具有旋转输入控制的电动螺丝起子的制作方法

文档序号:5345740阅读:276来源:国知局
专利名称:具有旋转输入控制的电动螺丝起子的制作方法
技术领域
本发明总体上涉及诸如电动螺丝起子的电动工具,特别是涉及根据旋转的使用者输入控制工具输出轴旋转的控制方案。
背景技术
在当今的电动工具中,电动工具可通过输入开关的使用而控制工具输出。这可为数字开关的形式,其中使用者通过压按钮以全额输出的方式导通工具且通过释放按钮而截至工具。更加普遍的是,它为模拟触发器开关的形式,其中提供给工具电动机的电力是触发器行程的函数。在这样的两种构造中,使用者握紧工具且使用一个或多个手指来促动开关。使用者的手指必须沿着一个轴线性地行进以控制关于不同轴的旋转运动。这使使用者难于直接比较触发器行程来输出旋转并且进行用于较好控制的快速调整。该控制方法的另一个问题是估计连接坚固上的困难。随着连接变得较紧,扣件变得更加难以较远地运动进入材料。因为工具的电动机试图连续旋转,而输出轴变慢,使用者的手腕上可感觉到反作用扭矩,因为使用者增加了偏转力以试图保持电动工具静止。在这样的现有技术的设置中,使用者必须在用手指进行适当控制调整前首先用手腕感知到坚固程度。该部分提供与本发明相关的不必为现有技术的背景技术信息。

发明内容
本发明提供操作电动工具的改进方法。该方法包括采用该电动工具中设置的旋转运动传感器监测该电动工具的旋转运动;决定该旋转运动关于该纵轴的方向;以及在与该工具的所检测的旋转运动相同的方向上驱动该输出轴,其中该输出轴由位于该电动工具中的电动机驱动。该部分提供本公开的总体概述,而不是其全部范围或其全部特征的全部公开。适用性的进一步方面通过这里提供的描述变得明显易懂。该概述中的描述和特定示例旨在仅用于说明的目的,而不意味着限制本公开的范围。


图I是示范性电动螺丝起子的透视图;图2是图I的螺丝起子的纵向截面图;图3是图I的螺丝起子的透视图,其手柄设置在枪把手位置;图4是图I的电动工具的分解透视图5A-5C是部分截面图,描述促动图I的螺丝起子的触发器组件的不同方法;图6A-6C是触发器组件的示范性实施例的透视图;图7是电动螺丝起子的示范性实施方案的示意图;图8A-8C是电动螺丝起子的示范性控制方案的流程图;图9A-9E是示出电动螺丝起子可采用的不同控制曲线的图线;图10是描述向工具操作者提供感觉反馈的示范性脉冲方案的示意图;图11是描述用于校准设置在电动螺丝起子中的回转装置的自动化方法的流程图; 图12是图I的电动螺丝起子的局部截面图,示出了第一和第二壳体部分之间的界面;图13A-13C是示出电动螺丝起子中所用的示范性锁定杆组件的透视图;图14A-14C是示出在螺丝起子从“手枪”方案到“直线”方案的构造期间锁定杆组件运行的局部截面图;以及图15是防止电动螺丝起子中摆动状态的示范性方法的流程图。图16是描述选择性触发器组件的部分截面图。图17A-17C是示出选择性导通/截止以及检测机构的截面图。图18是工具的另一个示范性控制方案的流程图。图9A-9B是示出示范性自锁定行星齿轮装置的示意图。这里描述的附图仅用于选择实施例的说明目的而不是所有可能的实施方案,不意味着限制本发明的范围。对应的参考符号遍及几个附图表示对应的部分。
具体实施例方式参考图I和2,示范性电动螺丝起子总体上由参考标号10表示。螺丝起子10总体上包括构造为关于纵向工具轴8旋转的输出构件11和可驱动连接到输出构件11以给其旋转运动的电动机26。工具的运行由触发器开关、旋转速度传感器和控制器以下面描述的方式控制。卡盘或某些其它类似的工具保持器可固定到输出构件11的端部。关于示范性钻头固定器的进一步细节阐述在美国专利申请No. 12/394, 426中,其通过引用结合于此。下面进一步描述构造螺丝起子10所需的其它部件。尽管下面的描述参考螺丝起子10而提供,但是可理解本发明的广泛方面可应用于其它类型的电动工具,包括但不限于与工具的输出构件共中心对齐的细长外壳的工具。螺丝起子10的外壳组件优选还包括第一外壳部分12和第二外壳部分14。第一外壳部分12限定工具的把手,并且可安装到第二外壳部分14。第一外壳部分12关于第二外壳部分14可旋转。在第一设置中,第一和第二外壳部分12、14沿着工具的纵轴彼此对齐,如图I所示。该设置这里称为〃直线(inline) 〃构造。螺丝起子10还可构造成〃手枪类型(pistol type) 〃布局,如图3所示。该第二设置通过按压设置在第二外壳部分14侧部的旋转释放机构130而实现。在下压释放机构130时,第一外壳部分12关于第二外壳部分14旋转180度,因此导致〃手枪类型〃设置。在第二设置中,第一和第二外壳部分12、14形成凹陷的细长凹槽6,其从工具的一侧在后面周围连续延伸到工具的另一侧。通过将食指放在相对侧上的凹槽6中,工具操作者可更好地握紧工具,并且手掌直接在纵轴8后的定位允许操作者更好地控制螺丝起子。参见图2和4,第一外壳部分12可由一对外壳壳体41、42形成,夕卜壳壳体41、42可共同限定内腔43。内腔43构造为容纳由一个或多个电池组成的可充电电池组44。用于电池端子与其它部件相互作用的电路板45固定地安装在第一外壳部分12的内腔43中。触发器开关50还可枢转地连接到第一外壳部分12。同样,第二外壳部分14可由一对外壳壳体46、47形成,外壳壳体46、47可共同限定另一个内腔48。第二外壳部分14构造为容放传动系组件49,传动系组件49包括电动机26、传动装置和输出构件11。传动系组件49可安装在 内腔48中,从而输出构件的旋转轴关于第二外壳部分14的纵轴共中心设置。一个或多个电路板45也固定地安装在第二外壳部分14的内腔48中(如图14A所示)。安装到电路板的部件可包括旋转速度传感器22、微型控制器24以及其它用于操作所述工具的电路。第二外壳部分14还构造为支撑旋转释放机构 130。参见图4、12、13和14,旋转的释放机构130可安装在第一或第二外壳部分12、14中。释放机构130包括锁定杆组件140,其与第一和第二外壳部分的另一个关联的一套锁定特征132接合。在示范性实施例中,锁定杆组件140可滑动地安装在第二外壳部分14内。锁定杆组件140优选定位为使其可由握紧工具的第一外壳部分12的手的拇指促动。还预期锁定杆组件的其它布置和/或其它类型的锁定杆组件。关于另外锁定杆组件的进一步细节请见2010年5月20日提交的美国专利申请No. 12/783,850,并且其通过引用结合于此。锁定杆组件140包括锁定杆142和偏置系统150。锁定杆142还限定为杆体144、两个推进构件148和成对限位构件146。推进构件148整体形成在杆体144的每一端上。杆体144可为具有其中容纳偏置系统150的腔室(pocket) 149的细长结构。腔室149可制作成偏置系统的特定构造。在示范性实施例中,偏置系统150包括两个销子152和弹簧154。每个销子152都插入弹簧154的相对端部中,并且包括用于保持销子在腔室中的整体环。当设置在腔室中时,每个销子的另一端突出通过杆体的端部中所形成的孔,使环定位在腔室的内壁和弹簧之间。限位构件146设置在杆体144的相对侧上,并且与杆体144整体形成。限位构件146还可限定为从杆体144的底表面向外延伸的环形段。在锁定位置上,限位构件146设置为接合成套的锁定特征132,成套的锁定特征132整体形成在第一外壳部分12的壳体组件上,如图14A清楚可见。偏置系统150运行为将锁定杆组件140偏置在锁定位置中。在该锁定位置中,限位构件146与锁定特征132的接合防止第一外壳部分相对于第二外壳部分旋转。为了促动锁定杆组件140,推进构件148突出通过在第二外壳部分14的每一侧上形成的推动构件孔。当锁定杆组件140由工具的操作者在任何一个方向上平移时,限位构件146滑动脱离与锁定特征132的接合,如图14B所示,因此能使第一外壳部分相对于第二外壳部分自由旋转。值得注意的是,推进构件148偏离第一外壳部分12与第二外壳部分14彼此相对旋转的中心轴。该设置产生帮助第二外壳部分14相对于第一外壳部分12旋转的转动惯量。工具操作者以单一的促动力可释放锁定杆组件140且连续旋转第二外壳部分。然后,使用者可连续旋转第二外壳部分(例如,180度)直到限位构件重新接合锁定特征。一旦限位构件146与锁定特征对齐,偏置系统150将锁定杆组件140偏置在锁定位置中,如图14C所示。本申请公开了一种用于螺丝起子10的改善的使用者输入方法,采用工具旋转来控制输出轴的旋转。在示范性实施例中,工具关于输出构件的纵轴的旋转运动采用电动工具中设置的旋转运动传感器监测。角速度、角位移和/或旋转方向可被测量,并且用作驱动输出轴的基础。最终形成的构造改善了传统输入方案的缺点。采用所公开的构造,控制输入和所形成的输出发生关于相同轴的旋转。这导致类似于使用手动螺丝起子的高度直觉控制。尽管下面的说明描述了关于输出构件的纵轴的旋转,但是易于理解控制输入可关于与工具相关的不同轴旋转。例如,控制输入可关于偏离输出轴但与其平行的轴甚或与输出构件的轴倾斜的轴。关于控制方案的进一步细节可见2010年I月7日提交的美国专利申请No. 61/292,966,并且通过引用结合于此。该类型的控制方案要求工具知晓何时操作者可能执行工作。一个可能的解决方案是工具的操作者促动开始工作的开关。例如,该开关可为工具外面上可接近的单极单投开关。当操作者将开关设置在ON位置时,工具被通电(即电池连接到控制器和其它电子部件)。仅在工具通电时检测且进行旋转运动。当操作者将开关设置在OFF位置时,工具被断电且不再运行。在示范性实施例中,工具操作者促动触发器开关50以开始工具运行。参见图5A-5C,触发器开关组件主要包括容纳至少一个瞬时开关53和偏置构件54的细长外壳52,偏置构件例如弹簧。细长外壳52由操作者可运动地连接到第一外壳部分12,方式为允许它关于任何的接触点平移和/或枢转。例如,如果工具操作者靠近外壳的顶部或底部下压,则触发器组件分别如图5A和5B所示枢转。如果工具操作者靠近外壳的中间下压,则触发器组件朝着工具主体向内平移,如图5C所示。在任何情况下,操作者施加给外壳52的力将压下至少一个开关从OFF位置到ON位置。如果有两个或更多个开关53,则开关53设置为彼此电并联(如图7所示),从而仅开关之一需要被促动以为给工具通电。当操作者释放触发器时,偏置构件54偏置外壳52远离工具,因此使每个开关返回到OFF位置。外壳的细长形状有助于操作者从不同的握持位置促动开关。可想象的是触发器开关组件50可包括多于两个的开关53和/或多于一个的偏置构件54,如图6A-6C所不。图16示出了选择性触发器开关组件50,其中相同的标号指代相同的部分。细长外壳52优选由外壳部分12接收,从而它仅能滑动在一个特定的方向A上。外壳52可具有斜坡52R。斜坡52R与滑动连杆55上的凸轮55R接合。滑动连杆55由外壳12接收,从而它可优选滑动在沿着基本上垂直于方向A的方向B上。滑动连杆55优选可旋转地连接到旋转连杆56。旋转连杆56可以通过柱56P可旋转地连接到外壳部分12。从而,当使用者沿着方向A运动外壳52时,斜坡52R沿着方向B运动凸轮55R(且因此滑动连杆55)。这导致旋转连杆56旋转且与瞬时开关53接触,动力驱动工具10。优选地,夕卜壳52接触弹簧54,弹簧54在与方向A相反的方向上偏置外壳52。类似地,滑动连杆55可接触弹簧55S,弹簧55S在与方向B相反的方向上偏置滑动连杆55。再者,旋转连杆56可接触弹簧56S,弹簧56S偏置旋转连杆56远离瞬时开关53。本领域的技术人员应认识到,因为开关53可设置为远离外壳52,所以电动机26可提供为相邻于外壳52和滑动连杆55,允许更加紧凑的布置方案。、
本领域的技术人员还应认识到,取代使用者激发离散的触发器组件50来动力驱动工具10,工具10可具有固有的开关组件。图17A-17B示出了一个这样的选择性的开关组件,其中相同的标号指代相同的部分。在该实施例中,包括电动机26、输出构件11和/或其间的任何传动部件的传动系组件49优选地装入外壳71中,并且制作为轴向平移在工具外壳12内。适当硬度的弹簧72在工具外壳中向前偏置动力传动系统组件71。瞬间按钮开关73设置为与动力传动系统组件71轴向对齐。当工具应用于扣件时,偏置负荷沿着工具的轴施加,并且动力传动系统组件71向后平移压缩弹簧且接触到按钮。在选择性示例中,动力传动系统组件保持静止,但围绕钻头的环74进行轴向平移且促动开关。促动开关的其它设置方案也是可预期的。在促动按钮73 (即设置为闭合状态)时,电池28通过动力调节电路连接到旋转运动传感器、控制器24和其它支持电子部件。参见图7,控制器24即刻导通旁路开关34 (例如,FET)。这能使工具的电子装置连续接收电源,甚至在释放按钮后。当工具与紧固件脱离配合时,弹簧72再一次向前偏置动力传动系统组件71,并且释放按钮73。在示范性实施例 中,在释放按钮73后,控制器24保持电力驱动预定的时间量(例如,10秒)。在此时间上,工具可应用于相同的或不同的紧固件而不断开工具的电源。一旦按钮73已经释放预定量的时间,控制器24将关闭旁通开关34,并且断开工具的电源。优选的是所希望的工具关闭和电子装置断开电源之间具有一定的延迟。这给驱动器电路时间以制动电动机从而避免电动机惯性运动。在图7所示的实施例的上下文中,按钮73的促动还用于复位(即设定到零)角度位置。电力驱动电子装置可通过按钮或用分开的开关控制。可拆卸和/或可充电的电池用作该实施例中的电源,尽管这里公开的概念也可应用于有绳工具。工具的运行状态可由在工具被电力驱动时会被点亮的发光二极管(LED) 35传送到工具操作者。LED 35可用于指示其它的工具状态。例如,闪动LED 35可在电流水平超出时或电池低位时给出显示。在选择性设置方案中,LED 35可用于照明工作表面。在该实施例中,工具可被动力驱动而不与扣件接合。从而,控制器可进一步构造为仅在按钮开关73被促动时驱动输出轴。换言之,输出轴仅在工具与紧固件接合时驱动,并且足够的偏转力施加到动力传动系统组件。控制规则系统可允许在去除紧固件时较小的偏转力。例如,如上所述,当足够的偏转负荷施加给动力传动系统组件时,输出轴可在相反的方向上驱动。一旦输出轴开始旋转,它不断开电源(与偏转力无关)直到检测到某些向前的旋转。这将允许操作者解开螺丝且降低施加为螺丝从材料退出的偏转负荷,而不因低的偏转力而使工具关闭。本公开也预期区别向前操作和相反操作的其它控制方案。还可使用非接触感应方法来控制工具的运行。例如,非接触传感器81可设置在工具相邻于钻头83的向前面向的表面82上,如图17C所示。非接触传感器81可在工具接近、应用于工件或从其收回时用于感应。光学或声学传感器是两种示范性类型的非接触传感器。同样,诸如加速计的惯性传感器可构造为感应工具的相对位置或加速度。例如,惯性传感器可检测工具沿着工具的纵轴朝着工件或远离工件的线性运动。该类型的运动可表示工件与工具的接合或者完成任务后移除工具。这些方法可更有效地感应接合的完成和/或决定何时关闭工具。本公开也期待感应方法的组合。例如,用于开启的一个感应方法和用于关闭的另一个方法。相应于施加给工件的力的方法可优选用于决定何时开启工具;然而,感应紧固件状态或工具远离应用的运动状态的方法可优选用于决定何时修改工具输出(例如,关闭工具)。设置在螺丝起子10的外壳中的部件包括旋转速度传感器22,其可在径向方向上与输出构件以及电连接到旋转速度传感器22和电动机26的控制器24在空间上分开,如图7中的示意性图示所示。电动机驱动电路25能使来自电池的电压在任何一个方向上施加给电动机。电动机26进而通过传动机构(未示出)可驱动地连接到输出构件11。在示范性实施例中,电动机驱动电路25是H-桥电路设置,尽管其它的设置方案也是可期待的。螺丝起子10也可包括温度传感器31、电流传感器32、速度计33和/或LED 35。尽管这里讨论了螺丝起子10的几个主要部件,但是可理解构造螺丝 起子可以需要其它部件。在示范性实施例中,旋转运动传感器22还限定为陀螺仪。该陀螺仪的操作原理基于科里奥利效应。简而言之,旋转速度传感器包括共振物质。当电动工具经受关于主轴的旋转运动时,共振物质根据科里奥利效应横向设置,从而横向位移与角速度直接成比例。值得注意的是物质的共振运动和物质的横向运动发生在垂直于旋转轴的旋转轴线定向的平面中。电容性感应元件于是用于检测横向位移,并且产生表示横向位移的应用信号。示范性旋转速度传感器是ADXRS 150或ADXRS300陀螺仪装置,可从Analog Devices商业采购。容易理解本公开期待着加速计、圆规、惯性传感器和其它类型的旋转运动传感器。还可想象传感器以及其它工具部件可结合在电池组中或与工具外壳接合的任何其它可拆卸件中。在操作期间,旋转运动传感器22监测传感器相对于输出构件11的纵轴的旋转运动。由控制器24实施的控制模块接收来自旋转运动传感器22的输入,并且根据来自旋转运动传感器22的输入驱动电动机26,且因此驱动输出构件11。例如,控制模块可在与工具的所检测到的旋转方向相同的方向上驱动输出构件11。如这里所使用,所述模块可指包括特定应用集成电路(ASIC);电子电路;结合逻辑电路;现场可编程门阵(FPGA);执行编码的处理器(共享、专用或成组);提供所述功能的其它适当部件;上面的一部分或全部的组合,例如芯片上系统或其一部分。所述模块可包括存储器(共享、专用或成组),其存储处理器执行的代码,其中如上所用的代码可包括软件、硬件和/或微码,并且可指程序、子程序、函数、类和/或目标。示范性控制方案80的功能还在下面关于图8A进行描述。在工具运行中,角位移可由控制器24根据从旋转运动传感器22接收的输入进行监测。在步骤81中,开始或参考点(Θ)初始化到零。于是,工具的任何随后的角位移相对于该参考点测量。在示范性实施例中,控制方案实施为设在存储器中的计算机可处理指令,并且由控制器24的处理器执行。于是,工具的角位移在步骤82被监测。在示范性实施例中,该角位移源自于角位移在时间上的速率或者由陀螺仪所提供的角速度(ωτ·)。尽管上述的旋转速度传感器目前优选用于决定工具的角位移,但是容易理解本公开不限于这种类型的传感器。相反,角位移可以其它方式和/或从其它类型的传感器获得。还应注意来自任何旋转速度传感器的信号可利用分立的电子部件在模拟域中滤波和/或利用软件滤波器进行数字滤波。在该提出的控制方案中,电动机根据旋转量以不同的旋转速度驱动。例如,角位移在84上与上限比较。当角位移超过上限θυτ (例如,旋转30度)时,电动机如在85处所表示以全速被驱动。角位移还在86上与下限比较。当角位移低于上限而超过下限(例如,旋转5度)时,电动机如在87处所表示的半速被驱动。容易理解控制方案可采用更大或更小的位移阈值以及以其它速度驱动电动机。角位移在步骤82上被连续监测。随后的控制决定基于相对于如在83处所示的启动点的绝对角位移。当工具的角位移保持在可应用的阈值之上时,那么保持电动机的运行速度。这样,保持工具的连续运行,直到工具返回到其原始位置。另一方面,当工具操作者在相反的方向上旋转工具并且工具 的角位移下降在(低于)下限之下时,工具的输出在48处被修改。在示范性实施例中,施加给电动机的电压在48上停止,因此终止了工具的运行。在选择性实施例中,电动机的驱动速度减小到某一最低水平,以允许主轴没有负荷进行旋转。修改工具输出的其它技术也是可预期的。阈值可包括滞后量;也就是,例如,下限设定在用于开启电动机的数值(例如,6度)但设定在与用于关闭电动机的不同数值(例如,4度)上。还应理解的是,仅相对于图8A讨论了所述方法的相关步骤,但是也需要其它的功能性以控制和处理系统的总体运行。该控制的变化方案80’如图SB所示。当角位移低于上限但超过下限(例如,旋转5度)时,电动机速度可总体上设定为角位移的函数,如87’所示。更具体地讲,电动机可设定为与全速成比例。在该示例中,电动机速度得自于线性函数。还应注意可采用更加复杂的函数来控制电动机速度,例如二次、指数或对数函数。在上述的任何一个控制方案中,可采用工具旋转的方向控制输出轴的旋转方向。换言之,工具的顺时针方向导致输出轴的顺时针方向;然而,工具的逆时针方向导致输出轴的逆时针方向。作为选择,工具可构造有能使操作者选择输出轴的旋转方向的开关。本领域的技术人员应认识到,旋转运动传感器22可采用不同的方式加以运用。例如,运动传感器22可用于检测故障状态且终止运行。一个这样的方案如图SC所示,其中,如果角位移大于上限Qu (步骤86),则它可有利于检查是否角位移超过第二上限0OT (步骤88)。如果超过这样的阈值,工具10的运行可终止(步骤89)。这样的设置在不应反转或在一定的方向上输出的工具中是重要的。这样的工具的示例包括台锯、动力割草机等。类似地,如果运动传感器22检测到意外的加速度,例如工具掉下时,可终止工具10的运行。作为选择,图8A-8C所示的控制方案可通过监测角速度而不是角位移而修改。换言之,当旋转的角速度超过上限时,例如,100° /秒,则电动机以全速驱动,然而,如果角速度低于上限而超过下限时,例如50° /秒,则电动机以半速驱动。参见图18,本公开也预期离合控制方案60。在工具运行期间,控制器在61上根据从旋转运动传感器22接收的输入监测工具的角位移。从角位移,控制器能够在62上决定位移的方向,并且驱动电动机26以模拟下面进一步描述的离合功能。在所提出的控制方案中,控制器还必须在63上接收来自操作者的关于操作者所希望的离合方向的指令。在示范性实施例中,工具10可构造有能使操作者在向前或相反离合方向之间进行选择的开关。其它的输入机构也是预期的。当操作者选择了向前的离合方向时,控制器以下面的方式驱动电动机。当操作者顺时针方向旋转工具时,输出轴以高于工具所经受的旋转的速率驱动。例如,输出轴可由操作者对工具的每个四分之一圈驱动一个或多个整转。换言之,输出轴以大于当旋转运动方向与如65上所示的使用者所选择的离合方向相同时的速率的速率进行旋转。使用者可不必选择离合方向。相反,控制可根据参数进行离合方向决定,例如,设定初始的旋转方向为所希望的向前方向。另一方面,当操作者逆时针方向旋转工具时,输出轴以一比一的速率驱动。因此,输出轴以等于67上所示的当旋转运动方向与使用者所选择的离合方向相反时的速率的速度进行旋转。在螺丝起子的情况下,由于使用者向后旋拧工具以准备接下来的向前转动,钻头和螺丝可能保持静止,因此模拟离合功能。前述的控制方案可通过采用多个控制形态而进一步增强。根据应用,工具操作者可优选给出多个速度或多个控制的控制曲线。图9A示出了三个示范性控制曲线。曲线A是线性控制曲线,其中具有很大的变化控制区域。如果使用者不需要精确地应用控制且简单地想尽可能快地进行应用的话,则使用者可优选曲线B。在该曲线中,工具输出向上倾斜,并且快速地获得全部输出。如果使用者进行精确的应用,例如就位黄铜螺丝,使用者可优选曲线C。在该曲线中,牺牲功率的立即获得而给使用者较大的控制区域。在该曲线的第一部分中,输出功率缓慢变化;然而,在该曲线的第二部分中输出功率更加快速地变化。尽管不出了三个曲线,但是工具可编程有两个或更多个的控制曲线。在一个实施例中,工具操作者可用输入开关直接选择一组控制曲线的其中之一。 线。在选择性实施例中,工具的控制器可根据输入的控制变量(ICV)及其导数选择可适用的控制曲线。例如,控制器可根据触发器开关行进的距离和使用者促动触发器开关的速度选择控制曲线。在该示例中,不进行控制曲线的选择,直到触发器开关已经行进了从开始位置所测量的某一预定距离(例如,图9A所示的行程范围的5%)。—旦触发器已经行进所需的距离,控制器计算触发器开关的速度,并且根据计算的速度选择来自控制曲线组的控制曲线。如果使用者想简单地尽可能快地驱动电动机,使用者试图快速拉动触发器。为此,如果触发器的速度超过某一速度上限,则控制器推断使用者想要尽可能快地转动电动机,并且选择适用的控制曲线(例如,图9A中的曲线B)。如果使用者工作在精确的应用上且要求更好的控制,使用者倾向于更慢地拉触发器。从而,如果触发器的速度在某一速度下限之下,则控制器推断使用者希望更好的控制,并且选择不同的控制曲线(例如,图9A中的曲线C)。如果触发器的速度下降在上限和下限之间,则控制器可选择另一个控制曲线(例如,图9A中的曲线A)。曲线选择可以随着每一新触发器拉动而执行(但不限于此),从而使用者可冲击触发器以使螺丝下行、释放且以接下来的较慢触发器拉动来获得精确的就位控制。控制器然后根据选择的控制曲线控制电动机速度。在上面的示例中,触发器行进的距离与输出功率的百分比关联。根据触发距离,控制器根据选择的控制曲线以对应的功率百分比驱动电动机。应注意该输出可为电动机脉冲宽度调制,如在开放回路电动机控制系统中一样,或者,它可直接为电动机速度,如在闭合回路电动机控制系统中一样。在另一个示例中,控制器可根据工具已经从开启点旋转的角距离及其导数选择控制曲线,导数即工具旋转的角速度。类似于触发速度,控制器可推断在工具快速旋转时使用者想尽可能快地旋转电动机,并且推断当工具被慢速转动时使用者想较慢地转动电动机。因此,控制器可以前述的方式选择且应用控制曲线。在该示例中,输入控制变量的百分比关于所期待的旋转的预定范围(例如,+-180度)计算。本公开也预期根据另一类型的输入控制变量及其导数选择可适用的控制曲线。可能有利的是,在工具运行期间,在不同的点上监测输入控制变量且选择控制曲线。例如,控制器可计算触发速度且在触发器已经释放或朝着其开启位置行进后选择适当的控制曲线。图9B示出了可在这样的后退条件下采用的三个示范性控制曲线。曲线D是典型的后退曲线,其模拟典型向上倾斜曲线,例如曲线A。在该曲线中,使用者在返回到触发起始位置前通过全部模拟控制的范围。曲线E是用于快速断开的选择性曲线。如果触发器快速释放,则控制器推断使用者想简单地想关掉工具并且允许使用者旁通大部分变化速度区域。如果使用者慢慢后退,则控制器推断使用者希望进入变化速度区域。在此情况下,控制器可选择且应用曲线F,以允许使用者较好地实现控制,如就位螺丝可能需要的。可想象控制器可根据工具运行期间发生的其它类型的触发情况监测输入控制变量且选择可应用的控制曲线。向上倾斜曲线可与后退曲线结合以形成如图9C所示的单一可选曲线。在示范性应用中,使用者希望使用工具驱动长的机用螺钉,并且因此选择采用如上所述的输入开关 的适用控制曲线。在使用者拉触发器时,控制器应用曲线B以快速获得全部工具输出。在使用者已经几乎实现拧下螺丝时,使用者释放触发器以及控制器应用曲线F,因此给使用者更多的控制和就位螺钉丝到所希望的紧固性的能力。控制曲线的选择可基于输入控制变量与其它工具参数结合。例如,控制器可采用诸如感应电流消耗的已知技术监测输出扭矩。参见图9D,控制器已经感应了很慢的触发释放,因此表示用于实现控制的使用者希望的可变速度。如果控制器进一步感应输出扭矩很高,则控制器可推断使用者需要更大的输出功率以保持螺钉运动(例如,木螺钉的应用)。在此情况下,控制器选择曲线G,其中控制区域向上移动以获得可用的扭矩。另一方面,如果控制器感应输出扭矩很低,则控制器可推断附加的输出功率是不需要的(例如,机用螺丝的应用),并且因此选择曲线H。同样,控制器可在工具启动时根据感应的扭矩从不同的控制曲线当中选择。扭矩之外的工具参数也可用于选择适当的控制曲线。控制曲线的选择也可基于输入控制变量的第二导数。在示范性实施例中,控制器可连续计算触发器的加速度。当加速度超过某阈值时,控制器可选择不同的控制曲线。如果工具已经决定了向上倾斜或后退曲线但使用者希望中间的运行曲线的话,该方法尤其有用。例如,使用者已经缓慢地拉动触发器以允许螺钉获得与螺纹的接合。一旦接合,使用者冲击触发器以获得全部输出。因为工具总是监测触发器加速度,所以工具感应使用者以变化的速度实现控制并且快速地将工具送入全部输出,如图9E所示。再者,触发器输入用作该情形下的示例,但是应注意诸如手势的任何使用者输入控制可用作输入控制变量。例如,传感器22可在使用者摇动工具时检测,以在控制曲线甚或操作模式之间转换。例如,使用者可摇动磨砂机以在旋转模式和随机轨道模式之间切换。参见图7,工具10包括电流传感器32以检测输入给电动机26的电流。工具的电动机的缺点是以很高的电流水平转动很长的时间周期。高电流水平典型地表示高扭矩输出。当感应的电流超过某预定阈值时,控制器构造为修改工具输出(例如,关闭工具)以防损坏并且给操作者要求手动旋转的信号以连续推进紧固件以及完成任务。工具可进一步配备有主轴锁定。在此情况下,操作者可促动主轴锁定,因此以相对于工具外壳固定的方式锁定主轴。这导致工具用作手动螺丝起子。
对于惯性控制工具,对使用者可以没有工具运行的指示,例如,当使用者压下触发器开关但没有旋转工具时。从而,螺丝起子10可进一步构造为在工具运行时提供给使用者可感知的输出。提供使用者触觉返馈是使用者可感知的输出。电动机驱动电路25可构造为上述的H-桥电路。H-桥电路用于选择开启和关闭成对的场效晶体管(FET)以改变电流方向且因此改变电动机的旋转方向。通过在向前和相反方向之间前后快速变换,电动机可用于产生工具操作者可感知的振动。振动频率由一个周期的时间跨度决定,并且振动的振幅由导通时间对关闭时间的比率决定,如图10所示。用于振动工具的其它方案也落入本公开的广泛方面内。在图8A和8B所示的控制方案内,H-桥电路25可以下述方式在工具的角位移达到下限之前被驱动。因此,在主轴没有旋转时使用者被提供有触觉反馈。还可想象的是,可提供触觉反馈给使用者而同时主轴旋转。例如,正电压和负电压可以电压之间的不平衡施加给电动机,从而电动机在向前或向后方向上行进同时仍振动工具。可理解的是,触觉反馈仅为可感知输出的一个示例,并且本公开还预期其它类型的输出。
具有不同频率和/或不同振幅的振动也可用于将不同的操作状态通知给使用者。例如,脉冲的幅度可变化为与速度成比例以帮助传递在变化速度范围上工具正在运行的位置。为了不限制总的工具功率,该类型的反馈可下降到超过某一变化速度极限(例如,最大速度的70%)。在另一个示例中,振动可用于给操作者报警危险的工具状态。最后,触觉的反馈可与其它的可感知的指示器连接以帮助将工具的状态通知给操作者。例如,可与触觉反馈同时发生,工具上的灯被点亮以指示特定的状态。另外,触觉反馈可用于表示输出轴已经旋转360度或者已经实现特定希望的扭矩设定。在本发明的另一个方面中,提供校准陀螺仪位于工具10中的自动化方法。陀螺仪典型地输出表示旋转速率的感应的模拟电压(Vsense)。旋转速率可通过比较感应的电压与基准电压(例如,速率=(Vsense-Vref)/比例因数)而决定。采用某一陀螺仪,该基准电压由陀螺仪直接输出。在另一个陀螺仪中,该基准电压是控制器中设定为常数的预定水平(即陀螺仪提供电压/2)。当感应电压不等于基准电压时,检测到旋转运动;然而,当感应电压等于基准电压时,没有运动发生。实际上,两个电压具有偏移误差(ZRO)(即ZRO=Vsense-Vref)。该偏移误差可因不同的变量产生,例如陀螺仪安装到PCB后的机械应力或者测量设备上的偏移误差。偏移误差对每个陀螺仪都是唯一的,但是在时间上应保持不变。为此,常常在工具安装后执行校准以决定偏移误差。该偏移误差可存储在存储器中,并且在计算旋转速率时使用(即速率=(Vsense-Vref-ZRO)/比例)。由于环境条件上的变化,在工具使用过程中可能变得需要校准工具。因此,希望工具能够在现场重新校准自身。图11示出了一种用于校准工具中陀螺仪偏移误差的示范性方法。在示范性实施例中,该方法由工具中的控制器24的处理器所执行的计算机可执行指令实现。首先,校准程序步骤必须在工具静止时发生。这可能发生在一旦操作完成时和/或工具被关闭时。在完成操作时,工具保持动力驱动预定的时间量。在该时间周期期间,优选执行校准程序步骤。应当理解的是,校准程序步骤可在工具为静止或可能静止的其它时间进行。例如,可分析感应电压测量的第一导数以决定工具何时静止。
校准程序以偏移误差的测量开始,如114所示。在偏移误差测量后,与先前的偏移误差测量的转动平均值(ZROave)比较。该转动平均值可初始设定到偏移误差的现行校准值。测量的偏移误差在115上与预定的误差阈值比较。如果测量的偏移误差和转动平均值之间的绝对值差异小于或等于预定的偏移误差阈值,则测量的偏移误差可用于计算新的校准偏移误差。特别是,测量计数器(calCount)可在116上增加,并且测量的偏移误差在117上被加到加法器(ZROaccum)。转动平均值于是在118上通过加法器除计数器而计算。转动平均值是计算新的校准偏移误差的一个示范性方法。接下来,决定关于是否工具在测量周期内是静止的。如果偏差测量保持不变或者在某个时间周期上几乎不变(例如,4秒),如119所决定,则假定工具为静止。在到达该时间周期前,进行偏差的附加测量并且加给转动平均值,只要每个偏差测量和转动平均值之间的差值小于偏差阈值。一旦达到时间周期,转动平均值认为是偏移误差的正确测量。转动平均值可在121处存储在存储器中作为新校准的偏移误差,并且随后在转速的计算期间由控制器使用。 当测量的偏移误差和转动平均值之间的绝对值差异超过预定的偏移误差阈值时,工具一定是转动的。在此情况下,加法器和测量计数器复位为在步骤126和127所示。校准程序可连续执行,直到工具断开电源或某一其它触发器结束该程序步骤。为了防止意外的错误校准,工具可采用长期校准方案。前述的方法决定是否需要改变校准值。长期校准方案可采用小量的时间(例如O. 25秒)来执行短期校准,因为误差可能不是临界值。如果没有旋转运动在该时间周期感应到,则平均ZRO可比较当前的校准值。如果平均的ZRO大于当前的校准值,则控制器可升高当前的校准值。如果平均的ZRO小于当前的校准值,则控制器可降低当前的校准值。该调整可为平均值和当前值之间的差值的增加或与其成比例。由于传动后冲,工具操作者可能经受一定条件下的不希望的振荡状态。尽管传动的齿轮运动通过后冲,但是电动机快速旋转,并且使用者经受很小的反作用扭矩。只要发生后冲,由于齿轮变紧,电动机突然经受负荷上的增加,并且由于电动机减慢使用者快速感到很强的反作用扭矩。该反作用扭矩可强到足以导致工具随着输出主轴在相反的方向上旋转。该作用随着主轴锁定系统而增强。向前和相反的主轴锁定之间的空间作用为类似于齿轮之间的空间,甚至增加系统中的更大后冲。后冲越大,电动机高速转动的时间量越大。电动机在接合输出主轴前获得的速度越高,反作用扭矩越大,并且工具本体在相反方向上旋转的机会越大。尽管工具本体的不可控制的旋转可能对触发器控制的工具在工具运行上没有很大的作用,但是它可对旋转控制的工具具有显著的决定性的作用。如果使用者通过工具本体旋转控制工具输出速度,则工具本体的任何不希望的运动可导致不希望的输出速度。在下面的情况下,它甚至能产生振动效果。使用者在试图驱动螺丝中顺时针旋转工具。如果有大量的后冲,则电动机速度迅速增加,直到发生后冲。如果使用者的把持在这一点上太松,工具将在逆时针方向上不可控制地旋转。如果工具通过零旋转点且进入负旋转,则电动机将反向并且逆时针旋转。后冲将再一次发生,最终导致工具本体在顺时针方向上的不可控制的旋转。该振动或摆动状态可继续,直到工具操作终止。图15示出了在工具10中防止这种振荡的示范性方法。为了图示的目的,该方法与关于图8A描述的控制方案协同工作。应当理解的是,该方法可用于与其它控制方案一起工作,包括上面阐述的那些方案。在示范性实施例中,该方法由工具中的控制器24的处理器所执行的计算机可执行指令实现。输出主轴的旋转方向由上述工具的角位移表示。例如,工具的顺时针方向旋转导致输出轴的顺时针方向旋转。然而,当在相反方向上旋转之前工具旋转发生少于预定的时间量可以表示振荡状态的开始。因此,在检测工具的旋转时,定时器在102上开始。定时器产生输出轴已经在给定方向上旋转的时间量。工具的旋转运动及其方向如103所示被连续监测。

当工具在相反方向上旋转时,该方法在104上比较定时器的值与预定的阈值(例如,50毫秒)。如果定时器的值小于阈值,则摆动状态的开始可能发生。在示范性实施例中,该摆动状态通过监测两个摆动被确定,尽管可在单一的摆动后推测它。因此,在105上设定标记以表示第一摆动的发生。如果定时器的值超过阈值,旋转方向上的变化推定为操作者的故意,因此工具不是在摆动状态。在任何的情况下,定时器值复位且继续监测。在摆动状态下,工具的旋转方向再一次如103所示变化。在此情况下,定时器的值小于阈值且设定标记以表示前述的第一摆动发生。因此,矫正动作可如107所示开始。在示范性实施例中,工具可被关闭很短的时间周期(例如,1/4秒),因此能使使用者在重新开始运行前恢复对工具的控制。本公开也预期其它类型的矫正动作。还可想象的是矫正动作可在单一摆动或某些超过两次的其它特定数量的摆动之后开始。同样,监测摆动状态的其它技术落入了本公开的广泛方面中。为了图示和说明的目的已经提供了上面的各实施例的描述。它不意味着无遗漏的或者意味着限制本发明。特定实施例的各元件或特征通常不限于该特定的实施例,而是对于可应用的地方,可互换且可用在所选择的实施例中,即使没有特定的示出或描述。相同的元件或特征也可以很多形式变化。这样的变化不应看作脱离本发明,而是所有的修改旨在包括在本发明的范围内。提供了示例的实施例以使本公开是透彻的且全面地传达给本领域的技术人员。很多特定的细节阐述为具体部件、装置和方法的示例,以提供本公开的实施例的透彻理解。本领域的技术人员可理解的是,不需要采用特定的细节,示例的实施例可以很多不同的形式实施,并且不应解释为限制本公开的范围。在某些示例的实施例中,已知的工艺、已知的装置结构和已知的技术没有详细描述。在另一个设置方案中,工具可构造有自锁定行星齿轮装置90,其设置在输出轴14和电动机26的驱动轴91之间。自锁定齿轮装置可包括任何的行星齿轮装置,其限制通过环形齿轮驱动中心齿轮的能力和/或限制主轴反向的能力。该限制特征可为行星齿轮装置中固有的,或者它可为某一增加的特征,例如斜撑离合器或单向离合器。参见图9A和9B,一个限制环形齿轮向后驱动中心齿轮92能力的固有方法是增加附加环形齿轮93作为行星齿轮装置94的输出并且固定第一环形齿轮95。通过固定第一环形齿轮95,动力通过中心齿轮92传输进入行星齿轮94,其首先免于旋转,固定环形齿轮95。在该构造中,动力然后从旋转的行星齿轮94传入第二 (非固定的,输出)环形齿轮93。当扭矩施加为反向通过输出环形齿轮93进入行星齿轮94时,迫使输出环形齿轮上的内齿轮齿进入与行星齿轮94上的对应齿的接合。然后迫使行星齿轮94上的齿进入与固定的环形齿轮上的对应齿接合。发生这样的情况时,行星齿轮的齿上的力由作用通过输出环形齿轮93的力平衡,并且等于作用通过固定环形齿轮95的力且与其方向相反,如图9B所示。当力平衡时,行星齿轮固定而不运动。这锁定了行星齿轮装置并且防止扭矩施加给中心齿轮。本公开还预期自锁定齿轮装置的其它设置方案。具有自锁定行星齿轮装置的优点是,当电动机在高扭矩水平受阻时,在扭转操作期间,例如但不限于螺纹扣件,工具操作者可通过扭转工具而克服该扭矩。从工具操作者施加到应用的该额外扭矩由自锁定行星齿轮装置内的力抵消,并且电动机没有反向驱动。这允许工具操作者给应用施加附加的扭矩。在该设置方案中,当感应电流超过某一预定阈值时,控制器可构造为在某一允许转轴没有负荷旋转的最低水平上驱动电动机。这避免了在失速工况下使电子装置受压,但是会允许失速工况下的离合。自锁定行星齿轮仍可允许使用者手动超驰失速扭矩。相反,当使用者在相反的方向上转动工具以为下一向前转动旋紧时,主轴旋转可推进螺丝头中锁定的钻头,因此抵消使用者的反向工具旋转。
这里采用的术语仅是为了描述特定示例的实施例,而不意味着限制。如这里所用,单数形式也可意味着包括复数形式,除非上下文中清楚地另外表述。术语“包括”、“包含”和“具有”包含且因此明确所述特征、整体、步骤、操作、元件和/或部件的存在,而不排除一个或多个其它特征、整体、步骤、操作、元件、部件和/或其组合的存在或附加。这里描述的方法步骤、工艺和操作不应解释为必须要求它们以讨论或示出的特定顺序执行,除非特别表示为执行的顺序。还应理解可采用附加的或选择性的步骤。
权利要求
1.一种操作具有输出轴的电动工具的方法,包括 让使用者关于该输出轴的纵轴旋转该电动工具; 采用该电动工具中设置的旋转运动传感器监测该电动工具的旋转运动; 采用来自该旋转运动传感器的输入决定该电动工具关于所述轴的角速度、该电动工具关于所述轴的旋转位移和该旋转位移的方向的至少其中之一;以及 根据该角速度、该旋转位移和该旋转位移的方向的至少其中之一驱动该输出轴。
2.如权利要求I所述的方法,还包括根据该角速度、该旋转位移和该旋转位移的方向的至少其中之一选择多个控制曲线的其中之一。
3.如权利要求2所述的方法,其中控制曲线将该角速度、该旋转位移和该旋转位移的方向的至少其中之一关联到驱动该输出轴的给定速度。
4.如权利要求2所述的方法,还包括当该角速度和该旋转位移的至少一个在第一阈值之上时选择来自多个控制曲线的第一控制曲线,并且当该电动工具的该角速度和该旋转位移的至少一个在第二阈值之下时选择来自多个控制曲线的第二控制曲线,其中该第一控制曲线与该第二控制曲线不同。
5.如权利要求4所述的方法,其中该第一控制曲线导致该输出轴以最大旋转速度被驱动。
6.如权利要求4所述的方法,其中该第二控制曲线导致该输出轴以低于最大旋转速度的速度被驱动。
7.如权利要求I所述的方法,其中该输出轴根据相对于启动角位置的该旋转位移被驱动,并且该输出轴以该旋转位移的乘数旋转,其中该乘数不等于一。
8.如权利要求I所述的方法,还包括当下列情况的至少一个发生时动力驱动该电动工具(a)给该输出轴施加力,(b)激活开关,以及(C)感应到接近工件。
9.如权利要求I所述的方法,还包括在监测该电动工具的该旋转运动之前振动该电动工具。
10.如权利要求9所述的方法,其中振动该电动工具是通过改变通过该电动工具的电动机的电流方向实现的。
11.如权利要求I所述的方法,还包括 由该电动工具中的控制器决定该电动工具何时静止; 决定该电动工具静止时模拟信号中的误差;以及 采用该误差校准该旋转运动传感器。
12.如权利要求I所述的方法,还包括 检测该电动工具的该旋转运动在方向上的变化; 决定该电动工具在给定方向上旋转的时间量;以及 当该时间量小于阈值时由该电动工具的控制器开始矫正操作。
13.如权利要求12所述的方法,其中该矫正操作在该时间量低于阈值时停止动力驱动该电动工具的电动机。
14.一种电动工具,包括 输出轴,构造为关于纵轴旋转; 电动机,可驱动地连接到该输出轴以给其施加旋转运动;旋转运动传感器,与该输出轴空间分隔,并且可操作为决定由操作者所给予的该电动工具相对于该纵轴的旋转运动; 控制器,其电连接到该旋转运动传感器和该电动机,该控制器采用使用者给予的来自旋转运动传感器的输入决定该电动工具关于所述轴的角速度、该电动工具关于所述轴的旋转位移和该旋转位移的方向的至少其中之一,并且根据该角速度、该旋转位移和该旋转位移的方向的至少其中之一控制该电动机;以及 外壳,至少部分地容纳该电动机、该旋转运动传感器和该控制器。
15.如权利要求14所述的电动工具,其中当该角速度和该旋转位移的至少一个超过第一阈值时该控制器以最大旋转速度驱动该输出轴,并且当该角速度和该旋转位移的至少一个在该第一阈值之下但超过第二阈值时以小于最大旋转速度的指定旋转速度驱动该输出轴。
16.如权利要求14所述的电动工具,其中该控制器根据相对于起始角位置的该旋转位移驱动该输出轴,并且该输出轴以该旋转位移的乘数旋转,其中该乘数不等于一。
17.如权利要求14所述的电动工具,还包括用于动力驱动该电动工具的开关。
18.如权利要求17所述的电动工具,其中该开关在操作者在该输出轴上施加压力时接八口 o
19.如权利要求17所述的电动工具,还包括滑动接合到该外壳的触发器外壳,该触发器外壳具有凸轮斜坡,滑动接合到该外壳且具有沿着该凸轮斜坡运动的凸轮的滑动连杆以及枢转地连接到该外壳且连接到滑动连杆的旋转连杆,该旋转连杆在操作者运动该触发器外壳时接合该开关。
20.如权利要求14所述的电动工具,还包括设置在该输出轴和该电动机之间的自锁定行星齿轮装置。
21.—种电动工具,包括 输出轴,构造为关于纵轴旋转; 电动机,可驱动地连接到该输出轴以给其施加旋转运动; 运动传感器,可操作为决定该电动工具的运动; 控制器,其电连接到该运动传感器和该电动机,该控制器根据该运动传感器所检测的使用者手势输入在至少两个控制曲线之间进行选择,并且根据所选择的控制曲线控制该电动机;以及 外壳,其至少部分地容纳该电动机、该运动传感器和该控制器。
全文摘要
一种电动工具,包括输出轴,构造为关于纵轴旋转;电动机,可驱动地连接到输出轴以给其旋转运动;以及旋转运动传感器,与输出轴空间分隔,并且可操作为决定电动工具相对于纵轴的使用者给予的旋转运动。控制器电连接到旋转运动传感器和电动机。控制器采用来自旋转运动传感器的输入决定电动工具关于轴的角速度、电动工具关于轴的旋转位移和/或旋转位移的方向。控制器于是根据角速度、旋转位移和/或旋转位移的方向控制电动机。
文档编号E21B15/04GK102753782SQ201180008484
公开日2012年10月24日 申请日期2011年1月7日 优先权日2010年1月7日
发明者C.瓦滕鲍格, C.谢尔, D.布罗托, D.普奇奥, G.康卡里, J.克莱赫, M.豪普特, S.艾施勒曼, S.莫西, T.波蒂尼, 小安德鲁.塞曼 申请人:布莱克和戴克公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1