涡旋压缩机的制作方法

文档序号:5444903阅读:144来源:国知局
专利名称:涡旋压缩机的制作方法
技术领域
本发明涉及用于制冷空调设备的制冷剂压缩机。
背景技术
图8是本发明人的在先发明即特愿平9-268579所揭示的涡旋压缩机的纵向剖视图。1是静涡盘,外周部通过螺栓(未图示)紧固连结于导向框架15上,除台板部1a的一个面(图8中的下侧)上形成有板状涡旋齿1b之外,外周部上还形成有大致形成于一条直线上的两个一对的欧氏导向槽1c,该欧氏导向槽1c中可自如往复滑动地配合有欧氏环9的两个一对的固定侧爪9c。并且,从静涡盘1的侧面方向(图8中的右侧)贯穿密闭容器10压入有吸入管10a。
2是摆动涡盘,在台板部2a的一个面(图8中的上侧)上形成有与静涡盘1的板状涡旋齿1b实质上为相同形状的板状涡旋齿2b,而台板部2a的与板状涡旋齿2b相反一侧的面(图8中的下侧)的中心部位,形成有呈中空圆筒形状的凸起部2f,该凸起部2f的内侧面上形成有摆动轴承2c。与凸起部2f相同一侧的面的外周部上形成有可与柔性框架3的止推轴承3a压接而滑动的止推面2d。另外,在摆动涡盘2的台板部2a的外周部上,形成有与上述静涡盘的欧氏导向槽1c大致有90度相位差的、大致形成于一条直线上的两个一对的欧氏导向槽2e,该欧氏导向槽2e中可自如往复滑动地配合有欧氏环9的两个一对的摆动侧爪9a。
在柔性框架3的中心部位形成有径向支撑由电动机驱动而旋转的主轴4的主轴承3c和辅助主轴承3h。
导向框架15的外周面15g通过热套或焊接固定在密闭容器10上,但要确保有下述流通路径,即将静涡盘1的排出口1f所排出的高压制冷剂气体引向设置于比导向框架15更靠电动机一侧(图8中的下侧)的排出管10b的流通路径。在导向框架15之内侧面的静涡盘侧(图8中的上侧)形成有上嵌合圆筒面15a,与形成于柔性框架3之外周面上的上嵌合圆筒面3d相配合。而在导向框架15之内侧面的电动机侧(图8中的下侧)形成有下嵌合圆筒面15b,与形成于柔性框架3之外周面上的下嵌合圆筒面3e相配合。导向框架15的内侧面上,在两处形成有容纳密封材料的密封槽,这些密封槽中嵌装有上密封材料16a和下密封材料16b。并且,由该两个密封材料、导向框架15的内侧面以及柔性框架3的外侧面所形成的空间即框架空间15f通过形成于柔性框架3上的均压孔3i与凸起部外侧空间2h连通。上密封材料16a和下密封材料16b并非必需,若能够利用配合部位的微小间隙实现密封,则可以省略。另外,上下以摆动涡盘的台板部2a和柔性框架3围起来的止推轴承3a之外周侧的空间,即台板外周部空间2i是与板状涡旋齿的涡旋终端附近的吸气空间1g相连通的,因而成为吸气腔。
在主轴4的摆动涡盘侧(图8中的上侧)端部上形成有与摆动涡盘2的摆动轴承2c旋转自如地配合的摆动轴部4b,其下侧热套有主轴平衡器4e,其更下侧形成有与柔性框架3的主轴承3c和辅助主轴承3h旋转自如地配合的主轴部4c。而主轴的另一端部上形成有与子框架6的副轴承6a旋转自如地配合的副轴部4d,在该副轴部4d与上述主轴部4c之间热套有电动机转子8。另外,在该电动机转子8的上端面和下端面上,分别紧固连结有上平衡器8a和下平衡器8b,再加上上述主轴平衡器4e共3个平衡器,用来实现静平衡和动平衡。此外,主轴4的下端面上压入有油管4f,可将积存于密闭容器10底部的冷冻机油10e吸上来。
另外,密闭容器10的侧面上装有玻璃端子10f,其上连接有引自电动机定子7的引线。
下面,就该现有涡旋压缩机的基本工作原理进行说明。稳定运行时,密闭容器空间10d成为排气腔的高压,故密闭容器10底部的冷冻机油10e经由油管4f、主轴4上沿轴向贯穿设置的高压油给油孔4g被引入凸起部空间2g内。该高压油经摆动轴承2c减压而成为中压,并流入凸起部外侧空间2h。变成中压的冷冻机油通过均压孔3i流入框架空间15f,之后经由诸如中压调整阀等向低压空间的台板外周空间2i排放。柔性框架3上,尽管有凸起部外侧空间2h的中压所产生的力、和摆动涡盘2经止推轴承3a施加的推压力的合力作为向下的力起作用,但框架空间15f的中压所产生的力和下端面的暴露在高压腔下的部分上所作用的、高压产生的力的合力作为向上的力起作用,并且设计为稳定运行时该向上的力大于上述向下的力。因此,柔性框架3因其上嵌合圆筒面3d和下嵌合圆筒面3e被分别导向导向框架15的上嵌合圆筒面15a和下嵌合圆筒面15b上,从而向静涡盘侧(图8中的上方)上浮。并且,经止推轴承3a被压贴在柔性框架3上的摆动涡盘2也同样向上浮起,其结果,摆动涡盘2的齿顶和齿根分别与静涡盘1的齿根和齿顶接触并滑动。
在诸如起动时和压缩液体时,作用于摆动涡盘2的止推方向上的气体负荷Fgth变大,摆动涡盘2经止推轴承3a将柔性框架3向静涡盘侧的反方向(图8中的下方)强有力地推压,故摆动涡盘2的齿顶和齿根与静涡盘1的齿根和齿顶之间产生较大的间隙,避免压缩室内的压力异常升高。此时的回退量,是以柔性框架3的回退接触面3q与框架空间15f的回退接触面15h之间的距离进行测控。
虽然产生于摆动涡盘2的翻转力矩的一部分或全部通过止推轴承3a传递到柔性框架3上,但由于来自主轴承3c的轴承负荷和两个反作用力的合力,即通过上嵌合圆筒面3d所承受的来自导向框架15的反力和通过下嵌合圆筒面3e所承受的来自导向框架15的反力的合力,而产生的力偶起到抵消上述翻转力矩的作用,故稳定运行时具有非常良好的随动稳定性和回退动作稳定性。

发明内容
作为以上所说明的、柔性框架在保持其自身力矩平衡性的同时可作轴向移动的在先发明的涡旋压缩机,即所谓的在先发明的柔性框架式涡旋压缩机,当由于诸如运行压力条件的波动和液态制冷剂的吸入等轻微的外部扰动导致摆动涡盘2在柔性框架3的止推轴承3a上振动时,凸起部外侧空间2h的中压向低压腔的台板外周部空间2i泄漏,进而连锁性地框架空间15f的中压也通过均压孔3i向低压腔的台板外周部空间2i泄漏。由此,使得将柔性框架3向静涡盘侧(图8中的上方)上推的力减小,柔性框架3与摆动涡盘2一起向静涡盘侧的反方向(图8中的下方)回退。即存在着稍有外部扰动便容易回退的不稳定性。
本发明是为克服上述问题而提出,其目的是,使稍有外部扰动即引起摆动涡盘2振动而导致柔性框架3和摆动涡盘2容易回退这一不稳定性得到改善。
此外,作为以上所说明的、柔性框架保持其自身力矩平衡性的同时可作轴向移动的在先发明的涡旋压缩机,即所谓的在先发明的柔性框架式涡旋压缩机,由于将柔性框架3向静涡盘侧(图8中的上方)上推的主要因素的框架空间15f(中压空间)之作用面积的设定,受到凸起部外侧空间2h(与上述框架空间相同的中压空间)之作用面积的制约,因此,几乎没有自由度。
本发明是为克服上述问题而提出,其目的是,使框架空间15f作用面积的设定具有自由度。
此外,作为以上所说明的、柔性框架保持其自身力矩平衡性的同时可作轴向移动的在先发明的涡旋压缩机,即所谓的在先发明的柔性框架式涡旋压缩机,在刚起动时,作为将柔性框架3向静涡盘侧(图8中的上方)上推的主要因素的框架空间15f的中压,是由于密闭容器10内压升高导致高压的冷冻机油10e经轴承降压后流入框架空间15f而产生的。因此,框架空间15f中压的升高在时间上滞后。故此,到柔性框架3上浮、转入正常运行需要一段时间,即存在着起动耗费时间的问题。
本发明是为克服上述问题而提出,其目的是,提供起动性能优良的压缩机。
此外,作为以上所说明的、柔性框架保持其自身力矩平衡性的同时可作轴向移动的在先发明的涡旋压缩机,即所谓的在先发明的柔性框架式涡旋压缩机,当柔性框架3的轴向可移动量较小时,若运行中有液态制冷剂被吸入,由于压缩液体而导致由静涡盘1的板状涡旋齿1b与摆动涡盘2的板状涡旋齿2b所形成的压缩室内压力异常升高,存在着损坏上述板状涡旋齿的危险性,以及摆动轴承2c和主轴承3c因承受过大负荷而烧结等问题。
本发明是为克服上述问题而提出,其目的是,提供可消除作为压缩要素的板状涡旋齿损坏的可能性的、轴承不会烧结的压缩机。
此外,作为以上所说明的、柔性框架保持其自身力矩平衡性的同时可作轴向移动的在先发明的涡旋压缩机,即所谓的在先发明的柔性框架式涡旋压缩机,当柔性框架3的轴向可移动量较大时,在起动时,柔性框架3将最大限度地回退,即摆动涡盘2沿轴向最大限度地脱离静涡盘1,几乎不作压缩动作地空转,其结果,密闭容器10的内压迟迟不能升高,要达到柔性框架3上浮、进入正常运行需相当的时间,最坏情况下甚至无法起动。
本发明是为克服上述问题而提出,其目的是,提供起动性能优良的压缩机。
本发明的目的还在于,提供可减少摆动涡盘的滑动损失和能够向轴承部稳定供油的压缩机。
第一发明的涡旋压缩机,具有设于密闭容器内而各自的板状涡旋齿彼此间相啮合而形成压缩室的静涡盘和摆动涡盘、在轴向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘的主轴的柔性框架、以及在径向上支撑该柔性框架的固定于密闭容器上的导向框架,通过柔性框架相对于导向框架进行轴向滑动使得摆动涡盘能够作轴向移动,该涡旋压缩机中,柔性框架与导向框架之间形成有框架空间,框架空间内为较吸气压力高、较排气压力低的压力。
第二发明的涡旋压缩机是在第一发明的涡旋压缩机中,在摆动涡盘与柔性框架之间形成有空间内为较吸气压力高、较排气压力低的压力的凸起部外侧空间。
第三发明的涡旋压缩机是在第二发明的涡旋压缩机中,凸起部外侧空间与框架空间之间连通,且只允许流体从凸起部外侧空间向框架空间流动。
第四发明的涡旋压缩机是在第三发明的涡旋压缩机中,积存有冷冻机油的密闭容器的底部为排气压力附近的高压,并且,使凸起部外侧空间作为供油通过路径,使框架空间通过压力调整装置与低压空间连通。
第五发明的涡旋压缩机是在第二发明的涡旋压缩机中,框架空间与凸起部外侧空间二者在压力上独立。
第六发明的涡旋压缩机是在第二发明的涡旋压缩机中,积存有冷冻机油的密闭容器的底部为排气压力附近的高压,并且,使凸起部外侧空间作为供油通过路径,使框架空间通过压力调整装置与低压空间连通。
第七发明的涡旋压缩机是在第一、二、五、六发明的涡旋压缩机中,通过使框架空间与压缩过程中的压缩室连通,而使得框架空间内的压力为较吸气压力高、较排气压力低的压力。
第八发明的涡旋压缩机,具有设于密闭容器内而各自的板状涡旋齿彼此间相啮合而形成压缩室的静涡盘和摆动涡盘、在轴向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘的主轴的柔性框架、以及在径向上支撑该柔性框架而固定于密闭容器上的导向框架,通过柔性框架相对于导向框架进行轴向滑动使得摆动涡盘能够作轴向移动,该涡旋压缩机中,柔性框架与导向框架之间形成有框架空间,框架空间内为较吸气压力高、较排气压力低的压力,并且,摆动涡盘相对于导向框架的轴向最大活动量为30μm以上、300μm以下。


图1是本发明实施形式1的纵向剖视图,图2是本发明实施形式1的主要部分的局部纵向剖视图,图3是本发明实施形式1的轴向最大活动量的说明图,图4是本发明实施形式1的液态制冷剂压缩时内压升高的说明图,图5是本发明实施形式1的起动性能的说明图,图6是本发明实施形式2的主要部分的局部纵向剖视图,图7是本发明实施形式3的主要部分的局部纵向剖视图,图8是在先发明的涡旋压缩机的纵向剖视图。
具体实施例方式
实施形式1首先,结合图1~图5对本发明的实施形式1进行说明。
图1是本发明实施形式1的纵向剖视图,图2是本发明实施形式1的主要部位的局部纵向剖视图。1是静涡盘,外周部通过螺栓(未图示)紧固连结于导向框架15上,除了台板部1a的一个面(图1中的下侧)上形成有板状涡旋齿1b之外,外周部上还形成有大致形成于一条直线上的两个一对的欧氏导向槽1c,欧氏环9的两个一对的固定侧爪9c可自如往复滑动地配合在该欧氏导向槽1c上。并且,从静涡盘1的侧面方向(图1中的右侧)贯穿密闭容器10压入吸入管10a。
2是摆动涡盘,在台板部2a的一个面(图1中的上侧)上形成有与静涡盘1的板状涡旋齿1b实质上为相同形状的板状涡旋齿2b,而台板部2a的板状涡旋齿2b相反一侧的面(图1中的下侧)的中心部位形成有呈中空圆筒形状的凸起部2f,该凸起部2f的内侧面上形成有摆动轴承2c。与凸起部2f相同一侧的面的外周部上形成有与柔性框架3的止推轴承3a压接而可滑动的止推面2d。另外,在摆动涡盘2的台板部2a的外周部上,形成有与上述静涡盘的欧氏导向槽1c大致有90度相位差的、大致形成于一条直线上的两个一对的欧氏导向槽2e,欧氏环9的两个一对的摆动侧爪9a可自如往复滑动地配合在该欧氏导向槽2e上。并且,在台板部2a上,形成有将其静涡盘1一侧的面(图1中的上侧的面)和柔性框架3一侧的面(图1中的下侧的面)连通的细孔抽气孔2j。该抽气孔2j的柔性框架一侧的面的开口部即下开口部2k,位于正常运行时其圆形轨迹总是处在柔性框架3的止推轴承3a内部的位置上。作为该抽气孔2j,即使是如图1所示的一个斜孔,或如图2所示由3个孔与抽气孔栓21构成,实质上是相同的。
在柔性框架3的中心部位形成有径向支撑受电动机驱动而旋转的主轴4的主轴承3c和辅助主轴承3h。另外,柔性框架3上,形成有从止推轴承3a的表面连通至框架空间15f的通孔3s。此外,柔性框架3上,还形成有调整阀容纳空间3p,该调整阀容纳空间3p的一端(图2中的下端)经调整阀前流路3j与凸起部外部空间2h相连通,另一端(图2中的上端)经调整阀后流路3n与台板外周部空间2i相连通。另外,在该调整阀容纳空间3p的下部可自如往复运动地容纳有中压调整阀31,在上部容纳有被固定在柔性框架3上的中压调整弹簧3t,该中压调整阀31和中压调整弹簧3t之间容纳有比自然长度有所压缩的中压调整弹簧3m。
导向框架15的外周面15g通过热套或焊接固定在密闭容器10上,但要确保有将静涡盘1的排出口1f排出的高压制冷剂气体引向比导向框架15更靠电动机一侧(图1中的下侧)设置的排出管10b的流通路径存在。导向框架15之内侧面的静涡盘侧(图1中的上侧)形成有上嵌合圆筒面15a,与形成于柔性框架3之外周面上的上嵌合圆筒面3d相配合。而导向框架15之内侧面的电动机侧(图1中的下侧)上形成有下嵌合圆筒面15b,与形成于柔性框架3之外周面上的下嵌合圆筒面3e相配合。在导向框架15的内侧面上有两处形成有容纳密封材料的环状密封槽,这些密封槽中嵌装有环状的上密封材料16a和环状的下密封材料16b。并且,由该两个密封材料、导向框架15的内侧面以及柔性框架3的外侧面所形成的空间形成了框架空间15f。上密封材料16a和下密封材料16b并非必需,若利用配合部位的微小间隙(例如油膜的形成等)可实现密封,则可以省略。另外,上下以摆动涡盘的台板部2a和柔性框架3所围起来的止推轴承3a之外周侧的空间,即台板外周部空间2i是与板状涡旋齿的涡旋终端附近的吸气空间1g相连通的,故成为吸入气体(吸入压)的低压空间。
在主轴4的摆动涡盘侧(图1中的上侧)端部上形成有与摆动涡盘2的摆动轴承2c旋转自如地配合的摆动轴部4b,其下侧热套有主轴平衡器4e,其更下侧形成有与柔性框架3的主轴承3c和辅助主轴承3h旋转自如地配合的主轴部4c。而主轴的另一个端部上形成有与子框架6的副轴承6a旋转自如地配合的副轴部4d,在该副轴部4d与上述主轴部4c之间热套有电动机转子8。另外,在该电动机转子8的上端面和下端面上,分别紧固连结有上平衡器8a和下平衡器8b,再加上上述主轴平衡器4e共3个平衡器,实现静平衡和动平衡。此外,主轴4的下端面上压入有油管4f,可将积存于密闭容器10底部的冷冻机油10e吸上来。也可以通过加长主轴4而不设置油管4f。
另外,密闭容器10的侧面上装有玻璃端子10f,其上连接有引自电动机定子7的引线。
下面,就该实施形式1的涡旋压缩机稳定运行时的工作原理进行说明。
稳定运行时,密闭容器空间10d成为排气腔的高压,故密闭容器10底部的冷冻机油10e经由油管4f、在主轴4中沿轴向贯穿设置的高压油给油孔4g被引入凸起部空间2g内。之后,该高压油经摆动轴承2c减压而成为较吸入压高、较排出压低的中压,并流入凸起部外侧空间2h。作为另一个路径,高压油给油孔4g的高压油从设置在主轴4上的横孔被引向主轴承3c的高压侧端面(图1中的下端面),经该主轴承3c减压而成为中压,同样流入凸起部外侧空间2h中。凸起部外侧空间2h内成为中压的冷冻机油(一般,由于溶解于冷冻机油中的制冷剂气化而成为气体制冷剂与冷冻机油的二相流体)流经调整阀前流路3j,克服中压调整弹簧3m的作用力而上推中压调整阀31,并流入吸气腔即低压腔的调整阀容纳空间3p,之后,流经调整阀后流路3n被排放到台板外周部空间2i。如上所说明的,凸起部外侧空间2h的中压压力Pm1受由中压调整弹簧3m的弹簧力和中压调整阀31的中压露出面积所大致决定的既定压力α的控制,如下式所示Pm1=Ps+α(Ps为吸气腔压力即低压)
本实施形式中,压力总是保持吸气空间(台板外周部空间2i)<凸起部外侧空间<排气空间(密闭容器空间10d)这样的大小关系,利用由压力调整装置所决定的既定的压差,使排气空间的高压腔的冷冻机油稳定地流入凸起部外侧空间,因此,能够稳定地向轴承部供油。
此外,摆动涡盘2的台板部2a上设置的抽气孔2j的下开口部2k与柔性框架3上设置的通孔3s的止推轴承侧开口部、即上开口部3u(图2中上侧的开口部)是经常性地或间歇性地连通的。因此,来自静涡盘1与摆动涡盘2二者所形成的压缩室的压缩过程中的、比吸入压高、比排出压低的中压制冷剂气体,经摆动涡盘2的抽气孔2j和柔性框架3的通孔3s被引向框架空间15f中。但是,虽说是被引向,由于框架空间15f是由上密封材料16a和下密封材料16b密封起来的封闭空间,因此,在稳定运行时,呈相应于压缩室压力的变化压缩室与框架空间15f二者之间存在着双向微小流动的、所谓在进行呼吸的状态。如上所说明的,框架空间15f的中压Pm2受由连通压缩机的位置所大致决定的既定的倍率β的控制,如下式所示Pm2=Ps×β(Ps是吸气腔压力即低压)柔性框架3上,尽管有由凸起部外侧空间2h的中压Pm1所产生的力和摆动涡盘2经止推轴承3a施加的推压力的合力作为向下的力起作用,但框架空间15f的中压Pm2所产生的力、和下端面的暴露在高压腔下的部分上所作用的高压形成的力的合力作为向上的力起作用,并且设计为稳定运行时该向上的力大于上述向下的力。因此,柔性框架3的上嵌合圆筒面3d和下嵌合圆筒面3e被分别导向导向框架15的上嵌合圆筒面15a和下嵌合圆筒面15b上,即柔性框架3可相对于导向框架15滑动,向静涡盘侧(图1中的上方)上浮。并且,经止推轴承3a被压贴在柔性框架3上的摆动涡盘2也同样向上浮起,其结果,摆动涡盘2的齿顶和齿根分别与静涡盘1的齿根和齿顶接触并滑动。
本实施形式中,设有凸起部外部空间2h且其内部为比吸气压力高的中压,故具有使摆动涡盘和柔性框架二者沿轴向分离的作用,摆动涡盘的止推面与柔性框架的止推轴承之间的压触力有一部分被抵消,不仅减少了摆动涡盘的滑动损失,而且可避免因过大的负荷导致止推轴承烧结。
下面,结合图2对起动时的基本动作进行说明。一般地,起动之前密闭容器10的内部压力各处均相同,即为所谓的平衡压力。即,无论是吸气腔还是排气腔均为相同的压力。而开始起动后,吸气腔的压力将随着压缩动作的进行而降低,而排气腔的压力随着压缩动作的进行而升高。该实施形式1的柔性框架式涡旋压缩机在刚起动时,将向框架空间15f引入对起动之前的平衡压力稍加压缩的压力,即比平衡压力稍高的压力(平衡压力×β)。与现有柔性框架式涡旋压缩机的密闭容器10内压即排气腔压力升高、框架空间15f的压力滞后于此而升高的情况相比,实施形式1其框架空间15的压力比排气腔压力升高得要早。因此,柔性框架3将在较短时间内向上提,随之摆动涡盘2被上提,沿轴向与静涡盘1接触滑动而进入正常运行状态。即能够提供起动性能优良的高效率的压缩机。
此外,作为现有的柔性框架式涡旋压缩机即凸起部外侧空间2h与框架空间15f之间经均压孔3i连通而实质上成为同一空间的压缩机,在假设凸起部外侧空间2h和框架空间15f的中压是通过引入压缩过程中的制冷剂气体而产生的场合(中压=吸气压力×β的场合),被认为刚刚起动后框架空间15f的压力即升高,故可获得与本实施形式1同样起动性能优良的压缩机,但实际上存在着以下两个问题。第1个问题是,由于凸起部外侧空间2h的压力与框架空间15f压力的升高也同步地升高,故驱使摆动涡盘2与柔性框架3分离的力变大,导致摆动涡盘不稳定。故此,摆动涡盘2的止推面2d与柔性框架3的止推轴承3a之间的泄漏间隙增大,导致框架空间15f的中压降低,起动性能变坏,并且,存在着各轴承因单侧接触而发生可靠性方面故障的危险性。而第2个问题在于,同样由于凸起部外侧空间2h的压力与框架空间15f压力的升高也同步地升高,凸起部外侧空间2h的压力高于积存在密闭容器10底部的冷冻机油10e的压力即密闭容器内的排气压力的状态在起动后将持续一段时间。故此,冷冻机油10e的压差供油不能进行,将发生轴承磨损或烧结等可靠性方面的故障。相比之下,本发明的实施形式1兼顾了起动性能的改善和一起动即供油的可靠性,能够提供可靠性高的高效率的压缩机。
此外,作为本发明实施形式1的柔性框架式涡旋压缩机,当由于某种外部扰动使摆动涡盘2在柔性框架3的止推轴承3a上振动时,尽管凸起部外侧空间2h的中压Pm1降低,但框架空间15f的中压Pm2不会降低,故不会轻易地回退。即能够提供可靠性高的高效率的压缩机。
并且,由于凸起部外侧空间2h与框架空间15f二者未连通,在压力方面是作为独立的空间形成的,故能够提供各空间之轴向压力的作用面积的设计自由度高、紧凑且低成本的压缩机。
对于本发明的实施形式1,以采用中间调整弹簧3m和中压调整阀31等将凸起部外侧空间2h控制为中压的例子作了说明,但若不采用中间调整弹簧3m和中压调整阀31等,而是制成凸起部外侧空间2h与台板外周空间2i直接连通,以使凸起部外侧空间2h成为与台板外周空间2 i同样的低压空间(吸气腔空间)的结构,也可获得同等效果。
下面,结合图3~图5就轴向最大活动量进行说明。正常运行时,如图3(a)所示,柔性框架3与摆动涡盘2一起上浮,故处于柔性框架3与导向框架15之间存在“轴向最大活动量(轴向最大回退量)”这一间隙的状态。而在回退运行状态下,如图3(b)所示,柔性框架3与导向框架15二者在轴向上相接触,故二者的轴向间隙为零。
图4是压缩液态制冷剂时内压升高的说明图。图中,横轴是轴向最大回退量,即稳定运行时柔性框架与导向框架的轴向间隔,纵轴是压缩液态制冷剂和冷冻机油等液体时产生于压缩室的最大压力。如图所示,在轴向最大回退量为30μm以下时,压缩室所产生的最大压力将超过容许压力,故使得静涡盘和摆动涡盘的板状涡旋齿发生包括疲劳破坏在内的损坏、随着轴承负荷增大而发生非正常磨损或烧结等可靠性故障的危险性增大。本发明实施形式1的柔性框架式涡旋压缩机其轴向最大回退量设定为30μm以上,故不存在上述引发可靠性故障的危险性。一般地,其构成为摆动涡盘作为单体可在轴向上移动的涡旋压缩机,若其摆动涡盘的轴向最大回退量设定得较大,则在摆动涡盘作回退动作时摆动轴承单侧接触的几率将增加,引发轴烧结的危险性增大,但是,不仅仅是本发明实施形式1,对于柔性框架式涡旋压缩机来说,回退动作时由于摆动涡盘与柔性框架是成为一体上下移动的,故不会使单侧接触的几率增大。
图5是对起动性能好坏进行说明的附图。图中的横轴与图4相同,是轴向最大回退量,纵轴是起动所需时间即起动后至柔性框架上浮、进入正常运行状态为止的时间。如图所示,在轴向最大回退量为300μm以上的场合,起动时间将超过容许起动时间,因而不仅会成为起动特性不良的压缩机,甚至存在着成为永远不能起动的不良产品的危险性。本发明实施形式1的柔性框架式涡旋压缩机,由于轴向最大回退量设定在300μm以下,故不存在引发可靠性方面和效率方面故障的危险性。
虽然产生于摆动涡盘2的翻转力矩的一部分或全部通过止推轴承3a传递到柔性框架3上,但由于来自主轴承3c的轴承负荷和两个反作用力的合力、即通过上嵌合圆筒面3d所承受的来自导向框架15的反力、和通过下嵌合圆筒面3e所承受的来自导向框架15的反力的合力而产生的力偶,起到抵消上述翻转力矩的作用,故稳定运行时具有非常良好的随动稳定性和回退动作稳定性。
实施形式2下面,结合图6对本发明的实施形式2进行说明。图6是本发明实施形式2的主要部分的局部纵向剖视图。其余部分与实施形式1相同,予以省略。
柔性框架3上形成有调整阀容纳空间3p,该调整阀容纳空间3p的一端(图6中的下端)通过调整阀前流路3j与框架空间15f连通,另一端(图6中的上端)通过调整阀后流路3n与台板外周部空间2i连通。此外,在该调整阀容纳空间3p内,其下部容纳有可自如往复运动的中压调整阀31,上部容纳有固定在柔性框架3上的中压调整弹簧挡块3t,在该中压调整阀31和中压调整弹簧押3t之间容纳有比自然长度有所压缩的中压调整弹簧3m。并且,柔性框架3上还形成有逆止阀容纳空间3v,该逆止阀容纳空间3v的一端(图6中的上端)通过逆止阀前流路3w与凸起部外侧空间2h连通,另一端(图6中的下端)通过逆止阀后流路3x与框架空间15f连通。此外,在该逆止阀容纳空间3v内,其上部容纳有可自如往复运动的逆止阀3y,下部容纳有固定在柔性框架3上的逆止阀弹簧挡块3z,在该逆止阀3y和逆止阀弹簧挡块3z之间容纳有比自然长度有所压缩的逆止阀弹簧3b。
在导向框架15的内侧面上有两处形成有容纳密封材料的环状密封槽,这些密封槽中嵌装有环状的上密封材料16a和环状的下密封材料16b。并且,由该两个密封材料、导向框架15的内侧面以及柔性框架3的外侧面所形成的空间形成了框架空间15f。上密封材料16a和下密封材料16b并非必需,若能够利用配合部位的微小间隙(例如油膜的形成等)实现密封,则可予以省略。另外,上下以摆动涡盘的台板部2a和柔性框架3所围起来的止推轴承3a之外周侧的空间,即台板外周部空间2i与板状涡旋齿的涡旋终端附近的吸气空间相连通,故成为吸气腔。
下面,就该实施形式2的涡旋压缩机稳定运行时的工作原理进行说明。
稳定运行时,密闭容器空间10d变成排气腔的高压,故密闭容器10之底部的冷冻机油经由沿轴向贯穿主轴4设置的高压油给油孔4g被引入凸起部空间2g内。之后,该高压油经摆动轴承2c减压而成为较吸入压高、较排出压低的中压,流入凸起部外侧空间2h。作为另一个路径,高压油给油孔4g的高压油从设置在主轴4上的横孔被引向主轴承3c的高压侧端面(图6中的下端面),经该主轴承3c减压而成为中压,同样流入凸起部外侧空间2h中。凸起部外侧空间2h内成为中压的冷冻机油(一般,由于溶解于冷冻机油中的制冷剂气化而成为气体制冷剂与冷冻机油的二相流体)流经逆止阀前流路3w,克服逆止阀弹簧3b的作用力而上推逆止阀3y,并流入逆止阀容纳空间3v,之后,流经逆止阀后流路3x被排放到作为另一个较吸入压高、较排出压低的中压空间的框架空间15f。之后,变成框架空间15f的另一个中压的冷冻机油(一般,由于溶解于冷冻机油中的制冷剂气化而成为气体制冷剂与冷冻机油的二相流体)流经调整阀前流路3j,克服中压调整弹簧3m的作用力而上推中压调整阀31,并流入作为吸气腔即低压腔的调整阀容纳空间3p,之后,流经调整阀后流路3n被排放到台板外周部空间2i。
如上所说明的,首先,框架空间15f的中压压力Pm2受由中压调整弹簧3m的弹簧力和中压调整阀31的框架空间露出面积所大致决定的既定压力α1的控制,如下式所示Pm2=Ps+α1(Ps为吸气腔压力即低压)另一方面,凸起部外侧空间2h的中压压力Pm1受由逆止阀弹簧3b的弹簧力和逆止阀的凸起部外侧空间露出面积所大致决定的既定压力α2的控制,如下式所示Pm1=Pm2+α2=Ps+(α1+α2)(Ps为吸气腔压力即低压)如上所说明的,本发明实施形式2的柔性框架式涡旋压缩机,允许流体从凸起部外侧空间2h向框架空间15f流动,并且设有阻止其反向流动即阻止流体从框架空间15f向凸起部外侧空间2h流动的所谓的逆止阀,故当由于某种外部扰动使摆动涡盘2在柔性框架3的止推轴承3a上振动时,尽管凸起部外侧空间2h的中压Pm1降低,但由于框架空间15f的中压不会受其影响而降低,故不易发生回退。能够提供不会降低给油性能、即可靠性高的高效率的压缩机。
上述α2的设定可通过诸如逆止阀弹簧弹簧力的设定,简单且自由地进行调整,故实际上可将凸起部外侧空间2h和框架空间15f二者作为独立的空间加以处理。因此,能够提供上述两个中压空间轴向压力的作用面积的设计自由度高、紧凑且低成本的压缩机。
此外,作为本实施形式,积存有冷冻机油的密闭容器底部为排气压力附近的高压,并将凸起部外侧空间作为给油路径,通过压力调整装置使框架空间与低压空间连通,故压力总是保持吸气空间(台板外周部空间2i)<框架空间<凸起部外侧空间<排气空间(密闭容器空间10d)这样的大小关系,利用由压力调整装置和逆止阀所决定的既定的压差,使排气空间高压氛围的冷冻机油稳定地流入凸起部外侧空间,因此,能够实现稳定地向轴承部给油。
此外,本实施形式中,作为允许流体向框架空间15f流动而阻止其反向流动即阻止流体从框架空间15f向凸起部外侧空间2h流动的手段,描述了采用逆止阀的形式,但并不限定于逆止阀,即使采用其它形式,只要具有相同作用即可。
下面,结合图6对起动时的动作进行说明。一般地,起动前密闭容器10的内部压力各处均相同,即为所谓的平衡压力。即,无论是吸气腔还是排气腔均为相同的压力。而从起动之后起,吸气腔的压力将随着压缩动作的进行而降低,而排气腔的压力随着压缩动作的进行而升高。该实施形式2的柔性框架式涡旋压缩机在刚起动时,凸起部外侧空间2h的中压Pm1因吸气腔压力的降低及随之产生的台板部外周空间2 i压力的降低而以被下拉的形式降低。而排气腔压力在起动后即升高,故用来将密闭容器10底部积存的冷冻机油供向摆动轴承2c和主轴承3c的压差自起动开始起即得到确保。即能够提供一开始起动便使得向轴承的给油得到充分保证的高可靠性的压缩机。
以上,就两组阀-弹簧组件中的一组(产生压差α2)设置于凸起部外侧空间2h与框架空间15f之间、另一组(产生压差α1)设置于框架空间15f与低压腔空间之间从而以Pm1=Ps+(α1+α2)Pm2=Ps+α1
进行控制的例子作了说明,但作为另外的方法,若将二组阀-弹簧组件中的一组(产生压差α2)设置于凸起部外侧空间2h与低压腔空间之间、另一组(产生压差α1)设置于框架空间15f与低压腔空间之间,从而以Pm1=Ps+α2Pm2=Ps+α1进行控制,也能够获得同样的效果。这种情况下,将使得通过摆动轴承2c减压而变成中压的冷冻机油引入凸起部外侧空间、通过主轴承3c减压而变成中压的冷冻机油引入框架空间的结构变得简洁。
实施形式3下面,结合图7对本发明的实施形式3进行说明。图7是本发明实施形式3的主要部分的局部纵向剖视图。其余部分与实施形式1相同,予以省略。
在摆动涡盘2的台板部2a上,形成有将其静涡盘1一侧的面(图7中的上侧的面)和柔性框架3一侧的面(图7中的下侧的面)二者连通的细孔即抽气孔2j。该抽气孔2j的柔性框架一侧的面的开口部即下开口部2k,位于正常运行时其圆形轨迹总是处在柔性框架3的止推轴承3a内部的位置上。另外,台板部2a上,还形成有将其静涡盘1一侧的面(图7中的上侧的面)和柔性框架3一侧的面(图7中的下侧的面)二者连通的另一个细孔即第2抽气孔2m。并且,该抽气孔2m的柔性框架一侧的面的开口部,位于正常运行时其圆形轨迹持续地或间断地与凸起部外侧空间2h连通的位置上。
此外,柔性框架3上,形成有从止推轴承3a的表面连通至框架空间15f的通孔3s。
此外,在导向框架15的内侧面上有两处形成有容纳密封材料的环状密封槽,这些密封槽中嵌装有环状的上密封材料16a和环状的下密封材料16b。并且,由该两个密封材料、导向框架15的内侧面以及柔性框架3的外侧面所形成的空间形成了框架空间15f。上密封材料16a和下密封材料16b并非必需,若能够利用配合部位的微小间隙(例如油膜的形成等)实现密封,则可以省略。另外,上下以摆动涡盘的台板部2a和柔性框架3所围起来的止推轴承3a之外周侧的空间,即台板外周部空间2i是与板状涡旋齿的涡旋终端附近的吸气空间相连通的,故成为吸气腔。
下面,就该实施形式3的涡旋压缩机稳定运行时的工作原理进行说明。
稳定运行时,密闭容器空间10d成为排气腔的高压,故密闭容器底部的冷冻机油经由沿轴向贯穿主轴4的高压油给油孔4g被引入凸起部空间2g内。并且,该高压油经摆动轴承2c减压而成为中压,并流入凸起部外侧空间2h。作为另一个路径,高压油给油孔4g的高压油从设置在主轴4上的横孔被引向主轴承3c的高压侧端面(图7中的下端面),经该主轴承3c减压而成为中压,同样流入凸起部外侧空间2h中。
凸起部外侧空间2h内成为中压的冷冻机油(一般,由于溶解于冷冻机油中的制冷剂气化而成为气体制冷剂与冷冻机油的二相流体)接下来通过第2抽气孔2m流入由静涡盘1和摆动涡盘2所形成的压缩室内。即被注入处于压缩过程中的制冷剂气体中。如上所说明的,凸起部外侧空间2h的中压压力Pm1受由第2抽气孔2m所实质性连通的压缩室的位置和被注入的冷冻机油量等所大致决定的既定倍率β1的控制,即如下式所示Pm1=Ps×β1(Ps吸气腔压力即低压)此外,摆动涡盘2的台板部2a上设置的抽气孔2j的下开口部2k与柔性框架3上设置的通孔3s的止推轴承侧开口部,即上开口部3u(图7中的上侧开口部)是持续地或间歇性地连通的。因此,来自由静涡盘1与摆动涡盘2二者所形成的压缩室的、处于压缩过程的制冷剂气体,经摆动涡盘2的抽气孔2j和柔性框架3的通孔3s被引向框架空间15f中。但是,虽说是被引向,由于框架空间15f是由上密封材料16a和下密封材料16b密封起来的封闭空间,因此,在稳定运行时,是处在相应于压缩室的压力变化压缩室与框架空间15f之间存在着双向微小流动的、所谓在进行呼吸的状态。如上所说明的,框架空间15f的中压Pm2受由抽气孔2j实质上所连通的压缩室的位置所大致决定的既定的倍率β2控制,即如下式所示Pm2=Ps×β2(Ps是吸气腔压力即低压)如上所说明的,作为本发明实施形式3的柔性框架式涡旋压缩机,由于凸起部外侧空间2h与框架空间15f各自作为独立腔室形成,故当由于某种外部扰动使摆动涡盘2在柔性框架3的止推轴承3a上振动时,尽管凸起部外侧空间2h的中压Pm1降低,但框架空间15f的中压Pm2不会受其影响而降低,因此,不会轻易地回退。即能够提供可靠性高的高效率的压缩机。
下面,结合图7对起动时的动作进行说明。一般地,起动之前密闭容器10的内部压力各处均相同,即为所谓的平衡压力。即,无论是吸气腔还是排气腔均为相同的压力。而开始起动之后,吸气腔的压力将随着压缩动作的进行而降低,而排气腔的压力随着压缩动作的进行而升高。该实施形式3的柔性框架式涡旋压缩机在刚起动时,将向框架空间15f引入对起动前的平衡压力稍加压缩的压力,即比平衡压力稍高的压力(平衡压力×β2)。因此,框架空间15f的压力比排气腔压力升高要早,因此,柔性框架3将在较短时间内向上提,随之摆动涡盘2被上提,沿轴向与静涡盘1接触并滑动而进入正常运行状态。即能够提供起动性能优良的高效率的压缩机。
并且,由于凸起部外侧空间2h与框架空间15f二者是作为独立的空间形成的,故能够提供各空间之轴向压力的作用面积的设计自由度高、紧凑且低成本的压缩机。
本发明的实施形式1至3都是作为主要用于中小型冷冻机、空调机的密闭型压缩机所作的说明,但对于主要用于汽车用空调机的、驱动要素置于容纳压缩要素的容器之外这种类型的压缩机也可获得同样的效果。
此外,本发明实施形式1至3是对将密闭容器10d制成排气腔或排气腔附近的高压的、所谓的高压外壳型离心压缩机所作的说明,但作为将密闭容器10d制成吸气腔或吸气腔附近的低压的、所谓的低压外壳型离心压缩机,将供油泵设置在主轴4的端部、以泵的压力供给冷冻机油10e也可获得大体相同的作用和效果。
权利要求1的涡旋压缩机,具有设于密闭容器内而各自的板状涡旋齿彼此间相啮合而形成压缩室的静涡盘和摆动涡盘、在轴向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘的主轴的柔性框架、以及在径向上支撑该柔性框架的固定于密闭容器上的导向框架,通过柔性框架相对于导向框架进行轴向滑动使得摆动涡盘能够作轴向移动,该涡旋压缩机中,
柔性框架与导向框架之间形成有框架空间,使框架空间内为较吸气压力高、较排气压力低的压力,因此,当由于诸如运行压力条件的波动和液态制冷剂的吸入等少许的外部扰动导致摆动涡盘2振动时,框架空间的较吸气压力高、较排气压力低的压力不会降低,避免摆动涡盘轻易回退。因此,可获得可靠性高且高效率的压缩机。
权利要求2的涡旋压缩机如权利要求1的涡旋压缩机,在摆动涡盘与柔性框架之间形成有空间内压力为较吸气压力高、较排气压力低的凸起部外侧空间,因此,加之权利要求1的效果,凸起部外侧空间为较吸气压力高的中压,故具有将摆动涡盘与柔性框架沿轴向分离的作用,抵消摆动涡盘的止推面与柔性框架的止推轴承之间的一部分压触力,减少摆动涡盘的滑动损失,并避免因负荷过大而导致止推轴承烧结。
即,能够获得高效率且高可靠性的压缩机。
权利要求3的涡旋压缩机如权利要求2的涡旋压缩机,凸起部外侧空间与框架空间之间连通,且只允许流体从凸起部外侧空间向框架空间流动,因此,加之权利要求2的效果,在由于诸如运行压力条件的波动和液态制冷剂的吸入等少许的外部扰动导致摆动涡盘2振动时,尽管凸起部外侧空间的中压降低,但由于流体不会反向流动,故框架空间的压力不会降低,避免摆动涡盘轻易回退。
此外,易于将压力引入框架空间。
因此,能够获得可靠性高且低成本的压缩机。
权利要求4的涡旋压缩机如权利要求3的涡旋压缩机,积存有冷冻机油的密闭容器底部为排气压力附近的高压,并且,使凸起部外侧空间作为供油途经路径,使框架空间通过压力调整装置与低压空间连通,因此,加之权利要求3的效果,压力总是保持吸气空间<框架空间<凸起部外侧空间<排气空间这样的大小关系,利用由压力调整装置等所决定的既定的压差,使高压腔的冷冻机油稳定地流入凸起部外侧空间,因此,能够实现稳定地向轴承部给油。其结果,不仅可以减小轴承的摩擦系数而且能够避免轴承烧结。
即,可获得高效率、高可靠性的压缩机。
权利要求5的涡旋压缩机如权利要求2的涡旋压缩机,框架空间与凸起部外侧空间二者在压力上独立,因此,加之权利要求2的效果,凸起部外侧空间的压力与框架空间的压力可分别设定,框架空间的作用面积不受凸起部外侧空间的作用面积的制约,即作用面积的设计自由度得到提高。
因此,可获得高可靠性、高效率且紧凑的压缩机。
权利要求6的涡旋压缩机如权利要求2的涡旋压缩机,积存有冷冻机油的密闭容器的底部为排气压力附近的高压,并且,使凸起部外侧空间作为供油途经路径,使框架空间通过压力调整装置与低压空间连通,因此,加之权利要求2的效果,压力总是保持吸气空间<凸起部外侧空间<排气空间这样的大小关系,利用压力调整装置所决定的既定的压差,使排气空间的高压腔的冷冻机油稳定地流入凸起部外侧空间,因此,能够实现稳定地向轴承部给油。其结果,不仅可以减小轴承的摩擦系数而且能够避免轴承烧结。
即,可获得高效率、高可靠性的压缩机。
权利要求7的涡旋压缩机如权利要求1、2、5或6的涡旋压缩机,通过使框架空间与压缩过程中的压缩室连通而使得框架空间内的压力为较吸气压力高、较排气压力低的压力,因此,加之权利要求1、2、5或6的效果,作为刚起动时便将柔性框架向静涡盘侧上推的主要因素的框架空间的压力,相应于压缩室内压力的升高而升高,在较短时间内使柔性框架上浮而进入正常运行,即起动性能优良。因此,可获得可靠性高且高效率的压缩机。
权利要求8的涡旋压缩机,具有设于密闭容器内而各自的板状涡旋齿彼此间相啮合而形成压缩室的静涡盘和摆动涡盘、在轴向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘的主轴的柔性框架、以及在径向上支撑该柔性框架的固定于密闭容器上的导向框架,通过柔性框架相对于导向框架进行轴向滑动使得摆动涡盘能够作轴向移动,该涡旋压缩机中,柔性框架与导向框架之间形成有框架空间,框架空间内为较吸气压力高、较排气压力低的压力,并且,摆动涡盘相对于导向框架的轴向最大活动量为30μm以上、300μm以下,因此,运行中即使有液态制冷剂被吸入时,在压缩室内压异常升高之前柔性框架便沿轴向作较大的回退,因此,能够避免板状涡旋齿等因压缩室内压力异常升高而损坏,避免摆动轴承和主轴承因负荷过大而烧结。
此外,由于轴向最大活动量为300μm以下,故起动时即使柔性框架沿轴向产生了最大限度的回退即摆动涡盘自静涡盘最大限度地分离时,也能够防止出现压缩动作完全不能进行的所谓空转,避免进入正常运行极耗时间的现象发生,即具有优良的起动性能。
由此,可获得可靠性高且高性能的压缩机。
权利要求
1.一种涡旋压缩机,具有设于密闭容器内而各自的板状涡旋齿相啮合从而在彼此之间形成压缩室的静涡盘和摆动涡盘、在轴线方向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘的主轴的可在轴线方向上位移的柔性框架、以及在径向上支撑该柔性框架的导向框架,通过上述柔性框架相对于上述导向框架进行轴线方向的移动,使得上述摆动涡盘能够沿轴线方向移动,其特征在于,上述摆动涡盘相对于上述导向框架的轴线方向最大可移动量为30μm以上、300μm以下。
2.一种涡旋压缩机,由设于密闭容器内而各自的板状涡旋齿(16、26)相啮合从而在彼此之间形成压缩室的静涡盘(1)和摆动涡盘(2)、在轴线方向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘(2)的主轴(4)的可在轴线方向上位移的柔性框架(3)、以及在径向上支撑该柔性框架的导向框架(15)构成,上述密闭容器内为排出气体氛围,其特征在于,由在上述摆动涡盘中与板状涡旋齿相反一侧设置的凸起部(2f)、以及在该凸起部的内周侧与该凸起部相卡合的上述主轴的上端部所形成的凸起部空间(2g)的压力与排出气体压力大体相等。
3.如权利要求2的涡旋压缩机,其特征在于,上述摆动涡盘(2)在与板状涡旋齿相反一侧的面上具有止推面(2d),上述柔性框架(3)上形成有与该摆动涡盘止推面压触滑动的止推轴承(3a),在该止推轴承的内侧、且上述凸起部(2f)的外侧、且上述柔性框架与上述摆动涡盘之间的空间、即凸起部外侧空间(2h)的压力为高于吸入气体压力而低于排出气体压力的中间压力。
4.如权利要求3的涡旋压缩机,其特征在于,在上述凸起部外侧空间的更外侧,位于上述止推轴承外侧的底板外周部空间(2i)的压力为吸入气体压力。
5.一种涡旋压缩机,由设于密闭容器(10)内而各自的板状涡旋齿(16、26)相啮合从而在彼此之间形成压缩室的静涡盘(1)和摆动涡盘(2)、在轴线方向上支撑该摆动涡盘(2)并在径向上支撑驱动该摆动涡盘的主轴(4)的可在轴线方向上位移的柔性框架(3)、以及在径向上支撑该柔性框架的导向框架(15)构成,并且,上述密闭容器(10)内为排出气体压力氛围,其特征在于,上述摆动涡盘(2)在与板状涡旋齿(26)相反一侧的面上具有止推面(2d),上述柔性框架上形成有与该摆动涡盘止推面压触滑动的止推轴承(3a),并且,在与上述摆动涡盘的板状涡旋齿(26)相反一侧设有凸起部(2f),在上述止推轴承(3a)的内侧、且上述凸起部的外侧、且位于上述柔性框架与上述摆动涡盘之间的空间、即凸起部外侧空间(2h)的压力高于吸入气体压力而低于或等于排出气体压力,并且,在该凸起部外侧空间(2h)的更外侧、位于上述止推轴承(3a)外侧的底板外周部空间(2i)的压力为吸入气体压力,对上述摆动涡盘的自转进行约束的欧氏环(9)的两个一对的爪(9a)与摆动涡盘相卡合,并且,另一方的两个一对的爪(9c)与上述静涡盘(1)相卡合。
6.一种涡旋压缩机,由设于密闭容器(10)内而各自的板状涡旋齿(16、26)相啮合从而在彼此之间形成压缩室的静涡盘(1)和摆动涡盘(2)、在轴线方向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘的主轴的可在轴线方向上位移的柔性框架(3)、以及在径向上支撑该柔性框架的导向框架构成,密闭容器内为排出气体压力氛围,其特征在于,上述摆动涡盘在与板状涡旋齿相反一侧的面上具有止推面(2d),上述柔性框架上形成有与该摆动涡盘止推面压触滑动的止推轴承(3a),在该止推轴承的内侧、且上述柔性框架与上述摆动涡盘之间形成凸起部外侧空间(2h),具有将积存于上述密闭容器底部的润滑油在压力差的作用下经上述凸起部外侧空间向低压空间供给的给油路径(2h、3j、3e……)。
7.如权利要求1的涡旋压缩机,其特征在于,上述密闭容器内为排出气体压力氛围;上述框架空间(15f)由上述柔性框架(3)的外周面、导向框架(15)的内周面、防止排出气体压力进入该框架空间的下密封材料(16b)、防止从该框架空间向吸入气体压力氛围的低压空间泄漏的上密封材料(16a)形成。
8.一种涡旋压缩机,具有设于密闭容器内而各自的板状涡旋齿(16、26)相啮合从而在彼此之间形成压缩室的静涡盘(1)和摆动涡盘(2)、在轴线方向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘的主轴(4)的可在轴线方向上位移的柔性框架(3)、以及在径向上支撑该柔性框架的导向框架(15),通过上述柔性框架相对于上述导向框架进行轴线方向的移动,使得上述摆动涡盘能够在轴线方向上移动;其特征在于,在上述柔性框架与上述导向框架之间形成有框架空间(15f),上述摆动涡盘在与板状涡旋齿相反一侧的面上具有止推面(2d),上述柔性框架上形成有与该摆动涡盘止推面压触滑动的止推轴承(3a),在该止推轴承(3a)的内侧、且上述柔性框架与上述摆动涡盘之间形成有凸起部外侧空间(2h)。
9.一种涡旋压缩机,具有设于密闭容器内而各自的板状涡旋齿相啮合从而在彼此之间形成压缩室的静涡盘(1)和摆动涡盘(2)、在轴线方向上支撑该摆动涡盘并在径向上支撑驱动该摆动涡盘的主轴的可在轴线方向上位移的柔性框架(3)、以及在径向上支撑该柔性框架的导向框架,通过上述柔性框架相对于上述导向框架(15)进行轴线方向的移动,使得上述摆动涡盘能够沿轴线方向移动,其特征在于,上述密闭容器内为排出气体压力氛围,上述柔性框架与上述导向框架之间形成有框架空间(15f),该框架空间内的压力高于吸气压力而低于或等于排气压力,上述摆动涡盘在与板状涡旋齿相反一侧的面上具有止推面(2d),上述柔性框架(3)上形成有与该摆动涡盘止推面(2d)压触滑动的止推轴承(3a),在该止推轴承的内侧、且上述柔性框架与上述摆动涡盘之间形成的空间、即凸起部外侧空间(2h)的压力大致等于吸入气体压力。
全文摘要
作为摆动涡盘可轴向移动的压缩机,摆动涡盘易于回退。解决方案是,柔性框架3与导向框架15之间的空间15f作为中压,以柔性框架3支撑摆动涡盘2。
文档编号F04C27/00GK1447029SQ0212615
公开日2003年10月8日 申请日期2002年7月10日 优先权日1998年11月20日
发明者小川博史, 石井稔, 池田清春, 铃木康巨, 伏木毅, 濑畑崇史, 川口进, 小川喜英, 泉泽涉 申请人:三菱电机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1