一种圆柱型会切磁场推力器的制造方法

文档序号:8279144阅读:263来源:国知局
一种圆柱型会切磁场推力器的制造方法
【技术领域】
[0001]本发明涉及一种会切磁场推力器,具体涉及一种圆柱型会切磁场推力器。
【背景技术】
[0002]会切磁场等离子体推力器是以霍尔推力器为基础的一种新型电推进装置。推力器放电通道壁面一般由陶瓷组成,由多级永磁铁包围,相邻的两个永磁铁极性相反。在通道的上游布置了阳极。工质气体通过供气管路喷入放电通道。在推力器出口外,安置了空心阴极,可以发射电子。由于通道内部的磁场强度较大,电子受到的洛伦兹力很大,回旋半径很小,所以电子主要沿磁感线作螺旋运动,电子只有在发生碰撞时才有机会横越磁感线。除磁尖端外大部分区域,磁场主要平行壁面,电子很难横越磁感线与壁面碰撞;磁尖端处的磁场径向分量以及通道内磁场的磁镜效应形成了对电子的阻碍作用。电子从阴极发射出来后,部分电子会沿磁感线进入通道内部。电子与从通道另一端喷入的中性气体发生碰撞产生离子,离子在电场的作用下向外喷出,产生推力。进入通道内部的电子中,有一部分会在磁镜效应的作用下沿磁感线在两个尖端之间作往复的螺旋运动;另一部分能量较高的电子则不会受到磁场的有效束缚,会沿轴线运动且直接跨越磁感线到达通道的另一端。为保证推力器具有较高的效率,需要提升工质气体的利用率,即提升被电离的工质气体占供应工质气体总量的百分比。因此,需要保证电离区有足够的体积。由于大部分的电子在通道中轴线附近运动,所以电离区的径向尺寸很小,为使电离区有足够的体积,需要增加电离区的长度,因此要设计较长的陶瓷通道,使推力器占用更大的空间。由于卫星平台的空间有限,较大体积的推力器会给卫星的设计带来困难。

【发明内容】

[0003]本发明的目的是为了解决现有电离区的径向尺寸很小,造成推力器陶瓷通道的长度很长的问题,进而提供一种圆柱型会切磁场推力器。
[0004]本发明的技术方案是:一种圆柱型会切磁场推力器包括支架板、陶瓷底座、环状阳极、圆柱型陶瓷通道本体、气体分配器、螺母、导电螺栓、两个陶瓷垫片、导气器、铝合金支架、第一铝合金支架、导磁件底座、线圈、第一导磁件、外铝合金套筒、线圈支架、陶瓷端盖、磁铁支架、磁铁、第二铝合金端盖、陶瓷端盖和多个第二导磁件,
[0005]圆柱型陶瓷通道本体的左端加工有两个工质射流孔,导气器安装在其中一个工质射流孔上,导电螺栓穿设在另一个工质射流孔上,两个陶瓷垫片套在位于圆柱型陶瓷通道本体内的导电螺栓上后通过螺母固定,圆柱型陶瓷通道本体的内侧壁中部位置固定设有环状阳极,气体分配器安装在圆柱型陶瓷通道本体的左端内侧壁上,且气体分配器位于圆柱型陶瓷通道本体左端内侧壁与环状阳极之间,圆柱型陶瓷通道本体的外侧壁由右至左依次套装有第二铝合金端盖、磁铁、多个第二导磁件、第一导磁件、线圈、导磁件底座、第一铝合金支架和支架板,磁铁支架套装在磁铁上,线圈支架套装在线圈上,外铝合金套筒套装在第一导磁件、多个第二导磁件和磁铁支架上,且外铝合金套筒位于第一铝合金支架和第二铝合金端盖之间,铝合金支架套装在圆柱型陶瓷通道本体的外壁上,且铝合金支架位于支架板和第一铝合金支架的下端,圆柱型陶瓷通道本体的左端外侧设有陶瓷底座,圆柱型陶瓷通道本体的右端设有陶瓷端盖。
[0006]本发明与现有技术相比具有以下效果:由于会切磁场推力器壁面附近的磁场强度较高,为几千高斯,且除尖端外的大部分区域磁感线平行于壁面,电子难以跨越磁感线到达壁面,导致电离区径向尺寸较小,通道的利用率低。为了提高通道的利用率,本发明将阳极设计成环状放置在圆柱型陶瓷通道的侧壁面上,能够有效改变通道内部的电势分布,从而使电子具有向通道侧壁面运动的趋势。电子向通道侧壁面处阳极运动的过程中需要沿径向跨越多条磁感线,因而会有更多的电子分布在远离通道中轴线的区域,从而增大了电离区的径向尺寸,使通道利用率提升。此外电离区径向尺寸的增大使得推力器的轴向尺寸大幅度减小(从现有的100?120mm减小到65mm),推力器的质量也减小了 0.9-1.2kg,即本申请的推力器的质量占现有的推力器质量的50-70%。考虑到会切磁场推力器壁面附近的磁场强度过大,不利于电子到达阳极,推力器的点火电压过大,因此采用线圈13代替永磁铁来减小推力器通道内壁面附近的磁场强度,约为400-600高斯,这样电子更容易跨越磁力线到达阳极。同时采用线圈13能够通过改变励磁电流的大小,方便地改变推力器内的磁场位形,无需拆装推力器。另外多个第二导磁件17的设计也有利于在保持陶瓷通道4长度不变的情况下改变磁场位型。另外线圈的力学性能也优于永磁铁。
[0007]本发明将阳极设计成环状放置在圆柱型陶瓷通道的侧壁面上,能够有效的改变通道内部的电势分布,从而使电子具有向通道侧壁面运动的趋势。电子向通道侧壁面处阳极运动的过程中需要沿径向跨越多条磁感线,因而会有更多的电子分布在远离通道中轴线的区域,从而增大了电离区的径向尺寸,使通道利用率提升。因此,本发明采用了更小的通道长度。由于需要电子横越多条磁感线最终到达阳极,所以应当削弱阳极附近的磁场强度来减小点火的难度,因此需要用线圈代替永磁铁,从而提升了推力器的力学性能。采用线圈和缩小尺寸也减轻了推力器质量。
[0008]本发明的推力器通过改变阳极位置与形状的设计,使陶瓷通道在更小的直径和长度下仍能满足工质利用率要求,从而将通道长度由现有的100?120mm缩小至65mm ;推力器的外壳的直径由现有的100?IlOmm缩小至80mm ;本发明能够通过增减2mm厚纯铁环的数量和调节线圈的电流来改变通道外部的磁场位型。
【附图说明】
[0009]图1是本发明的整体结构主剖视图;图2是环状阳极的主视图;图3是环状阳极的剖视图。
【具体实施方式】
[0010]【具体实施方式】一:结合图1、图2和图3说明本实施方式,本实施方式的一种圆柱型会切磁场推力器包括支架板1、陶瓷底座2、环状阳极3、圆柱型陶瓷通道本体4、气体分配器5、螺母6、导电螺栓7、两个陶瓷垫片8、导气器9、铝合金支架10、第一铝合金支架11、导磁件底座12、线圈13、第一导磁件14、外铝合金套筒15、线圈支架16、陶瓷端盖21、磁铁支架18、磁铁19、第二铝合金端盖20、陶瓷端盖21和多个第二导磁件17,
[0011]圆柱型陶瓷通道本体4的左端加工有两个工质射流孔,导气器9安装在其中一个工质射流孔上,导电螺栓7穿设在另一个工质射流孔上,两个陶瓷垫片8套在位于圆柱型陶瓷通道本体4内的导电螺栓7上后通过螺母6固定,如此设置,可以通过改变陶瓷垫片的数量来改变气体分配器5的位置,圆柱型陶瓷通道本体4的内侧壁中部位置固定设有环状阳极3,气体分配器5安装在圆柱型陶瓷通道本体4的左端内侧壁上,且气体分配器5位于圆柱型陶瓷通道本体4左端内侧壁与环状阳极3之间,圆柱型陶瓷通道本体4的外侧壁由右至左依次套装有第二铝合金端盖20、磁铁19、多个第二导磁件17、第一导磁件14、线圈13、导磁件底座12、第一铝合金支架11和支架板I,磁铁支架18套装在磁铁19上,线圈支架16套装在线圈13上,外铝合金套筒15套装在第一导磁件14、多个第二导磁件17和磁铁支架18上,且外铝合金套筒15位于第一铝合金支架11和第二铝合金端盖20之间,铝合金支架10套装在圆柱型陶瓷通道本体4的外壁上,且铝合金支架10位于支架板I和第一铝合金支架11的下端,圆柱型陶瓷通
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1