,电池系统具有被设立用于输出第一控制信号的充电状态传感器。

此外,该电池系统优选地充当用于电加热λ探子和/或可电加热的催化器的能量源。尤其为了λ探子的电加热,在电池系统与用于加热λ探子的加热元件之间优选地布置有变压器。在一种备选的实施方式中,该电池系统是高压电池系统,带有例如48v的系统电压,且为了电加热λ探子和/或可电加热的催化器此外设置有带有蓄能器的电网,例如12v电网。

本发明的另外的优选的设计方案由其余在从属权利要求中所提及的特征得出。本发明的不同的在该申请文件中所提及的实施方式(只要在具体情况中不另外地实施)可被有利地彼此组合。

附图说明

下面在实施例中借助附图对本发明进行说明。其中:

图1显示了根据本发明的机动车的驱动系统的一种优选的实施变型方案,

图2显示了根据本发明的机动车的另一视图,

图3显示了用于调试内燃机的根据本发明的方法的流程图、在用于调试内燃机的根据本发明的方法期间额定λ值的曲线和在用于调试内燃机的根据本发明的方法期间在λ探子和催化器处的温度曲线,且

图4显示了根据本发明的机动车的驱动系统的一种备选的实施方式。

具体实施方式

图1显示了带有内燃机10和排气系统20的根据本发明的机动车1的第一实施例。根据本发明的机动车1优选地构造成带有内燃机10和电动机56、特别优选地带有通过火花塞14外部点火的汽油机(ottomotor)的混合动力车辆。

内燃机10具有至少一个燃烧室12,优选地如在图1中示出的那样具有四个燃烧室12,其经由共同的出口52与排气系统20的排气通道22相连接。内燃机10优选地构造成往复活塞式发动机,然而同样可构造成旋转活塞式发动机。内燃机10优选地构造成借助于废气涡轮增压器来增压的内燃机10或构造成自然吸气发动机(saugmotor)。

排气系统20在排气通道22中具有可电加热的λ探子24。在λ探子24的下游,在排气通道22中布置有带有温度传感器26、电加热元件28和氧气存储器(oxygenstoragecapacity-soc)50的可电加热的催化器30。可电加热的催化器30优选地构造成带有集成的颗粒过滤器的导电的四元催化器30,其中,催化器30在施加电压的情形中自身充当热阻28。在可电加热的催化器30下游,在排气通道22中布置有另一催化器32、优选地三元催化器。

可电加热的催化器的可电加热的λ探子24、温度传感器26和电加热元件28可经由控制器42、优选地经由内燃机10的发动机控制器或混合动力车辆的功率控制器被操控。控制器42尤其构造用于调整可电加热的λ探子24的温度。优选地,该控制器可独立于λ探子24的测量运行经由被集成在λ探子24中的电加热元件调整λ探子24的温度,尤其在开始λ探子24的测量运行之前。

混合动力车辆的电驱动马达56经由电池54被供给以电压,其必要时在使用变压器的情形下同样可被用于加热催化器的电加热元件28且/或被用于加热λ探子24。

在图2中显示了根据本发明的机动车1的另一图示。机动车1具有带有排气系统20的内燃机10。在排气系统20中,在内燃机10的废气穿过排气通道22的流动方向上布置有可电加热的λ探子24、带有温度传感器26和电加热元件28的可电加热的催化器30以及在可电加热的催化器30下游布置有第二催化器32,其构造成三元催化器。

机动车1具有多个传感器44,46,48,其构造用于将第一控制信号发送到机动车1的控制器42处。在图2中示例性地示出了门接触开关44、用于机动车46的无钥匙闭锁系统的接收器和安全带锁传感器48。备选地或额外地然而同样还可设置有另外的传感器,例如用于中央锁住装置的发射器的接收器、用于识别座椅的座椅占据的传感器58或电池系统56的充电状态传感器。

用于调试内燃机10的根据本发明的方法的流程如在图3中示出的那样如下来描述。

在时刻a,控制器42获得第一控制信号,其表示内燃机10的发动机起动即将来临。第一控制信号可例如由在图2中所示出的传感器44,46或48,58来产生。作为对第一控制信号的反应,控制器42如此地操控被集成在可加热的λ探子24中的电加热元件,使得,该加热元件加热λ探子24。通过使该电加热(阶段i)通过传感器44,46,48,58中的一个的第一控制信号、尤其通过门接触开关44激活,λ探子24的加热明显在内燃机10的发动机起动之前实现。结果,λ探子在直至时刻b的第一阶段中被加热直到其运行温度t1上,从而对于整个时间段vii而言存在λ探子24的调节准备。

由于第一控制信号在时刻a的接收,控制器42此外如此地操控催化器30的电加热元件28,使得,该加热元件在直至时刻a的第一阶段中被纯电气地加热到温度t2上。在此,温度t2处在催化器30的起燃温度之下,但是然而使得燃料和氧气在催化器的催化表面上以限定程度的放热转化成为可能。在此,起燃温度是在其中催化器转化进入到催化器中的废气成分的50%的温度。优选地,催化器30在温度t2之上使得进入到催化器中的废气成分的15%、此外优选地25%且特别优选地35%的转化成为可能。因此,催化器在时刻b尚未实现其用于转化hc-、co-和nox-排放的完全的运行准备。

可电加热的λ探子24的加热在整个第一阶段i期间仅借助于被集成在其中的电加热元件实现。可电加热的催化器30至少直至时刻b借助于集成的加热元件28被加热,此外且/或在整个时间段i期间优选地同样。用于电加热λ探子24和催化器30的能量优选地由电池系统56来提供,必要时在使用变压器的情形下。备选地,电预热在时间段a至b中实现,在该时间段期间混合动力车辆仅通过电驱动马达56被驱动且内燃机10是未激活的。

在λ探子的运行温度t1在时刻b达到之后,内燃机10被起动且在阶段ii中λ调节地在带有额定λλ>1的稀燃运行中被运行。在此,废气的借助于准备运行的λ探子24被精确确定的氧气浓度被用于如此地调整在内燃机10的燃烧室12中的空燃比,以至于期望的额定λλ>1以探子24来测量。尤其,内燃机10如此来运行,以至于以λ探子24持续确定1.1的额定λ值。该轻微的稀燃运行引起如下,即,燃烧废气的hc-和co-原始排放被降低,因此,尽管催化器30的尚未完全建立的运行准备实现足够的废气质量。

在阶段ii中的稀燃运行期间,催化器30的温度由于由内燃机10的燃烧废气到催化器30上的热过渡以及必要时由于到催化器30的第一运行温度、尤其起燃温度上的继续电加热而上升。催化器30的第一运行温度在图3中出于清晰性的原因被示出为与λ探子的运行温度t1相同。在实际中,这些温度然而可彼此不同。

在催化器30的第一运行温度在时刻c达到之后,内燃机10在阶段iii中λ调节地被化学计量地运行。尤其,内燃机10以持续的额定λλ=1来运行。在该温度的情形中,废气原始排放到更无害的化合物(verbindung)的最佳转化在催化器30中实现。

额外地,在阶段iii中实现催化器30的进一步加热,此外基于内燃机10的燃烧废气到催化器30上的热过渡。在实际中,催化器30的温度上升在阶段iii中可小于催化器30在阶段ii中的温度上升或相对该温度上升相同。在该情况中,在图3中所示出的时间段c至d(阶段iii)长于时间段b至c(阶段ii)。在每种情况中,催化器30的温度直至阶段iii结束在时刻d上升到第二运行温度t3上。该第二运行温度t3是氧气存储器50的激活温度,其在该温度上方能够以高效率将氧气装入到其结构中且可又将氧气由其移除。在此,氧气吸收和排出的速率取决于氧气存储器50的氧气负荷以及被导引到催化器30中的废气的氧气分压。

在催化器30的第二运行温度t3在时刻d达到之后,内燃机10在阶段iv中λ调节地化学计量地以振荡的额定λ值来运行。因此,额定λλ=1并非持续被调节,而是被加载以例如+/-2%的强迫幅度。带有交替地轻微富燃和轻微稀燃的混合物的内燃机10的该交替运行引起氧气存储器50的最佳充分利用,其尤其在负荷变换的情形中确保废气质量且抑制λ调节的化学计量运行。

在用于调试内燃机10的根据本发明的方法的一种优选的实施方式中,内燃机10至少在由发动机10在时刻b的起动至少延伸直至在时刻c、备选地同样直至时刻d达到催化器30的第二运行温度t3(通过图3中的虚线来示出)的阶段vii期间以增加的点火能量来运行。同样优选地,带有增加的点火能量的运行延伸直至阶段iv中。然而,点火能量最晚在内燃机10的在图3中所显示的阶段iv中开始或紧接其被调整到正常水平上。尤其,带有增加的点火能量的运行通过使用火花带点火实现,至少在阶段ii,iii期间且至少部分同样在阶段iv期间。增加的点火能量使得带有降低的原始排放波动和因此改善的废气质量的内燃机10的运行平稳且均匀的运行成为可能。

在图3中所示出的且在上面所描述的措施的组合提供一种带有紧邻在冷起动之后最佳的原始排放减少和在热运行阶段中的最佳的有害物质转化的用于调试内燃机10的方法供使用。这以如下方式来实现,即,λ探子24的可调节性为了发动机起动已完全存在且因此λ调节的运行在阶段ii、iii和iv中以有利地增加的精度实现。优选地,废气转化以如下方式被进一步改善,即,同样地可电加热的催化器30的温度在时刻b的发动机起动的情形中已处在第一阈值温度t2之上。在该温度之上,催化器至少以限定的程度能够用于转化进入到催化器中的废气成分。

图4显示了在图1中所示出的机动车1的一种备选的实施方式。在此,在大致相同结构的情形中仅内燃机10和内燃机10的排气系统20被示出。

在图4中所示出的实施方式的情形中,在其他情况下与在图1中相同的结构的情形中在排气系统20中代替可电加热的四元催化器布置有三元催化器(twc)30且在该twc30和第二催化器32的下游额外地布置有颗粒过滤器36。备选地,额外的颗粒过滤器36同样可布置在第二催化器32上游。备选地,第二三元催化器32和颗粒过滤器36的功能性同样可被结合在一个构件中且四元催化器32在排气通道22中布置在可电加热的三元催化器30下游。

在排气系统20的一种同样优选的设计方案中,可加热的λ探子24布置在优选地可加热地实施的三元催化器32和颗粒过滤器36上游,其中,同样取消四元催化器30。备选地,可加热的λ探子24同样可结合仅一个单个可加热或不可加热的三元催化器或单个可加热或不可加热的四元催化器布置在排气系统20中。同样优选地,两个可加热或不可加热的三元催化器布置在可加热的λ探子24下游。排气系统20的一种同样优选的设计方案与在图1中所示出的设计方案相符,其中,三元催化器32和四元催化器30在排气线路22中的布置顺序彼此互换。

参考标记列表

1机动车

10内燃机

12燃烧室

14火花塞

20排气系统

22排气通道

24可电加热的λ探子

26温度传感器

28电加热元件

30可电加热的催化器

32第二催化器

36颗粒过滤器

42控制器

44门接触开关

46接收器

48安全带锁传感器

50氧气存储器(osc)

52出口

54电池

56电驱动马达

58用于识别座椅占据的传感器

λ额定λ

tλλ探子的温度

tk催化器的温度

t1λ探子的运行温度/催化器的第一运行温度

t2催化器的阈值温度

t3催化器的第二运行温度。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1