一种析氧光阳极材料的制备方法

文档序号:30527082发布日期:2022-06-25 07:58阅读:197来源:国知局
一种析氧光阳极材料的制备方法

1.本发明属于光电化学水分解光电极材料制备技术领域,具体涉及一种析氧光阳极材料(钙钛矿型钡钽氮氧化物薄膜)的制备方法。基于双源电子束沉积法直接在导电基底上制备钡钽氮氧化物前驱体薄膜,然后通过高温氮化法制备钡钽氮氧化物薄膜,并将其运用于光电化学水分解反应。


背景技术:

2.由于日益增长的能源需求和环境问题亟待解决,开发和利用可再生能源成为经济社会可持续发展的必然选择。将太阳能转化为氢能被认为是一种有前途的可持续和环境友好的战略。光电化学(pec)水分解是一种利用半导体材料吸收太阳能将水转化为氢气和氧气的技术。半导体材料制备的光电极是pec水分解反应的关键组件,在各种半导体材料中,钙钛矿型氮氧化物半导体ab(o,n)3(a=ba,sr,ca,la;b=ta,nb,ti)引起了广泛的关注,不同a位和b位过渡金属的组合可以有效地调节带隙宽度,广泛利用可见光。其中钙钛矿型batao2n具有1.8ev的窄带隙和合适的带边位置,其导带和价带位置可以跨越水分解的还原和氧化电位,理论上允许在无外加偏压的条件下实现pec水分解,所以在光电化学水分解领域得到了广泛的研究。
3.目前,主要利用ba-ta氧化物前驱体粉末,通过电泳沉积法、颗粒转移法或水热合成法在导电基底上制备ba-ta氧化物前驱体薄膜,再经过高温氮化过程转变为batao2n薄膜。然而ba-ta氧化物前驱体粉末在反应溶液中分散均匀性较差,无法在导电基底上均匀生长成膜,并且无法精确控制成膜的厚度及方向,实验操作的可重复性较差。同时,ba-ta氧化物前驱体粉末与导电基底之间的附着性较差,会导致两者之间的电荷转移效率较差和缺陷密度较高,限制了batao2n光阳极的光电化学水分解性能。因此,需要探寻一种新的析氧光阳极材料(batao2n薄膜)制备方法。


技术实现要素:

4.针对上述存在问题或不足,为提升batao2n薄膜析氧光阳极材料生长的均匀性、结晶度和电荷转移率,抑制batao2n薄膜内部的缺陷密度;本发明提供了一种析氧光阳极材料的制备方法,不采用氧化物前驱体粉末制备,有效克服了当前的行业技术问题。
5.一种析氧光阳极材料的制备方法,具体步骤如下:
6.步骤1、清洁金属基底。
7.步骤2、将ba源和ta源放入双源电子束沉积系统的坩埚中,并将步骤1中清洁的金属基底放入电子束沉积系统的样品台中,将系统抽真空至真空度高于8
×
10-6
torr。
8.步骤3、利用两个石英微晶检测天平分别检测ba源和ta源的沉积速率和沉积厚度,设置ba/ta原子比为1-3,利用双源电子束沉积系统以同时开始并同时结束的方式在金属基底制备钡钽化物前驱体薄膜。
9.步骤4、将步骤3中制备好的钡钽化物前驱体薄膜装入石英舟中并密封于高温管式
炉中,在1074-1474k下进行高温氮化,即可制得batao2n纳米颗粒薄膜的析氧光阳极材料。
10.进一步的,所述高温氮化具体为:首先在惰性气体(如n2)气氛中以1-20k/min的速度升温至1074-1474k;然后在nh3气氛中保温6-40h,随后以1-20k/min的速度降温至室温。
11.本发明利用双源电子束沉积法和高温氮化法直接在金属基底上制备batao2n纳米颗粒薄膜的析氧光阳极材料。可通过调控双源电子束沉积过程中最佳ba/ta原子比和沉积的薄膜厚度对最终的batao2n纳米颗粒薄膜精准调参,工艺重复性高,并且所得薄膜结晶度高、分布均匀,能够有效抑制低价ta缺陷浓度和杂质相的形成,应用于光电化学水分解反应效果优异。
附图说明
12.图1为实施例1、2、3中batao2n纳米颗粒薄膜的xrd图谱;
13.图2为实施例1、2、3中batao2n纳米颗粒薄膜的xrd图谱的(110)衍射峰的fwhm值;
14.图3为实施例1中batao2n纳米颗粒薄膜的sem图像;
15.图4为实施例2中batao2n纳米颗粒薄膜的sem图像;
16.图5为实施例3中batao2n纳米颗粒薄膜的sem图像;
17.图6为实施例1、2、3中batao2n纳米颗粒薄膜的xps图谱;
18.图7为本发明制备工艺程图。
具体实施方式
19.下面结合附图和实施例对本发明做进一步的详细说明。
20.实施例1:
21.步骤1、将金属nb基底和石英玻璃基底分别按照精密洗涤剂、去离子水、丙酮、异丙醇的顺序依次超声清洗15min。其中金属nb基底还使用刻蚀液体(hf、hno3、h2o按照体积比1:2:7配制而成)刻蚀2min,以去除金属nb基底表面的氧化层,然后使用去离子水冲洗干净,并用高纯氮气枪将基底吹干。
22.步骤2、使用baf2和ta2o5分别作为ba源和ta源放入双源电子束沉积系统的坩埚中,并将上述步骤1清洗干净的金属nb基底和石英玻璃基底放入电子束沉积系统的样品台中,待系统抽真空至5
×
10-6
torr。
23.步骤3、使用两个石英微晶检测天平分别检测baf2和ta2o5的沉积速率,固定ta2o5的沉积速率为及沉积厚度为300nm,设置baf2的沉积速率为以使得钡钽化物前驱体薄膜中ba:ta原子比为1.5:1,最终利用双源电子束沉积系统在金属nb基底和石英玻璃基底上分别制备钡钽化物前驱体薄膜。
24.步骤4、将上述步骤3制备好的钡钽化物前驱体薄膜分别装入石英舟中并密封于高温管式炉中在1274k下进行高温氮化,首先在n2气氛中以10k min-1
的速度升温至1274k,然后在nh3气氛中保温10h,随后以10k min-1
的速度降温至室温,在金属nb基底和石英玻璃基底分别制得batao2n纳米颗粒薄膜。
25.实施例2:
26.同实施例1,将步骤3中baf2的沉积速率设置为以使得钡钽化物前驱体薄膜中ba:ta原子比为2.0:1,经过同实施例1中的高温氮化过程,制备得batao2n纳米颗粒薄
膜。
27.实施例3:
28.同实施例1,将步骤3中baf2的沉积速率设置为以使得钡钽化物前驱体薄膜中ba:ta原子比为2.5:1,经过同实施例1中的高温氮化过程,制备得batao2n纳米颗粒薄膜。
29.对于以上3个实施例的结果进行测试分析:
30.图1为实施例1、2、3所得batao2n纳米颗粒薄膜的xrd图谱;表明通过双源电子束沉积法可以制备出纯相的batao2n,在ba/ta原子比较低的情况下会存在少量ta3n5杂相,但是ba/ta原子比增大可以抑制杂相的形成。
31.图2为实施例1、2、3所得batao2n纳米颗粒薄膜的xrd图谱的(110)衍射峰的fwhm值;表明双源电子束沉积法制备出batao2n的xrd图谱的(110)衍射峰的fwhm随ba/ta原子比的增大而降低,batao2n的结晶度和晶粒大小增加。
32.图3、4、5分别为实施例1、2、3所得batao2n纳米颗粒薄膜的sem图像;表明batao2n纳米颗粒薄膜中纳米颗粒的尺寸随着ba/ta比值的增加而增加,纳米颗粒之间的形状变得清晰,纳米颗粒的结晶度得到提升。然而ba/ta比值进一步增加,纳米颗粒薄膜变得不那么紧密地包覆,即随着ba/ta比的增加,颗粒内部电荷转移效率更高,但颗粒与颗粒间电荷转移效率较低。
33.图6为实施例1、2、3中batao2n纳米颗粒薄膜的xps图谱;表明ta4+/ta5+的比值随着ba/ta原子比的增加而降低,说明ba含量的增加可以降低低价ta缺陷浓度。
34.通过以上实施例可见:本发明利用双源电子束沉积法通过调控钡钽化物前驱体薄膜中不同ba/ta原子比,经过高温氮化过程即可制备出结晶度高和颗粒分布均匀的高质量batao2n纳米颗粒薄膜的析氧光阳极材料,并且通过ba含量的增加有效抑制薄膜中杂质相和低价ta缺陷浓度的形成,为batao2n薄膜的析氧光阳极材料制备提供了新的高质量方法。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1