一种锆钛酸铅铁电薄膜光电极及其制备方法与流程

文档序号:15859306发布日期:2018-11-07 11:29阅读:549来源:国知局
一种锆钛酸铅铁电薄膜光电极及其制备方法与流程

本发明属于半导体光电催化电极材料,具体是指一种基于溶胶凝胶法制备锆钛酸铅铁电薄膜光电极及其制备方法。

背景技术

在最近一个世纪的时间内,人类的科技和生活都取得了巨大的进步,无论是在工业、农业还是在商业等方面,都经历着日新月异的改变,但随之而来的环境问题和能源问题渐渐成为了制约社会发展的主要因素,为了人类世界的可持续发展,人们开始积极应对环境和能源带来的巨大挑战,积极地寻求清洁、可再生的能源来代替污染环境且不可再生的化石燃料。太阳能作为一种已被广泛应用的可再生能源,有取之不尽用之不竭的巨大优点,而如何利用随处可见的太阳能,就成为了人们亟待解决的重大问题。在近半个世纪的研究中,人们发现,半导体光催化是一种绿色环保,且可以被广泛应用于太阳能转化方面的化工技术。针对这一前景光明的催化技术,科学家们进行了长期深入的探索,发现以二氧化钛为代表的半导体光催化剂虽然已经可以较为成熟地应用于光催化制氢领域中,但普遍存在光响应带宽窄、电子空穴复合率高、稳定性差、量子效率低等缺点,因此如何有效解决这些问题,成为了后期人们研究的重点。

锆钛酸铅(pzt)具有典型的abo3型钙钛矿结构,且在介电、压电方面具有显著的优点。pzt的居里温度较高,因此具有较好的稳定性;pzt有较高的介电常数和电阻率,以及较高的热释电系数和较低的介质损耗,因而具有较高的热释电优值因子;另外,如果要改善pzt薄膜的铁电、压电性能,可通过掺杂或单纯改变pzt薄膜中zr/ti的化学计量比的方式来实现。这种具有很高应用价值的光电极材料一般可采用溶胶-凝胶法、磁控溅射法、脉冲激光沉积法等方式来制备,其中,溶胶-凝胶法是应用最广泛的方法。这是一种条件较为温和的材料制备方法,这种方法首先将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,之后变成溶胶,进而生成具有一定空间结构的凝胶,经过干燥和热处理来制备出纳米粒子和所需要的材料。其前驱体一般为金属的有机盐或无机盐化合物,溶剂一般为水或者有机溶剂,这样将原料分散到溶剂中而形成低粘度的溶液,可以在很短的时间内获得分子水平的均匀性,有利于反应物之间在分子水平上进行均匀混合。

pzt铁电材料由于其良好的铁电性、介电性、压电性、热释电性和光电效应等,被广泛应用于无线存储设备、压力传感器、热释电红外探测器以及dram半导体存储器件。近年来,随着制备工艺的改进,研究人员已经能制备出性能优异,且厚度很小的pzt铁电薄膜,同时可保证其铁电性能仍然很优异。而目前,对于如何得到均匀性好,粘附性好、同时又具有优异的光催化性能的铁电薄膜的研究,还并不成熟,有待进一步探究。



技术实现要素:

本发明基于对目前pzt铁电材料在光电化学性能方面的缺陷和不足的分析,改进了之前的光电极制备方法,提出了一种新的能对更宽波长范围紫外可见光产生光电响应的pzt薄膜光电极及其制备方法,该工艺制备方法简单,成本低廉,重复性好,制备的pzt薄膜光电极的光电性能良好,且具有较高的光电转换效率,优点显著。

为达到上述发明目的,本发明采用了如下的技术方案:

一种锆钛酸铅铁电薄膜光电极,包括导电基底、锆钛酸铅薄膜以及二者之间的金膜。

优选地,所述导电基底为fto导电玻璃,其导电层厚度为150~200nm,所述锆钛酸铅薄膜的厚度为350~400nm,锆钛酸铅的组成为pb(zr0.20ti0.80)o3,所述金膜的厚度为50~80nm。

上述锆钛酸铅铁电薄膜光电极的制备方法,包括如下步骤:

(1)导电基底的预处理:将导电基底进行清洗备用;

(2)蒸镀金膜:在所述导电基底上蒸镀金膜;

(3)制备pzt前驱液:选用三水醋酸铅、异丙醇锆、钛酸四丁酯、冰醋酸和乙二醇甲醚配制pzt前驱液;

(4)制备pzt薄膜:在所述金膜上旋涂pzt前驱液,并进行退火和煅烧处理;

(5)封装:制得光电极。

进一步优选地,所述pzt前驱液的制备方法为:将所述三水醋酸铅溶于冰醋酸,加热去结晶水;然后将钛酸四丁酯、异丙醇锆、冰醋酸与乙二醇甲醚的混合溶液加入到上述冰醋酸溶液中,搅拌均匀后冷藏一周,得pzt前驱液。

进一步优选地,冰醋酸总体积与乙二醇甲醚的体积比为1:1~1.5;两个步骤中所用冰醋酸的体积比约为7~8:1,所述pzt前驱液的浓度以锆计为0.2~0.3mol/l。

进一步优选地,步骤(4)中,分两步旋涂pzt前驱液,第一步旋涂转速为800~1000r/min,旋涂时间为5~8s,第二步旋涂转速为3000~3500r/min,旋涂时间为30~35s。

进一步优选地,步骤(4)中所述退火为两步退火,第一步退火温度为150~160℃,退火时间为3~4min;第二步退火温度为400~420℃,退火时间为5~6min。所述煅烧为:在空气气氛中将温度从室温均匀升温至550~600℃,升温时间3~3.5h,而后在550~600℃下保温2~2.5h。

进一步优选地,步骤(2)中所述旋涂和退火交替进行10~12次。

进一步优选地,步骤(5)中所述封装为用环氧树脂ab胶进行基底四周封装。

本发明还提供所述锆钛酸铅铁电薄膜光电极的光电性能检测方法,具体为:以所述锆钛酸铅铁电薄膜光电极为工作电极,以铂电极为对电极,以ag/agcl电极为参比电极,电解质溶液为0.1mol/lna2so3溶液,在模拟太阳光am1.5(100mw/cm2)照射条件下,扫描速度为0.005v/s,通过电化学工作站测试所述pzt铁电薄膜光电极的光电化学性能。

本发明制备的pzt薄膜光电极中,金膜可以优化器件表面上光的分布,使其更集中于pzt薄膜表面,且加入金膜之后的样品电场分布更强,且光吸收谱出现红移。由于金有表面等离激元作用,因此金膜中的热电子会转移到与它接触的半导体材料的导带中,增加该半导体材料导带中的载流子浓度,从而加强整个膜系的光吸收效率,具有更高的光电流响应,宏观上即表现为光电流的增大和可见光范围的扩大,在1.0v(vs.ag/agcl)的电压条件下光电流密度可达200μa/cm2,而不加金膜的pzt薄膜光电极在1.0v(vs.ag/agcl)条件下光电流密度仅为5μa/cm2。现有技术中有在pzt薄膜制备中加入氯化金进行反应的,但金分散在薄膜中远远达不到本发明相应的技术效果。

本发明所述的pzt薄膜光电极的制备工艺简单,成本低,所得的薄膜均匀性好,通过多次测试得到的大量数据得出,以上工艺制备所得的pzt薄膜光电极具有良好的紫外可见光吸收性能,且稳定性和光电转换效率较之前的工艺也有明显提高。

附图说明

图1为本发明实施例1制备的fto/au/pzt薄膜光电极的截面扫描电镜图。

图2为本发明实施例1制备的fto/au/pzt薄膜光电极在断续光源下的电流密度-电压曲线。

图3为本发明对比例1制备的pzt薄膜光电极在断续光源下的电流密度-电压曲线。

图4为本发明对比例1制备的pzt薄膜的x射线衍射(xrd)分析图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

实施例1

1、基底预处理:

首先将长、宽均为1.5cm、厚度为0.1cm的fto导电玻璃先用洗洁精清除表面油污,再分别用丙酮、异丙醇和去离子水各超声清洗20min,氮气吹干备用。

2、蒸镀金膜:

将清洁干净的导电基底小心地放入蒸镀槽内,按照正确的方式置于蒸镀仓内,将蒸镀仓抽真空至2×10-4pa后进行蒸镀,控制蒸镀电流和蒸镀速度,在基底上均匀地蒸镀金膜,其厚度约为50nm,然后取出基底,保存于培养皿中待用。

3、pzt前驱液制备:

选用三水醋酸铅[pb(ch3coo)2·3h2o],异丙醇锆[zr((ch3)2cho)4]和钛酸四丁酯[ti(oc4h9)4]作为前驱液的原材料,用冰乙酸[ch3cooh]和乙二醇甲醚[hoch2ch2och3]作为溶剂(两溶剂体积比约为1:1)。

(1)称取16.6904g的粉末状三水醋酸铅和60g的冰醋酸,加热至沸腾去结晶水至40g,并自然冷却。

(2)按照比例称取64g乙二醇甲醚、8g冰醋酸、3.0613g异丙醇锆、10.8916g钛酸四丁酯,在烧杯中混合均匀,置于热台上110~120℃加热,并通过磁力搅拌器进行充分搅拌至溶解,同时将(1)步骤中的乙酸铅溶液缓慢倒入此烧杯中。用16g乙二醇甲醚分两次洗涤乙酸铅溶液烧杯,并将洗涤液倒入混合溶液中。

(3)将混合溶液在室温下搅拌一小时,得到均一稳定的pzt前驱液。将混合液置于冰箱中0~5℃冷藏一周后即可使用。

4、pzt薄膜制备:

将已经蒸镀过金膜的导电基底固定在匀胶机吸盘上,在金膜表面滴上一定量制备好的前驱体溶液,进行两步旋涂:第一步以1000r/min的转速旋涂5s;第二步以3000r/min的转速旋涂30s,得到湿膜;将湿膜在加热台上进行两步退火:第一步置于150℃的加热台退火3min,以除去大部分溶剂;第二步置于400℃的加热台退火5min,得到凝胶膜;重复旋涂和退火步骤10次,薄膜厚度为365.7nm。将得到的薄膜置于马弗炉中煅烧,在空气气氛中从室温均匀升温至600℃,升温时间为3h,而后在600℃下保温2h,煅烧过程结束后自然冷却,即得镀金pzt薄膜。

5、光电极封装制备:

最后用ab环氧树脂胶对所得电极进行基底四周封装,封装电极需置于空气中干燥至少24h。该电极的截面扫描电镜图如图1所示。

对比例1

除未蒸镀金膜外其余均与实施例1相同。图4为该对比例制备的pzt薄膜样品经x射线衍射仪测试所得的xrd图谱,即采用本发明旋涂pzt的方法所制备的样品的xrd图谱的所有衍射峰位置与国际衍射数据标准卡jcpdsno.51-0253相符合,且无其他杂峰,表明所制备的样品是具有正交晶系钙钛矿结构的pzt,且结晶度良好,晶型完整。

电极光电化学性能检验

采用三电极系统对pzt薄膜电极进行光电流测试。分别以实施例1和对比例1的pzt薄膜电极为工作电极,以铂电极为对电极,以ag/agcl电极为参比电极,电解质溶液为0.1mol/lna2so3溶液,在模拟太阳光am1.5(100mw/cm2)照射条件下,扫描速度为0.005v/s,通过电化学工作站测试所述pzt薄膜光电极的光电化学性能。结果分别见图2和图3所示,可见实施例电极在1.0v(vs.ag/agcl)条件下光电流密度为200μa/cm2,而对比例1仅为5μa/cm2

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,本发明保护范围内的其他条件均可达到实施例1相当的效果,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1