微机电系统封装体及抗静摩擦装置的制造方法与流程

文档序号:17043450发布日期:2019-03-05 19:24阅读:254来源:国知局
本发明实施例系有关于微机电系统装置制造技术,且特别关于具有抗静摩擦装置的微机电系统封装体及其制造方法。
背景技术
::使用微机电系统(microelectromechanicalsystems,mems)装置作为小型化的运动、压力或加速感测装置已遍布于许多现今越来越复杂的产品中。举例而言,在个人电子产品中可发现微机电系统(mems)装置,个人电子产品包含智能电话、健身电子产品以及个人计算机装置,例如笔记型电脑(notepads)和平板电脑(tablets)。微机电系统(mems)装置亦广泛地用于汽车和航空应用,举例而言,这些应用包含汽车中的事故侦测和安全气囊部署系统,以及飞行器中的引导系统。这些装置也正在改良为医疗装置,例如,用来监控病患的生命迹象。对于这些诸多应用,将微机电系统(mems)装置耦接至应用的特定集成电路(applicationspecificintegratedcircuits,asic’s),以测量和解释来自于这些装置的信号。越来越多的应用对于寻求更加微型化感测元件的尺寸具有不断增长的期望,以使得这些感测元件越来越坚固且越来越经济地制造。技术实现要素:本发明的一些实施例提供微机电系统封装体。此微机电系统封装体包含互补式金属氧化物半导体集成芯片,此互补式金属氧化物半导体集成芯片包含互补式金属氧化物半导体基底和介电结构设置于互补式金属氧化物半导体基底上方,其中介电结构围绕多个导电内连线层。此微机电系统封装体还包含微机电系统集成芯片设置于介电结构上方且接合至介电结构,其中微机电系统集成芯片与介电结构的降低中央部共同定义出空腔,且其中微机电系统集成芯片包含可移动块状物安排于空腔内。此微机电系统封装体还包含抗静摩擦板设置于可移动块状物与介电结构的降低中央部之间,其中抗静摩擦板由导电材料制成,且抗静摩擦板包含凸起边缘围绕大致上平坦上表面的外围的至少一部份。本发明的一些实施例提供微机电系统封装体。此微机电系统封装体包含互补式金属氧化物半导体集成芯片,此互补式金属氧化物半导体集成芯片包含互补式金属氧化物半导体基底和介电结构设置于互补式金属氧化物半导体基底上方,其中介电结构围绕多个导电内连线层。此微机电系统封装体还包含微机电系统装置层设置于介电结构的凸起外部上方且接合至这些凸起外部,这些凸起外部围绕介电结构的凹陷表面,其中微机电系统装置层包含固定部和可移动块状物连接至固定部。此微机电系统封装体还包含覆盖基板设置于微机电系统装置层的背侧上方并与此背侧接合,覆盖基板与介电结构在微机电系统装置层的相反侧,以在覆盖基板语介电结构之间围出空腔,其中可移动块状物安排于空腔内。此微机电系统封装体还包含固定电极安排于可移动块状物下方的凹陷表面上,其中固定电极由金属制成,且固定电极包含凸起边缘连续地围绕大致上平坦上表面的外围。本发明的一些实施例提供抗静摩擦装置的制造方法,此方法包含提供互补式金属氧化物半导体集成芯片,其包含多个介电层形成于互补式金属氧化物半导体基底之上,这些介电层围绕多个金属层。此方法还包含在这些介电层之上形成上部金属层,在上部金属层之上形成掩膜层,选择性地蚀刻上部金属层以移除围绕掩膜层的金属,且在掩膜层的侧壁上再沉积移位的金属至高度超过上部金属层的高度,以形成抗静摩擦板,其具有再沉积金属的凸起边缘围绕平坦上表面。此方法还包含将微机电系统集成芯片接合至接合垫,接合垫与抗静摩擦板电性隔离且位于这些介电层之上,其中微机电系统集成芯片与这些介电层共同定义出一空腔,且其中微机电系统集成芯片包含可移动块状物安排于空腔内且在抗静摩擦板上。附图说明通过以下的详述配合所附图式,可以更加理解本发明实施例的观点。值得注意的是,根据业界标准惯例,各个不同部件(feature)未必按照比例绘制。事实上,为了讨论的明确易懂,各个不同部件的尺寸可随意增加或减少。图1a至1b说明微机电系统(mems)封装体的一些实施例的剖面示意图以及抗静摩擦部件的放大示意图,此微机电系统(mems)封装体使用凸起边缘结构作为抗静摩擦部件。图2a至2b说明微机电系统(mems)封装体的另一些实施例的剖面示意图,此微机电系统(mems)封装体包含抗静摩擦部件和固定电极。图3a至3f说明一些凸起边缘轮廓的一些实施例的一系列剖面示意图。图4至13说明微机电系统(mems)封装体的制造方法的一些实施例的一系列剖面示意图,此微机电系统(mems)封装体包含的抗静摩擦板具有凸起外围边缘。图14说明微机电系统(mems)封装体的制造方法的一些实施例的流程图,此微机电系统(mems)封装体包含的抗静摩擦板具有凸起外围边缘。其中,附图标记说明如下:100、200、206~微机电系统封装体;102~互补式金属氧化物半导体集成电路;103~接合层;104~微机电系统集成电路;106~互补式金属氧化物半导体基底108~介电结构;110~导电线路;112~绝缘层;114~导孔;116~凸起外部;118~降低中央部;120~空腔;122~可移动块状物;122s~平坦下表面;124~微机电装置层;126~覆盖基板;128~抗静摩擦板;128s~平坦上表面;130~固定部;132~凸起边缘;132p~剖面轮廓;134、144~内侧壁;136~外侧壁;138、208~边缘高度;140~边缘宽度;142~跨距;202~抗静摩擦缓冲物;208~静止电极;210~半导体装置;302~上段部;304~下边界;306~轴;308~角度;402~介电层;404~层;400、500、600、700、800、900、1000、1100、1200、1300~剖面示意图;502~上部介电层;504~导孔的孔洞;602~金属区沟槽;604~中央区;606~接合垫沟槽;608~外部区;702~金属区;704~接合垫;706~上部金属层;902~溅镀蚀刻技术;906~侵蚀;908~深度;1202~凹陷;1204~突出部;1400~流程图;1402、1404、1406、1408、1410、1412、1416~动作;rinner~内半径;router~外半径;sinner~内斜率;souter~外斜率。具体实施方式本发明实施例提供许多不同的实施例或范例用于实施本发明实施例的不同部件。以下描述了组件和配置的具体范例,以简化本发明实施例。当然,这些仅仅是范例,并非意图限制本发明实施例。举例而言,叙述中若提及第一部件形成于第二部件之上,可能包含形成第一和第二部件直接接触的实施例,也可能包含形成额外的部件于第一和第二部件之间,使得第一和第二部件不会直接接触的实施例。另外,本发明实施例可能在许多范例中重复参照的标号及/或字母。这些重复的目的是为了简化和清楚,其本身并非用于表示各种实施例及/或所讨论的配置之间的关系。再者,在以下叙述中可使用空间上相关措辞,例如“在……之下”、“在……下方”、“下方的”、“在……上方”、“上方的”和其他类似的用语,以便描述一元件或部件与其他元件或其他部件之间如图所示的关系。此空间相关措辞除了包含图式所描绘的方位,还包含装置在使用或操作中的不同方位。装置可以朝其他方位定位(旋转90度或在其他方位),且在此使用的空间相关描述可依此相应地解读。此外,“第一”、“第二”、“第三”、“第四”和类似用语的措辞仅仅只是通用标识,依此而言,在各种实施例中这些标识可以互换。举例而言,尽管在一些实施例中一元件(例如开口)可称作“第一”元件,在其他实施例中此元件可以称作“第二”元件。许多微机电系统(mems)装置,例如加速度计(accelerometers)和椭圆仪(gyroscopes),皆包括可移动块状物(movablemass)配置为与固定电极板相关连。可移动块状物具有与固定电极板的相对的平坦表面平行排列且隔开的平坦表面。可移动块状物因回应外部刺激而移位,这些外部刺激包含因压力、加速度、重力或运动所引起的力。此移位改变了可移动块状物与固定电极板之间的距离。此改变的距离可通过可移动块状物与固定电极板之间的电容耦合的改变来侦测,并且通过适当的电路来分析此改变的距离,以得到与运动相关联的物理量,例如加速度的测量。微机电系统(mems)装置的设计挑战之一是防止可移动块状物附着于固定电极或其他相邻的部件,一种已知的效应为静摩擦(stiction)。随着这些装置的尺寸持续微缩化,且相邻表面之间的间距变得越来越小,防止非预期的静摩擦成为越来越重要的设计考量。在许多情况下可能会发生静摩擦。在制造过程中可能发生静摩擦,例如当可移动块状物并未自其相邻的表面完全脱离。当可移动块状物的偏移增加到可移动块状物与相邻的部件接触的程度时,在正常操作过程中也可能发生静摩擦。静摩擦会因为许多不同的物理效应而发生,包含与毛细作用(capillaryaction)、范德华力(vanderwallsforces)相关的物理效应,或者相邻组件之间的静电力。除了部件之间的物理间距之外,这些和其他效应可导致静摩擦的程度取决于很多因素。一个因素是可移动块状物与静止表面之间的物理接触的面积,最小化的接触面积减少静摩擦发生的可能性。其他因素包含表面的温度、表面的疏水性(hydrophobic)或亲水性(hydrophilic)的亲合力(affinity)、表面粗糙度,以及受材料选择影响的涂层和表面黏着性。一种将静摩擦最小化已知的方法是在平行的平坦表面中的一个表面上方沉积额外的“缓冲物(bumper)”材料,以防止表面与表面的直接接触。虽然类似缓冲物的部件可能有效地将相邻部件之间的接触面积最小化,但是这些类似缓冲物的部件通常需要额外的制造步骤和额外的花费,以在目前的平坦表面上图案化和沉积这些部件。改变组件材料和施加特殊涂层可能在对抗静摩擦方面也有效,但是这些方法通常会使制造变得复杂,增加成本,并且可能会增加污染物,污染物会影响这些微型化感测器的操作。本发明实施例有关于微机电系统(mems)封装体,其使用凸起边缘结构作为抗静摩擦部件。凸起边缘用于将与可移动块状物的接触面积最小化,并且让固定电极的主表面的平行和平坦的特性不被影响。这些凸起边缘也具有不需要额外的工艺步骤(例如缓冲物材料的沉积及/或图案化)来产生的优点,一般而言,这些额外的工艺步骤通常用于产生抗静摩擦缓冲物。因此,可以预见抗静摩擦板能降低增加抗静摩擦部件至微机电系统(mems)装置的成本。因为在制造过程中产生抗静摩擦部件,所以在制造和操作微机电系统(mems)装置的过程中可减轻静摩擦效应。在此说明关于一些示范的微机电系统(mems)装置的观点,能理解的是,此观点可应用于其他使用可移动部件的适当的微机电系统(mems)装置,举例而言,微机电系统(mems)装置包含制动器(actuators)、阀体、开关(switch)、麦克风、压力感测器、加速度计及/或椭圆仪。参考图1a,提供微机电系统(mems)封装体100的一些实施例的剖面示意图,微机电系统封装体100使用凸起边缘的栅栏(fence)结构作为抗静摩擦部件。mems封装体100包括互补式金属氧化物半导体(complementarymetaloxidesemiconductor,cmos)集成电路(integratedcircuit,ic)102和微机电系统集成电路(memsic)104。互补式金属氧化物半导体集成电路(cmosic)102包括互补式金属氧化物半导体(cmos)基底106和介电结构108设置于cmos基底106上方。介电结构108包括多个导电内连线层(包含导电线路110和导孔114)被多个绝缘层112隔开。在一些实施例中,导电内连线层(包含导电线路110和导孔114)可由金属组成,例如铝(aluminum)或铜(copper),并且绝缘层112可由氧化物及/或氮化硅组成,氧化物包含硅的氧化物。在一些实施例中,导电内连线层可包括通过导孔114电性连接的导电线路110。在一些实施例中,介电结构108具有宽的“u型”剖面,其具有凸起外部116代表“u”的垂直支柱,以及平面的降低中央部118代表“u”的底部。降低中央部118的高度低于介电结构108的相邻的凸起外部116的高度。在一些实施例中,cmos基底106可包括单晶硅。微机电系统集成电路104通过接合层103的方式设置于介电结构108上方,且与介电结构108接合。微机电系统集成电路104与介电结构108的降低中央部118共同定义出空腔120。微机电系统集成电路104包括微机电系统装置层124和覆盖基板126,微机电系统装置层124包括可移动块状物122安排于空腔120内。在一些实施例中,可移动块状物122通过一或多个弹簧(未显示)、悬臂梁(cantileverbeam)或其他适当的结构(未显示)连接至微机电系统装置层124的固定部130,这使得至少一部份的可移动块状物122在至少一方向上偏移。覆盖基板126可设置于微机电系统装置层124上方,且接合至微机电系统装置层124的背面,此背面与介电结构108所在的面为相反面,使得空腔120被包围在覆盖基板126与介电结构108之间。参考图1a和1b,微机电系统封装体100更包括抗静摩擦板128,其设置于可移动块状物122与介电结构108的降低中央部118之间。抗静摩擦板128由导电材料制成,并且包括平坦上表面128s,平坦上表面128s大致上排列于可移动块状物122的平坦下表面122s下方。抗静摩擦板128也包括凸起边缘132,其围绕平坦上表面128s的外围的至少一部分。在一些实施例中,抗静摩擦板128可包括金属,其包含铝(aluminum)、钨(tungsten)、金(gold)、铜(cu)、镍(nickel)或氮化钛(titaniumnitride)。在一些实施例中,抗静摩擦板128可包括与最上层导电内连线层相同的材料,最上层导电内连线层被介电结构108围绕。在一些实施例中,凸起边缘132与抗静摩擦板128为相同的材料,且与抗静摩擦板128邻接。当可移动块状物122朝向抗静摩擦板128偏移时,凸起边缘132配置为限制平坦上表面128s与可移动块状物122的平坦下表面122s之间的接触面积,因此减轻了静摩擦。参考图1b,图1b为图1a的抗静摩擦板128的虚线部分的放大示意图,在一些实施例中,凸起边缘132包括以相邻的内侧壁134与外侧壁136为界的剖面轮廓。剖面轮廓包括边缘高度138和边缘宽度140,边缘高度138定义为抗静摩擦板128的平坦上表面128s与凸起边缘132的最顶端之间的垂直距离,且边缘宽度140定义为沿着平坦上表面128s测量内侧壁134与外侧壁136之间的侧向距离。在一些实施例中,边缘高度138与边缘宽度140的比值大于1。在一些实施例中,跨距(spandistance)142将凸起边缘132横向地隔开于抗静摩擦板128的外围的相对长度上。跨距142定义为沿着抗静摩擦板128的平坦上表面128s测量相对的内侧壁134与内侧壁144之间的最大横向距离。在一些实施例中,跨距142与边缘宽度140的比值大于10。在一些实施例中,边缘高度138超过接触距离。接触距离定义为防止可移动块状物122的平坦下表面122s与抗静摩擦板128的平坦上表面128s之间接触的最小分隔距离。在一些实施例中,接触距离可包含两个表面之间标称(nominal)距离的量,加上制造容忍度的量,加上凸起边缘132及/或可移动块状物122的弹性或塑性变形的量。因此,当可移动块状物122朝向抗静摩擦板128偏移时,边缘高度138防止可移动块状物122的平坦下表面122s接触抗静摩擦板128的平坦上表面128s,并且减轻静摩擦效应。图2a至2b说明微机电系统封装体的另一些实施例的剖面示意图,此微机电系统封装体包含抗静摩擦部件和固定电极。参考图2a,在一些实施例中,微机电系统封装体200可具有抗静摩擦板128,其亦可作为固定电极,配置为感测可移动块状物122的位移。抗静摩擦板128设置在可移动块状物122的平坦下表面122s的垂直投影下方,且在此垂直投影的范围内。抗静摩擦板128通过导孔114电性耦接至介电结构108的导电线路110。在一些实施例中,将抗静摩擦缓冲物202安排在可移动块状物122的平坦下表面122s的垂直投影的范围内,并且抗静摩擦缓冲物202与抗静摩擦板128横向地隔开。抗静摩擦缓冲物202不是固定电极(亦即抗静摩擦缓冲物202与介电结构108的导电线路110电性隔离)。在一些实施例中,可在抗静摩擦板128上和抗静摩擦缓冲物202上设置钝化层(passivationlayer)204。钝化层204可包括一或多个顺应性涂层材料,此顺应性涂层材料可包括氮化硅及/或树脂(resin),树脂包括丙烯酸树脂(acrylicresins)、聚氨酯树脂(polyurethaneresins)、硅氧树脂(siliconeresins)、环氧树脂(epoxyresins)、聚对二甲苯树脂(paryleneresins)。在一些实施例中,钝化层204可强化凸起边缘132,并且增加凸起边缘132抵抗来自受到可移动块状物122影响的偏移或变形。在一些实施例中,钝化层204可防止凸起边缘132和抗静摩擦板128的平坦上表面128s的腐蚀或污染。在一些实施例中,钝化层204可改变抗静摩擦板128和抗静摩擦缓冲物202的表面性质,并且可改变抗静摩擦板128和抗静摩擦缓冲物202的磨擦系数及/或干滑动(dry-sliding)特性,并且可以根据可移动块状物122的材料特性进行最适化,以进一步减轻静摩擦。在一些实施例中,钝化层204可在设置介电结构108的降低中央部118的上表面上方和相邻的侧壁上。在一些实施例中,钝化层204可设置在抗静摩擦板128或抗静摩擦缓冲物202上。参考图2b,说明微机电系统封装体206的另一实施例,其中静止电极208作为固定电极,并且与抗静摩擦缓冲物202配对。在此实施例中,静止电极208具有平坦上表面以感测可移动块状物122的移动。此平坦上表面在静止电极208的最外侧壁之间延伸,使得静止电极208不具有凸起边缘做为抗静摩擦部件。抗静摩擦缓冲物202具有凸起边缘且为微机电系统装置提供抗静摩擦部件。在一些实施例中,抗静摩擦缓冲物202的凸起边缘132的高度可大于静止电极208的平坦上表面的高度。在一些实施例中,cmos基底106可包括一或多个半导体装置210(例如金属氧化物半导体场效电晶体(mosfet))配置来作为测量电路,测量电路用来侦测可移动块状物122与静止电极208的平坦上表面之间的距离变化。举例而言,距离上的变化可通过包括半导体装置210的电路来解读,并且此电路可设计成侦测在可移动块状物122与静止电极208的平坦上表面之间所量测到的变动电流、电压或电容的变化,这些变化是距离改变所产生的结果。参考图3a至3f,说明所揭露的抗静摩擦板的凸起边缘部件的各种实施例的剖面轮廓。图3a说明简单长方形的剖面轮廓132p。凸起边缘的剖面轮廓132p定义为被上段部302、相邻的内侧壁134和外侧壁136以及下边界304所围住的区域。上段部302连接于相邻的内侧壁134与外侧壁136的最顶端之间。下边界304由平坦上表面128s与相邻的内侧壁134和外侧壁136相交的侧向延伸部构成。相邻的内侧壁134和外侧壁136表示指定的凸起边缘的剖面的侧壁。如果上段部302不存在(例如,当相邻的内侧壁134与外侧壁136相交于一个点或顶点),则凸起边缘的剖面轮廓定义为内侧壁134、外侧壁136和下边界304所围住的区域。举例而言,图3b至3c说明凸起边缘的一些实施例,包括峰形的剖面轮廓,其相邻的内侧壁134和外侧壁136各自地具有内和外曲线轮廓,从分隔的最低点单调转变(monotonicallytransition)至共同最高点以形成顶点。在图3b所示的一些实施例中,内和外曲线轮廓为大致上线形的,并且各自地包括相对于垂直线的内斜率sinner以及外斜率souter。在一些实施例中,外斜率souter比内斜率sinner更垂直。在图3c所示的其他实施例中,内和外曲线轮廓为大致上弯曲的,并且各自地包括内半径rinner和外半径router,其中外半径router大于内半径rinner。在一些实施例中,内侧壁134可为大致上线性轮廓,并且外侧壁136可为大致上弯曲轮廓,反之亦可。参考图3d,在一些实施例中,凸起边缘包括梯形(trapezoidal)的剖面轮廓,其上段部302大致上平行于抗静摩擦板128的平坦上表面128s。参考图3e,在一些实施例中,凸起边缘包括大致上球形(bulbous-shaped)剖面。在一些实施例中,相邻的内侧壁134与外侧壁136形成大致上镜像的轮廓,此镜像的轮廓被位于最底端的边缘宽度140隔开,且在最顶端相接于共同点,以形成大致上圆形顶端。在一些实施例中,球形剖面包括轴306相交于在内侧壁13与外侧壁136的最顶端的共同点,且相交于在内侧壁134与外侧壁136的最底端之间的中点。轴306自垂直线测量可定位在小于45度的角度308。参考图3f,钝化层204可覆盖凸起边缘和抗静摩擦板128的平坦上表面128s。在一些其他实施例中,且接续如图3a至3f所示的任何剖面轮廓,凸起边缘可包括环形栅栏(未显示)环绕抗静摩擦板128的平坦上表面128s的外围的至少一部分。在一些实施例中,凸起边缘可以不环绕抗静摩擦板128的整个外围。如在此所讨论,可通过在覆盖抗静摩擦板128的平坦上表面128s的表面的掩膜周围再沉积金属,且将此金属石刻的动作制造凸起边缘。依此方式,在一些实施例中,凸起边缘的剖面可从环形栅栏的一点变化至另一点。在一些实施例中,凸起边缘可设置在抗静摩擦板128的平坦上表面128s的外围的一部分上,并且在外围的其他部分几乎不设置凸起边缘。一般而言,图3a至3f和在此讨论说明凸起边缘的剖面轮廓和配置的很多可能性中的一些,并不代表可制造的全部形状。因此,在此描述并非意图限制本发明实施例。在半导体制造
技术领域
:中具有通常知识者将能理解,这些形状和其他形状的变化可轻易地被制造,以形成符合在此定义的高度、宽度、跨距和外围位置的凸起边缘的不同轮廓,并且用于相似功能。图4至13说明微机电系统(mems)封装体的制造方法的一些实施例的一系列剖面示意图400至1400,微机电系统(mems)封装体具有抗静摩擦板,此抗静摩擦板特征在于平坦上表面被在其外围上凸起边缘围绕。除了有好处地限制静摩擦效应以外,具有凸起边缘的特征的抗静摩擦板可简单且经济地合并至半导体制造工艺中。所使用的材料和工艺与其他微机电系统(mems)材料(例如,块材硅)相容,并且利用这些工艺和这些材料可避免污染,此污染与新的或不同的材料或涂层有关。事实上,可采用金属蚀刻步骤原位(in-situ)制造凸起边缘,并且可以在不需要额外的工艺步骤或掩膜的情况下形成凸起边缘,因此,相较于制造分开的金属缓冲物作为抗静摩擦部件,这代表了成本和效率的节省。图4说明一些实施例的剖面示意图400,其显示互补式金属氧化物半导体集成电路(cmosic)102包含多个介电层402形成于cmos基底106之上。这些介电层402围绕多个导电内连线层,导电内连线层包含导孔114和导电线路110。可在cmos基底106内形成多个半导体装置。在一些实施例中,cmos基底106可包括任何种类的半导体本体(例如,硅/互补式金属氧化物半导体块材、sige、绝缘体上的硅(soi)等),例如半导体晶片或晶片上的一或多个裸晶(die),以及任何其他种类的半导体,及/或形成于其上及/或以其他方式与其相关的磊晶层。在一些实施例中,这些介电层402包括堆叠的层404,其为低介电常数(low-k)的介电材料或例如二氧化硅的氧化物及/或氮化物。在一些实施例中,可通过沉积技术(例如物理气相沉积(physicalvapordeposition,pvd、化学气相沉积(chemicalvapordeposition,cvd)等)成长介电层402。可蚀刻介电层402以形成导孔的孔洞及/或沟槽,随后将金属填入导孔的孔洞及/或沟槽中,以分别形成导孔114和导电线路110。可通过沉积工艺及/或电镀工艺(例如,电极电镀(electroplating)或无电极电镀(electro-lessplating)等)将金属填入导孔的孔洞及/或沟槽。在各种实施例中,用于导孔114和这些导电线路110的材料可包括例如钨(tungsten)、铜(copper)或铝铜(aluminumcopper)。图5说明一些实施例的剖面示意图500,其显示将上部介电层502选择性图案化以形成导孔的孔洞504。举例而言,通过使用光微影方法,并且接着垂直地蚀刻上部介电层502,以形成导孔的孔洞504,其在这些介电层402内延伸至导电线路110的上表面,以达成图案化。图6说明一些实施例剖面的示意图600,其显示将上部介电层502图案化以形成沟槽。在一些实施例中,在上部介电层502的中央区604内形成金属区沟槽602,并且在上部介电层502的外部区608形成接合垫沟槽606。一旦形成接合垫沟槽606,接合垫沟槽606与外部区608被上部介电层502隔开。图7说明一些实施例的剖面示意图700,其显示在上部金属层706内形成金属区702和接合垫704。如剖面示意图700所示,将导电材料填入导孔的孔洞504、金属区沟槽602和接合垫沟槽606,以分别形成导孔114、金属区702和接合垫704。在一些实施例中,可使用金属沉积制程及/或电镀工艺(例如,电极电镀或无电极电镀等)来形成导孔114、金属区702和接合垫704。在一些实施例中,金属区702和接合垫704的金属与用于介电结构108内的导电线路110的金属为相同种类。在一些实施例中,金属区702和接合垫704可包括例如钨、铜或铝铜。在一些实施例中,在金属沉积步骤之后可接续化学机械研磨(chemicalmechanicalplanarization,cmp)工艺。化学机械研磨(cmp)工艺移除沉积于上部介电层502的上表面上的多余金属,以产生平坦上表面,其由金属区702、接合垫704和上部介电层502暴露出的上表面组成。上部介电层502将金属区702与接合垫704电性隔离。图8说明一些实施例的剖面示意图800,其显示在形成掩膜层802覆盖包含上部金属层706内的外部区608和金属区702的选择区域。例如可通过使用光微影方法形成掩膜层802,以选择性覆盖金属区702的一或多个区域。覆盖的区域将对准于一或多个导孔114之上。覆盖的区域也对准于上方的微机电系统装置层124的可移动块状物122底下,微机电系统装置层124后续接合至接合垫704。图9a说明一些实施例的剖面示意图900,其显示通过溅镀蚀刻技术902的动作形成抗静摩擦板128。溅镀蚀刻技术902可包括高轰击蚀刻工艺,其包括溅镀蚀刻、离子蚀刻、电浆蚀刻或干式蚀刻。采用掩膜层802在适当的位置(以虚线显示)实施溅镀蚀刻技术902,并且使金属区702受到蚀刻。通过高能粒子或气体离子轰击,溅镀蚀刻技术902使金属粒子自金属区702射出,从金属移出的原子至少部分地再沉积于掩膜层802的侧壁上。再沉积的原子与金属区702的被掩膜层802覆盖的下方金属桥接,并且形成凸起边缘132,凸起边缘132至少部分地围绕被遮蔽区域的外围。在一些实施例中,除了被掩膜层802覆盖的金属,或再沉积于掩膜层802的侧壁上且形成凸起边缘132的金属之外,金属自金属区702移除。如图9b的剖面示意图904所示,图9b为图9a的抗静摩擦板128和上部介电层502的一部份(图9a的圆圈部分)的放大示意图,在通过溅镀蚀刻技术902移除金属的工艺中,上部介电层502可能发生受到限制的侵蚀906至深度908。然而,在侵蚀906进行至大幅地损害上部介电层502的绝缘能力的深度之前,已经停止溅镀蚀刻技术902,上部介电层502的绝缘能力与金属区702和接合垫702的电性隔离相关,或与金属区702和这些导电内连线层(例如导电线路110和导孔114)的任何下方金属层的电性隔离相关。在一些实施例中,溅镀蚀刻技术902可包括蚀刻化学品,其具有的气体包含cf4、ch2f2、cl2、bcl3,及/或其他化学品。在一些其他实施例中,溅镀蚀刻技术902可包括离子蚀刻工艺,其使用氩气(ar)作为高能粒子之一。在一些实施例中,溅镀蚀刻技术902使用氩气(ar)电浆。在溅镀蚀刻技术902完成之后,接着移除或剥离掩膜层802。移除掩膜层802产生再沉积金属以形成凸起边缘132,其围绕抗静摩擦板128的外围,并且掩膜层802保护掩膜层802下方的平坦上表面128s。凸起边缘132的边缘高度208从金属区702的高度测量。边缘高度208作为障壁以防止可移动块状物122的平坦下表面122s接触抗静摩擦板128的平坦上表面128s。因此,在从上部金属层706选择性地移除金属的现有制程步骤中,已经产生有效的抗静摩擦部件。与已知产生抗静摩擦缓冲物的方法相对照,在此揭露的制程不需要额外的制程步骤且不需要额外的光微影工艺来塑造凸起边缘。图10绘示一些实施例的剖面示意图1000,其显示在至少凸起边缘132上方选择性形成钝化层204。在一些实施例中,可经由沉积工艺形成钝化层204。在其他实施例中,可通过热成长工艺在处理炉内形成钝化层204。形成钝化层204所使用的厚度和材料可依据钝化层204期望的功能和特性而变化。钝化工艺可包括形成顺应性涂层,此顺应性涂层可包括氧化物、氮化硅及/或树脂,树脂包括丙烯酸树脂(acrylicresins)、聚氨酯树脂(polyurethaneresins)、硅氧树脂(siliconeresins)、环氧树脂(epoxyresins)或聚对二甲苯树脂(paryleneresins)。在一些实施例中,钝化层204可强化凸起边缘132,并且增加凸起边缘132抵抗来自受到可移动块状物122影响的偏移或扭曲变形。在一些实施例中,钝化层204可防止凸起边缘132和抗静摩擦板128的平坦上表面128s的腐蚀或污染。在一些实施例中,钝化层204可改变凸起边缘132和/或抗静摩擦板1288的平坦上表面128s的磨擦系数及干滑动特性,并且可以根据可移动块状物122的材料特性进行最适化,以进一步减轻静摩擦。在一些实施例中,可在上部金属层706的中央区604上方设置钝化层204。在一些实施例中,可在抗静摩擦板128和凸起边缘132上设置钝化层204。图11说明显示微机电系统装置层124的剖面示意图1100。微机电系统装置层124包括微机电系统装置的固定部130,以及可移动块状物122连接至(未显示,在此平面之外)固定部130。微机电系统装置层124包括接合层103形成于微机电系统装置层124的外部和固定的区域上方。在一些实施例中,接合层103可包括金属。图12绘示剖面示意图1200,其显示覆盖基板126接合至翻转的微机电系统装置层124的上表面,此上表面与接合层103所在的面为相反面。微机电系统集成电路104包括微机电系统装置层124接合至覆盖基板126。在一些实施例中,覆盖基板126可由块材半导体晶片或其他基底制备,举例而言,块材半导体晶片包含单晶晶片,而其他基底由锗、碳化硅、第三族(iii)元素及/或第五族(v)元素制成。在一些实施例中,在覆盖基板126中蚀刻出凹陷1202,凹陷1202的位置对应于微机电系统装置层124的可移动或弹性部分。除了其他考量之外,形成界定出凹陷1202的突出部1204的适用高度须考量在将形成的微机电系统装置的可移动或弹性部件与相邻的组件之间提供充足的运动空间。在一些实施例中,可将微机电系统装置层124图案化以形成微机电系统装置,其包含可移动块状物122。举例而言,微机电系统装置可包含微型致动器或微型感测器,例如微型阀、微型开关、麦克风、压力感测器、加速度器、椭圆仪或任何其他装置,这些装置具有可移动或弹性零件相对于固定部移动或弯曲。图13说明将微机电系统集成电路104接合至互补式金属氧化物半导体集成电路102的剖面示意图1300。将微机电系统集成电路104的接合层103接合至互补式金属氧化物半导体集成电路102的接合垫704,并且接合垫704与位于介电结构108上方的抗静摩擦板128电性隔离。微机电系统集成电路104与上部介电层502共同定义出空腔120,并且微机电系统集成电路104的可移动块状物122安排于空腔120内且在抗静摩擦板128上。在一些实施例中,通过半导体对金属的接合将微机电系统集成电路104和互补式金属氧化物半导体集成电路102接合,其中接合层103包括金属材料,例如al、cu、ti、ta、au、ni或sn,且互补式金属氧化物半导体集成电路102的接合垫704包括半导体材料,例如ge、si或sige。在一些其他实施例中,通过两种金属材料之间的共晶(eutectic)接合将微机电系统集成电路104和互补式金属氧化物半导体集成电路102接合,每一种金属材料包括al、cu、ti、ta、au、ni、sn或其他金属中的至少一者。在这样的实施例中,要接合的材料在退火工艺中彼此互相施压,以形成共晶相的材料。举例而言,在退火温度从400℃至450℃的范围内形成ge和al之间的共晶接合。在一些实施例中,在微机电系统集成电路104接合至互补式金属氧化物半导体集成电路102之后,形成微机电系统集成电路封装体100,当接合的微机电系统集成电路104和互补式金属氧化物半导体集成电路102通常以晶片级(waferlevel)接合时,在接合后切割成分开的晶片。图14说明微机电系统封装体的制造方法的一些实施例的流程图1400,此微机电系统封装体具有凸起边缘的抗静摩擦板。尽管通过流程图1400并且在此描述为一系列的动作或事件来说明本发明实施例的方法,但可以理解的是,并未意图将这样的动作和事件的说明顺序用来限制本发明实施例。举例而言,一些动作可以不同的顺序发生及/或与在此说明及/或描述以外的其他动作或事件同时发生。此外,并非所有说明的动作都用来实施在此所述的一或多个观点或实施例。再者,在此所述的一或多的动作可用一或多个分开的动作或阶段来实施。在动作1402,提供互补式金属氧化物半导体集成电路(cmosic)。互补式金属氧化物半导体集成电路包括多个介电层形成于互补式金属氧化物半导体(cmos)基底上,且这些介电层围绕多个金属层。图4说明对应于动作1402的一些实施例的剖面示意图400。在动作1404,在这些介电层上方的上部介电层内形成上部金属层。图5至7说明对应于动作1404的一些实施例的剖面示意图500至700。在动作1406,在上部金属层上形成掩膜层。图8说明对应于形成掩膜层的一些实施例的剖面示意图800。在动作1408,选择性地蚀刻上部金属层以移除围绕掩膜层的金属。在一些实施例中,蚀刻工艺包括溅镀蚀刻技术。图9说明对应于动作1408的一些实施例的剖面示意图900。在动作1410,被蚀刻工艺移除的金属再沉积在掩膜层的侧壁上,以形成具有凸起边缘围绕平坦上表面的抗静摩擦板。凸起边缘高度超过抗静摩擦板的平坦上表面的高度。图9a至9b说明对应于动作1410的一些实施例的剖面示意图900和904。在动作1412,抗静摩擦板可选择性地涂布钝化层。图10说明对应于动作1412的一些实施例的剖面示意图1000。在动作1414,形成包括可移动块状物和覆盖基板的微机电系统集成电路。覆盖基板可包括凹陷以容纳可移动块状物的移动。图11和12说明对应于动作1414的一些实施例的剖面示意图1100至1200。在动作1416,将微机电系统集成电路接合至互补式金属氧化物半导体集成电路于接合垫处,接合垫与抗静摩擦板电性隔离且位于这些介电层上。将微机电系统集成电路接合至接合垫的动作形成空腔在微机电系统集成电路与这些介电层之间。微机电系统集成电路的可移动块状物安排于空腔内且在覆盖抗静摩擦板上。图13说明对应于动作1416的一些实施例的剖面示意图1300。鉴于前述说明,本发明的一些实施例提供微机电系统(mems)封装体,其包括互补式金属氧化物半导体积体(cmos)晶片(ic),此互补式金属氧化物半导体集成芯片(cmosic)包括互补式金属氧化物半导体(cmos)基底和介电结构设置于cmos基底上方。介电结构围绕多个导电内连线层。微机电系统集成芯片(memsic)设置于介电结构上方且接合至介电结构,其中微机电系统集成芯片(memsic)与介电结构的降低中央部共同界定出空腔,并且其中微机电系统集成芯片(memsic)包含可移动块状物安排于空腔内。抗静摩擦板介于可移动块状物与介电结构的降低中央部之间。抗静摩擦板由导电材料制成,且抗静摩擦板包括凸起边缘围绕大致上平坦上表面的外围的至少一部份。再者,本发明的其他一些实施例提供微机电系统(mems)封装体,其包括互补式金属氧化物半导体集成芯片(cmosic),此互补式金属氧化物半导体集成芯片(cmosic)包括互补式金属氧化物半导体(cmos)基底和介电结构设置于cmos基底上方,其中介电结构围绕多个导电内连线层。微机电系统(mems)装置层设置于介电结构的凸起外部上方且接合至凸起外部,凸起外部围绕介电结构的凹陷表面。微机电系统(mems)装置层包括固定部和可移动块状物连接至固定部。覆盖基板设置于微机电系统装置层的背面上方并且与其接合,微机电系统装置层的背面与介电结构所在的面为相反面,以在覆盖基板和介电结构之间围出空腔,并且可移动块状物安排于空腔内。固定电极安排于可移动块状物下方的凹陷表面上。固定电极由金属制成,且固定电极包括凸起边缘围绕大致上平坦上表面的外围。再者,本发明的其他一些实施例提供抗静摩擦装置的制造方法,此方法包括提供互补式金属氧化物半导体集成芯片(cmosic),其包括多个介电层形成于互补式金属氧化物半导体(cmos)基底之上。这些介电层围绕多个金属层。此方法还包括在这些介电层之上形成上部金属层,以及在上部金属层之上形成掩膜层。此方法还包括选择性地蚀刻上部金属层以移除围绕掩膜层的金属,且在掩膜层的侧壁上再沉积移位的金属至高度超过上部金属层的高度,以形成抗静摩擦板,其具有再沉积金属的凸起边缘围绕平坦上表面。此方法还包括将微机电系统集成芯片(memsic)接合至接合垫,接合垫与抗静摩擦板电性隔离,且位于这些介电层之上。微机电系统集成芯片与这些介电层共同界定出空腔,并且微机电系统集成芯片包括可移动块状物安排于空腔内且在抗静摩擦板上。前文概述了一些实施例的部件,使得本领域技术人员可以更加理解本发明实施例的观点。本领域技术人员应可理解,他们可以轻易使用本发明实施例作为基础,设计或修改其他的制程或是结构,以达到与在此介绍的实施例相同的目的及/或优点。本领域技术人员也应理解,此类等效的结构并不悖离本发明的精神与范畴,并且在不悖离本发明的精神与范畴的情况下,在此可以做各种的改变、取代和替换。因此,本发明的保护范围当视后附的申请专利范围所界定为准。当前第1页12当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1