一种压缩空气储能发电系统的制作方法_3

文档序号:8377436阅读:来源:国知局
内燃烧;混合室22将燃烧后的混合气体与未燃烧的高压气体混合以调节空气加热器出口处气体的温度。
[0078]如图3和图4所示,储气罐I经三路管路分别与空气加热器2相连通;储气罐I经第一管路11与空气加热器2的燃烧室21内设置的进气喷嘴23相连通,以作为燃烧室21内燃烧的助燃烧气;储气罐I经第二管路12与燃烧室21内设置的导向喷嘴24相连通,导向喷嘴24的轴线自燃烧室21侧壁向进气口轴线方向延伸,以控制燃烧室21内燃烧火焰的方向;储气罐I经第三管路13与空气加热器2的混合室22相连通,混合室22前端的进气喷嘴23与燃烧室21后端的出气口相连通,以将燃烧室21排出的、燃烧后的气体与第三管路13流入的、未燃烧的空气相混合,以调节空气加热器2所生成气体的压力与温度。
[0079]燃料供应罐6经第一燃料供应管14与空气加热器2的燃烧室21内内设置的进气喷嘴23相连通,使燃料与高压空气混合后进入空气化热器的燃烧室21 ;燃料供应罐6经第二燃料供应管15与燃烧室21内设置的燃烧器25相连通,所述的燃烧器25为燃烧室内的可燃气体和助燃空气提供点火源。优选的,燃料供应罐中储存的可燃气体为液化天然气(LNG) ο
[0080]一种利用上述发电系统进行压缩空气储能发电的方法,其包括:将高压空气与燃料进行燃烧生成高压混合气体,利用高压混合气体进行发电作业;
[0081]在高压空气进行燃烧的具体步骤如下,
[0082]步骤S1:第一路高压空气与燃料混合后自进气喷嘴23喷入空气加热器2 ;同时,第二路高压空气沿空气加热器2燃烧室21的侧壁各处向进气喷嘴23轴线方向喷射,使燃烧室21内的火焰沿燃烧室21轴线方向喷射;
[0083]步骤S2:第三路高压空气与空气加热器2加热燃烧室21内加热后的气体混合,生成压力值为2.0Mpa、温度为500?650°C的混合气体,以供发电设备进行发电作业。
[0084]通过上述装置和方法,使得空气加热器2可利用高压空气同时做为助燃气、控制火焰方向的控制气流和调整混合气体工况的调节气流,达到了一气多用的目的。从而,使得整个空气加热系统的设备得到简化,同时,利用空气加热器2的加热方式也较为稳定、可
A+-.与巨O
[0085]本发明中,电场在发电高峰期,利用多余发电量带动压缩机生成高压空气并进行存储,存储的高压空气压力值为2.1?2.3Mpa ;电场在发电低谷期,利用存储的高压空气进行燃烧加热生成压力值为2.0Mpa、温度为500?650°C的混合气体,透平发电机利用燃烧加热后的混合气体进行发电作业。优选的,电场可以为风力发电场、火力发电场、水利发电场中的任意一种;进一步优选的,电场为风力发电场。从而,克服了风力发电场发电波动幅度较大的问题,使得风力发电厂的发电功率呈一较为平滑、稳定的数值进行输出。
[0086]实施例六
[0087]如图3或4所示,本实施例中,空气加热器2由一罐体构成,罐体内部空间的两端分别设有燃烧室21和混合室22,燃烧室21与混合室22的靠近侧相连通,该侧为燃烧室21的后侧;燃烧室21远离混合室22的一端为前端,该端设有与第一管路11相连通的进气喷嘴23,供混合后的燃气和高压空气进入燃烧室内燃烧加热。优选的,燃烧室21和混合室22同轴设置;进一步优选的,燃烧室21和混合室22均与罐体同轴设置,且燃烧室21和混合室22的横断面分别呈圆形。
[0088]如图5至7所示,本实施例中,燃烧室21前端壁设有一进气喷嘴23,进气喷嘴23为双料混合喷嘴;所述的双料混合喷嘴由一喷嘴头231、喷嘴头处设置的混合结构及与混合结构相连通的第一进气口 232和第二进气口 233 ;第一进气口 232与第一管路11相连通,以供高压空气流入;第二进气口 233与第一燃料供应管路14相连通,以供燃料流入。
[0089]从而,在进气喷嘴23处喷出混合有空气和燃料气体的混合气体,使得混合气体直接喷入燃烧室21内,经燃烧室21内设置的点火装置作用形成火焰,以对气体进行加热,生成高温高压气体。
[0090]优选的,如图11所示,本实施例中,进气喷嘴23的混合结构包括一混合腔室234,混合腔室234呈圆球状;圆球状混合腔室234的一侧经两个进气通道分别与第一进气口232和第二进气口 233相连通、相对的另一侧经一个出气通道与喷嘴头231相连通。两个进气通道分别与混合腔室234的上部和下部相连通,出气通道与混合腔室234的中部相连通。
[0091]由于,自第一进气口 232和第二进气口 233流入混合腔室234中的高压空气和可燃燃气,在圆球状混合腔室234中形成容易形成漩涡,使得高压空气和可燃燃气的混合程度可提尚。
[0092]本实施例中,出气通道的管径自混合腔室234向喷嘴头231方向逐渐收窄,使得流入混合腔室234中的高压气体与燃气混合后自喷嘴头231处喷入燃烧室。
[0093]本实施例中,第一路高压空气与燃料的混合步骤如下,
[0094]步骤S201、高压空气与燃料流入进气喷嘴的圆球状混合腔室中,在圆球形侧壁的作用下产生旋转漩涡,以进行混合;
[0095]步骤S202、混合后的气体经孔径逐渐收窄的通道进行加压,并喷射入燃烧室中。
[0096]实施例七
[0097]如图5至图10所示,本实施例中,燃烧室21的侧壁上排布由多列沿罐体轴线间隔设置的、调整燃烧室21内火焰方向的、供高压气体流入的导向喷嘴24;各导向喷嘴24均与第二管路12相连通,以使得第二路高压空气经各导向喷嘴24流入燃烧室21中,达到利用作为助燃气体的高压空气控制燃烧室内火焰流向的目的。
[0098]本实施例中,至少靠近燃烧室21后端一列的各导向喷嘴24轴线相交于罐体轴线处,使燃烧室21喷入混合室的火焰沿罐体轴线方向喷射,避免混合室22中火焰喷射方向偏移造成混合室22内气体状态不一情况的发生。
[0099]如图5至7所示,本实施例中,罐体的横断面可以为圆形、多边形等任一几何形状;优选的罐体的横断面为圆形。每列导向喷嘴24至少包括三个导向喷嘴24 ;优选的,如图8所示,每列导向喷嘴24包括四个导向喷嘴24,四个导向喷嘴24分别处于圆形横断面的四个相位点处。每列导向喷嘴24的各导向喷嘴24均布于燃烧室21的同一横断面上;每列的各导向喷嘴24轴线相交于同一点。
[0100]通过上述装置,使得各导向喷嘴24中喷出的高压气体沿喷嘴的轴线喷射,令燃烧室内的火焰形状在各喷嘴所喷射高压气体的控制下变形,达到通过导向喷嘴24控制燃烧室21内火焰的目的。
[0101]如图5所示,本实施例中,可以将进气喷嘴23设于燃烧室21前侧的中心处,进气喷嘴23沿罐体的轴线方向延伸,使流入燃烧室21内的高压空气和燃气混合后沿罐体轴线喷射入混合室22中。各导向喷嘴24的轴线沿对应圆形横断面的轴线方向延伸,使得每列导向喷嘴24轴线的交点均处于罐体的轴线上,使得燃烧室21内火焰始终沿罐体轴线方向喷射;同时,使得喷入燃烧室21后侧混合室22中的火焰依然沿罐体轴线方向喷入。
[0102]如图6所示,本实施例中,可以将各列导向喷嘴24的轴线自燃烧室21前端向后端方向倾斜设置。优选的,各列导向喷嘴24的倾斜角度自燃烧室21两端向中间方向逐渐增加;进一步优选的,靠近燃烧室21前后两端的对应列导向喷嘴24的轴线倾斜角度为O。从而,使得导向喷嘴24喷出的高压气体可对燃烧室21内的火焰产生向燃烧室21后侧流动的推动力。例如:如图6所示,燃烧室21中等间隔的排布有六列导向喷嘴24,由燃烧室21前端至后端依次为:第一列导向喷嘴、第二列导向喷嘴、第三列导向喷嘴、第四列导向喷嘴、第五列导向喷嘴和第六列导向喷嘴;其中第一列和第六列导向喷嘴的轴线相对对应横断面的倾斜角度为O ;第二列和第五列导向喷嘴的轴线相对对应横断面的倾斜角度为α ;第三列和第四列导向喷嘴的轴线相对对应横断面的倾斜角度为β。优选的,所述的α < β ;进一步优选的,α为10度,β为20度。
[0103]在将导向喷嘴24设于燃烧室21前侧的中心处时,各列导向喷嘴24的安装位置可以如图8所示,将四个导向喷嘴24分别设于圆形横断面的四个相位点处,左右两端的导向喷嘴24轴线分别水平延伸,上下两端的导向喷嘴24轴线分别竖直延伸,使得每列的各导向喷嘴24的轴线相交点处于罐体轴线处
[0104]本实施例中,在第二路高压空气的作用下,燃烧室内的火焰始终沿燃烧室的轴线方向喷射。第二路高压空气自燃烧室侧壁上设置的多个导向喷嘴喷入燃烧室中,利用各导向喷嘴的喷射量控制燃烧室内火焰的喷射方向。
[0105]实施例八
[0106]如图7所示,本实施例中,还可以将进气喷嘴23设于燃烧室21前侧的靠近上端处,进气喷嘴23沿与罐体轴线相平行方向延伸。各列导向喷嘴24轴线的交点自燃烧室21前端向后端依次
当前第3页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1