涡轮压缩机的制作方法

文档序号:5455450阅读:150来源:国知局
专利名称:涡轮压缩机的制作方法
技术领域
本发明涉及涡轮压缩机,特别是延长轴承寿命的同时提高旋转轴的临界速度的涡轮压缩机。
背景技术
在制冷机中,为了压缩作为工作流体的致冷剂气体使之成为高温高压状态,采用离心压缩机、即所谓的涡轮压缩机。
但是,在压缩机中,如果压缩比变大,则压缩机的排出温度升高,容积效率下降。特别是如果蒸发温度下降,由于压缩比变大,所以有时将压缩操作分成二级或者三级以上进行压缩。将这样的进行多级压缩操作的涡轮压缩机称为多级涡轮压缩机。
作为二级涡轮压缩机的现有技术,有下述专利文献1公开的技术,其结构如图1所示。
在该涡轮压缩机80中,于自由旋转地设置在壳体81内的旋转轴82上,在相同方向上隔开间隔地固定着第一级离心叶轮83和第二级离心叶轮84。
旋转轴82在固定有第一级离心叶轮83和第二级离心叶轮84的部分悬伸的状态下,在轴向上分开的位置上旋转自如地被轴承A和轴承B支撑。
轴承A是采用了角接触球轴承的组合角接触球轴承,轴承B是采用了两个角接触球轴承的组合角接触球轴承。
此外,作为驱动源的马达85的输出轴86旋转自如地被轴承87支撑。输出轴86上固定了大齿轮88,旋转轴82上固定了与大齿轮88啮合的小齿轮89,这样,马达85的输出轴86的旋转力被增速以后传递给旋转轴82。
在这样构成的涡轮压缩机80中,由上游侧的第一级离心叶轮83压缩致冷剂,并且将该致冷剂导入第二级压缩叶轮84中进行压缩之后输送到外部。
此外,在涡轮压缩机的旋转轴的两端部上固定叶轮,在中央部连接马达的输出轴,在旋转轴的两端部附近配置轴承,这种结构公开在下述专利文献2中。
专利文献1特开2002-303298号公报专利文献2特开平5-223090号公报压缩机中,叶轮背面的压力比叶轮前面高,在该压力差的作用下,从叶轮背面侧向入口方向产生推力。因此,如专利文献1的涡轮压缩机那样,如果在相同方向配置两个叶轮,则作用在两个叶轮上的推力合计起来形成大的推力。因此,对作用在压缩机的旋转轴上的推力载荷进行支撑侧的轴承,支撑载荷大,相应地机械损失增加,而且,还存在轴承的寿命缩短的问题。此外,如果为了延长轴承的寿命,增加配置的轴承的数量,则存在机械损失增加的问题。
此外,在专利文献2的涡轮压缩机中,采用了角接触球轴承作为轴承。角接触球轴承虽然不仅能够承受径向载荷而且能够承受推力载荷,但是为了承受两个方向的推力载荷,必须组合两个以上使用。因此,存在所使用的轴承数量增加、机械损失变大的问题。
此外,如专利文献1的涡轮压缩机所述,在旋转轴的悬伸部分上安装多个叶轮的压缩机中,在考虑到旋转轴的临界速度时,需要采用缩短叶轮的轴向长度等手段。
但是,从压缩效率的观点出发,缩短叶轮的轴向长度不能说是优选的。
此外,在专利文献2的涡轮压缩机中,由于支撑在旋转轴的两端部附近,所以轴支撑部的间隔增加,存在临界速度降低的问题。

发明内容
本发明是鉴于上述情况而作出的,目的在于提供一种涡轮压缩机,其能够降低轴承部的机械损失、延长轴承寿命,并且能够提高临界速度而不会缩短叶轮的轴向长度。
为了解决上述问题,本发明的涡轮压缩机采用了下述机构即,本发明的涡轮压缩机,包括设于壳体内并由驱动源驱动进行旋转的旋转轴,旋转自如地支撑该旋转轴的轴承,和在轴向上隔开间隔地配置在上述旋转轴上的第一离心叶轮和第二离心叶轮,上述第一离心叶轮和上述第二离心叶轮配置在相互的背面侧对置的方向上,上述轴承包括分别在轴向上分开的两个支撑位置上对作用于上述旋转轴上的径向载荷进行支撑的圆柱滚子轴承、和对作用于上述旋转轴上的推力载荷进行支撑的推力轴承。
这样,由于第一离心叶轮和第二离心叶轮配置在相互的背面侧对置的方向上,所以作用于两叶轮上的推力也相互方向相反。因此,作用于两个叶轮上的推力互相抵消降低,作用于轴承上的推力载荷大幅度降低,因此能够降低轴承部的机械损失。因此,能够延长轴承的寿命。
此外,由于分为对径向载荷和对推力载荷进行支撑的轴承,所以能够根据各自的载荷选定考虑了损失和寿命等的最优轴承。本发明中,如上所述,由于降低了推力载荷,所以仅由推力轴承支撑推力载荷,对径向载荷进行支撑的轴承采用了圆柱滚子轴承。因此,不必像角接触球轴承那样组合多个轴承来使用,能够减少使用数量,故能够降低轴承部的机械损失。
另外,圆柱滚子轴承由于能够比球轴承支撑更大的径向载荷,故在支撑相同的径向载荷的情况下,能够将轴承做得比球轴承小。
此外,本发明的涡轮压缩机,包括设于壳体内并由驱动源驱动进行旋转的旋转轴,旋转自如地支撑该旋转轴的轴承,和在轴向上隔开间隔地配置在上述旋转轴上的第一离心叶轮和第二离心叶轮,上述第一离心叶轮和上述第二离心叶轮配置在相互的背面侧对置的方向上,上述轴承是在轴向上分开的两个支撑位置对上述旋转轴进行支撑的轴承,并且至少对一个支撑位置进行支撑的轴承是深槽球轴承。
这样,由于第一离心叶轮和第二离心叶轮配置在相互的背面侧对置的方向上,所以如上所述,能够降低轴承部的机械损失。因此,能够延长轴承的寿命。
此外,由于大幅度降低轴承部的推力载荷,并且通过采用深槽球轴承而不必像角接触球轴承那样组合多个轴承进行使用,所以能够减少轴承的使用数量,能够降低轴承部的机械损失。
另外,在上述涡轮压缩机中,其特征在于,从上述旋转轴的一端侧依次配置上述第一离心叶轮和上述第二离心叶轮,上述旋转轴以上述第二离心叶轮为基准从上述第一离心叶轮的轴向相反侧的部位被传递驱动力,上述轴承中的对一个支撑位置进行支撑的轴承配置在上述第一离心叶轮和第二离心叶轮之间,对另一个支撑位置进行支撑的轴承以上述第二离心叶轮为基准配置在上述第一离心叶轮的轴向相反侧。
此外,本发明的涡轮压缩机,包括设于壳体内并由驱动源驱动进行旋转的旋转轴,旋转自如地支撑该旋转轴的轴承,和在轴向上隔开间隔地配置在上述旋转轴上的第一离心叶轮和第二离心叶轮,其特征在于上述第一离心叶轮和上述第二离心叶轮从上述旋转轴的一端侧依次配置在相互的背面侧对置的方向上,上述旋转轴以上述第二离心叶轮为基准从上述第一离心叶轮的轴向相反侧的部位被传递驱动力,上述轴承中的对一个支撑位置进行支撑的轴承配置在上述第一离心叶轮和第二离心叶轮之间,对另一个支撑位置进行支撑的轴承以上述第二离心叶轮为基准配置在上述第一离心叶轮的轴向相反侧。
这样,由于对一个支撑位置进行支撑的轴承配置在第一离心叶轮和第二离心叶轮之间,所以减少了旋转轴的悬伸量。故能够提高临界速度而不缩短叶轮的轴向长度。此外,由于能够在插入叶轮的细的轴部分配置轴承,故能够抑制旋转轴的弯曲并提高刚性。
此外,由于对另一个支撑位置进行支撑的轴承以第二离心叶轮为基准配置在第一离心叶轮的轴向相反侧,所以能够将该支撑位置上的轴部分做粗,提高刚性。
此外,在上述涡轮压缩机中,其特征在于,还具有将从上述驱动源输出的旋转驱动力进行增速并传递给上述旋转轴的增速机构,该增速机构配置在上述第二离心叶轮和对上述另一个支撑位置进行支撑的轴承之间。
这样,增速机构由于配置在第二离心叶轮和对另一个支撑位置进行支撑的轴承之间,所以能够抑制增速机构的反作用力所引起的旋转轴的挠曲。
另外,上述“第一”以及“第二”是指两个部件中的一个和另一个,因此,第一离心叶轮意味着两个离心叶轮中的一个离心叶轮,第二离心叶轮意味着两个离心叶轮中的另一个离心叶轮。因此,下述说明中的“第一级离心叶轮”并不一定意味着上述第一离心叶轮,此外“第二级离心叶轮”也并不一定意味着上述第二离心叶轮。
根据本发明的涡轮压缩机,具有下述优良效果能够减少轴承部的机械损失而延长轴承寿命,同时能够提高临界速度而不会缩短叶轮的轴向长度。
本发明的其他目的和有利的特征从参照附图的下述说明可知。


图1为现有技术的涡轮压缩机的结构示意图。
图2为应用了本发明的涡轮压缩机的涡轮制冷机的制冷回路的结构示意图。
图3为本发明的第一实施方式的涡轮压缩机的结构示意图。
图4为表示本发明的第一实施方式的涡轮压缩机的结构的局部放大图。
图5为图4的A-A线截面上的内侧涡旋室与外侧涡旋室的形状示意图。
图6为表示本发明的第二实施方式的涡轮压缩机的结构的局部放大图。
图7为表示本发明的第三实施方式的涡轮压缩机的结构的局部放大图。
具体实施例方式
下面根据附图就本发明的优选实施方式进行详细说明。另外,各图中相同的部分采用相同的标记,并省略重复的说明。
此外,下面作为制冷机用的涡轮压缩机对本发明进行说明,但是本发明的应用范围并不限于此,也可以应用于在其他工程机械等中使用的压缩流体的离心型涡轮压缩机。
(第一实施方式)以下对本发明的实施方式进行说明。
图2是应用了本发明的涡轮压缩机的涡轮制冷机10的制冷回路的构成示意图。
图2中,涡轮制冷机10包括涡轮压缩机20、冷凝器14、膨胀阀16a、16b、蒸发器18以及节能器19。
涡轮压缩机10是具有第一级离心叶轮23和第二级离心叶轮26的两级涡轮压缩机,由上游侧的第一级离心叶轮23压缩致冷剂气体,进而将该致冷剂气体导入到第二级离心叶轮26中进行压缩后,输送到冷凝器14中。
冷凝器14将被压缩而成为高温高压的致冷剂气体进行冷却液化、形成致冷剂液体。
膨胀阀16a、16b分别配置在冷凝器与节能器之间、以及节能器与蒸发器之间,对被冷凝器液化的致冷剂液体分阶段地进行减压。
节能器19暂时储存并冷却由膨胀阀16a减压的致冷剂。另外,节能器19内的致冷剂的气相成分被导入到涡轮压缩机20的第一级离心叶轮23和第二级离心叶轮26之间的流路中。
蒸发器18将致冷剂液体进行气化使之成为致冷剂气体。从蒸发器18出来的致冷剂气体被吸入到涡轮压缩机20中。
图3为本发明的实施方式的涡轮压缩机20的结构示意图。如图3所示,该涡轮压缩机20由压缩机构21、马达60、增速机构70等机构构成。
压缩机构21包括第一级压缩级21A和第二级压缩级21B,其中第一级压缩级21A包括第一级离心叶轮23以及对其进行包围的入口侧壳体24,第二级压缩级21B包括第二级离心叶轮26和对其进行包围的出口侧壳体27。
在入口侧壳体24和出口侧壳体27上设有旋转轴28,该旋转轴28以轴心X为中心旋转自如地被后述的轴承50支撑。第一级离心叶轮23和第二级离心叶轮26从旋转轴28的一端侧(图中的吸入侧)在轴向上隔开间隔地以相互的背面侧对置的朝向邻接地配置在旋转轴28上。
入口侧壳体24和出口侧壳体27通过螺栓等连接机构相互固定。
具有输出轴61的马达60收容在马达壳体64中。马达60起到驱动压缩机构21旋转的驱动源的作用。
马达壳体64通过螺栓等连接机构固定在上述出口侧壳体27上。
增速机构70内置于由马达壳体64和出口侧壳体27形成的空间中,包括固定在输出轴61上的大齿轮71和固定在旋转轴28上的小齿轮72。另外,小齿轮72也可以一体地形成在旋转轴28上。小齿轮72固定在旋转轴28的轴向部位中的、以第二级离心叶轮26为基准与第一级离心叶轮23轴向相反侧的部位。即,旋转轴28以第二级离心叶轮26为基准从与第一级离心叶轮23轴向相反侧的部位被传递驱动力。
通过这样构成的增速机构70,马达60的输出轴61的旋转力被增速并传递给旋转轴28。
图4是图3中的压缩机构21和增速机构70的放大图。
如图4所示,在入口侧壳体24上形成有用于向第一级离心叶轮23导入致冷剂气体的吸入口29a。在吸入口29a上设有用于控制吸入容量的入口导向翼30。
在入口侧壳体24上形成有包围第一级离心叶轮23的环形内侧涡旋室31。在该内侧涡旋室31和第一级离心叶轮23之间形成了从第一级离心叶轮23出口向半径方向外侧延伸的环形入口侧扩散部34,从而对由第一级离心叶轮23加速的气体进行减速加压并导入到内侧涡旋室31中。
在入口侧壳体24的背面侧(图中左侧)形成了使旋转轴28通过的开口部。
此外,在入口侧壳体24上形成了比内侧涡旋室31靠半径方向外侧的外侧涡旋室32。
图5为图4的A-A线截面上的内侧涡旋室31与外侧涡旋室32的形状示意图。如该图所示,外侧涡旋室32与内侧涡旋室31的出口部31a连通,并在周向上延伸地形成以至少部分地包围内侧涡旋室31,本实施方式中,形成为包围内侧涡旋室31的周部半周左右。
此外,如图4所示,在入口侧壳体24上形成有从外侧涡旋室32的末端部连通并在出口侧壳体27侧开口的出口流路33。该出口流路33设于出口侧壳体27上并形成为与后述的导入流路41连通。
此外,在入口侧壳体24或者出口侧壳体27上设有气体供给口(未图示),用于向第一级离心叶轮23和第二级离心叶轮之间的气体流路供给来自于上述节能器19的致冷剂气体,从而将来自于节能器19的致冷剂气体混合到由第一级离心叶轮23压缩的致冷剂气体中并向第二级离心叶轮26供给。
此外,上述出口流路33借助铸造一体构造而与入口侧壳体24内的其他流路(外侧涡旋室32等)一起一体地形成在入口侧壳体24内。
如图4所示,在出口侧壳体27上形成了导入流路41、吸入涡旋室42和吸入通路43。
导入流路41在入口侧壳体24侧开口以与上述出口流路33连通,并形成为向出口侧壳体27导入来自于第一级压缩级21A的致冷剂气体。
吸入涡旋室42环形地包围旋转轴28的周围并形成为使来自于导入流路41的气体向周向扩大。
吸入通路43形成为环形,以将吸入涡旋室42的气体导入到径向内侧后,使之改变方向朝向第一级离心叶轮23侧并引导至第二级离心叶轮26。
此外,在出口侧壳体27上形成有包围第二级离心叶轮26的环形出口侧涡旋室46。在该出口侧涡旋室46与第二级离心叶轮26之间形成从第二级离心叶轮26出口向半径方向延伸的环形出口侧扩散部47,这样对被第二级离心叶轮26加速的气体进行减速加压,并向出口侧涡旋室46进行引导。
在出口侧壳体27的背面侧(图中右侧)形成了使旋转轴28通过的开口部。
此外,上述导入流路41通过铸造一体构造而与出口侧壳体27内的其他流路(吸入涡旋室42等)一起一体地形成在出口侧壳体27内。
另外,尽管上述出口流路33和导入流路41也可以是与入口侧壳体24和出口侧壳体27不同的其他构造的配管,但是如果如本实施方式那样制成铸造一体构造,则由于减少了部件数量以及减少了组装作业,所以能够降低成本并且形成最少限度的流路构造,故结构紧凑。
在上述入口侧壳体24和出口侧壳体27中内置有支撑旋转轴28、使其以轴心X为中心旋转自如的轴承50。
本实施方式中,轴承50包括对作用于旋转轴28上的径向载荷以及推力载荷分别进行支撑的轴承。即,轴承50包括分别在轴向上分开的两个支撑位置上对作用于旋转轴28上的径向载荷进行支撑的圆柱滚子轴承51、52和对作用于旋转轴28上的推力载荷进行支撑的推力轴承53。该推力轴承53可以是滑动轴承和滚动轴承的任意一种。
该轴承50中的对一个支撑位置进行支撑的圆柱滚子轴承51(以下也称为“一个轴承”)配置在第一级离心叶轮23和第二级离心叶轮26之间。此外,该轴承50中的对另一个支撑位置进行支撑的圆柱滚子轴承52(以下也称为“另一个轴承”)以第二级离心叶轮26为基准配置在与第一级离心叶轮23轴向相反的一侧。由未图示的供油构造向这些轴承51、52、53供给润滑油来确保其润滑。
一个圆柱滚子轴承51固定在设于出口侧壳体27上的轴承保持部56上。
另外,轴承保持部56也可以设置在入口侧壳体24上。推力轴承53既可以是滑动轴承也可以是滚动轴承。
此外,如图4所示,本实施方式中,增速机构70配置在第二级离心叶轮26和另一个轴承52之间。
不过,如上所述,在本实施方式中,尽管一个轴承51配置在第一级离心叶轮23与第二级离心叶轮26之间,但是这样的构造在图1所示的现有技术的涡轮压缩机80中比较困难。
即,现有技术的涡轮压缩机在相同方向上配置两个叶轮,在它们之间的旋转轴的周围设有将气体从第一级叶轮导入到接下来的叶轮中心附近的回流流路,所以受到确保轴承的设置空间并且设置给油构造等的构造上的制约,在叶轮之间配置轴承是困难的。
相对于此,在本发明的涡轮压缩机20中,第一级离心叶轮23与第二级离心叶轮26配置在相互背面侧对置的方向上,用于从第一级离心叶轮23向第二级离心叶轮26导入气体的出口流路33和导入流路41设置在两叶轮的径向外侧,所以在确保轴承的设置空间以及配设给油构造时的构造上的制约少。因此,能够在第一级、第二级离心叶轮26之间容易地配置轴承51。
接着对这样构成的涡轮压缩机20的工作进行说明。
在上述涡轮制冷机10的工作过程中,在涡轮压缩机20中,马达60的输出轴61的旋转驱动力被增速机构增速并传递给旋转轴28,驱动固定在旋转轴28上的第一级离心叶轮23和第二级离心叶轮26旋转。
来自于蒸发器18的致冷剂气体从入口侧壳体24的吸入口29a被吸入,被第一级离心叶轮23加速。被加速的致冷剂气体在穿过入口侧扩散部34的过程中被减速加压并顺序地被导向内侧涡旋室31和外侧涡旋室32。
穿过外侧涡旋室32的致冷剂气体穿过出口流路33、导入流路41从入口侧壳体24向出口侧壳体27移动,穿过吸入涡旋室42和吸入通路43被导向第二级离心叶轮26并被加速。
被加速的致冷剂气体在穿过外侧扩散部27的过程中被减速加压,由此进而成为高温高压并被导入到出口侧涡旋室46中,之后,从未图示的排出部排出被导向上述冷凝器。
接着对本实施方式的涡轮压缩机20的作用·效果进行说明。
根据本实施方式的涡轮压缩机20,由于第一级离心叶轮23与第二级离心叶轮26配置在相互背面侧相对置的方向上,所以作用于两叶轮上的推力也相互为相反方向。因此,作用于两叶轮上的推力相互抵消、降低,作用于轴承50上的推力载荷大幅度降低,所以能够降低轴承部的机械损失。因此,能够延长轴承50的寿命。
此外,由于分为对径向载荷以及推力载荷进行支撑的轴承,所以可以根据各自的载荷选择考虑了损失、寿命等的最优轴承。
本发明中,如上所述,由于推力载荷降低,所以仅由推力轴承支撑推力载荷,支撑径向载荷的轴承采用了圆柱滚子轴承51、52。因此,不必像角接触球轴承那样组合多个轴承来使用,能够减少使用数量,所以能够使轴承部的构造紧凑,并且能够降低轴承部的机械损失。
此外,圆柱滚子轴承51、52由于能够比球轴承支撑更大的载荷,所以在支撑相同的径向载荷时,能够将轴承做得比球轴承小。
此外,由于支撑一个支撑位置的轴承51配置在第一级离心叶轮23和第二级离心叶轮26之间,所以减小了旋转轴28的悬伸量。因此,能够提高临界速度而不必缩短叶轮的轴向长度。此外,由于能够在插入叶轮的细的轴部分配置轴承,所以能够抑制旋转轴28的弯曲,提高刚性。
此外,支撑另一个支撑位置的轴承由于以第二级离心叶轮26为基准配置在与第一级离心叶轮23轴向相反侧,所以能够将该支撑位置上的轴部分加粗,提高刚性。
另外,增速机构由于配置在第二级离心叶轮26和支撑另一个支撑位置的轴承之间,所以能够抑制增速机构70的反作用力所造成的旋转轴28的挠曲。
(第二实施方式)以下对本发明的第二实施方式的涡轮压缩机20进行说明。
图6是表示第二级实施方式的涡轮压缩机20的结构的局部放大剖视图。
如图6所示,本实施方式中,轴承50是共同支撑作用于旋转轴28上的径向载荷以及推力载荷的轴承,包括分别在轴向上分开的两个支撑位置对旋转轴28进行支撑的深槽球轴承54、55。另外,也可以在两个支撑位置的任一方采用深槽球轴承,另一方采用其他种类的轴承(例如圆柱滚子轴承)。
该轴承50中的对一个支撑位置进行支撑的深槽球轴承54(以下也称为“一个深槽球轴承”)配置在第一级离心叶轮23和第二级离心叶轮26之间。此外,该轴承50中的对另一个支撑位置进行支撑的深槽球轴承55(以下也称为“另一个深槽球轴承”)以第二级离心叶轮26为基准配置在第一级离心叶轮23的轴向相反侧。由未图示的供油结构向这些轴承54、55供给润滑油,来确保其润滑。
此外,如图6所示,本实施方式中,增速机构70与第一实施方式一样配置在对两个支撑位置进行支撑的深槽球轴承54、55之间。
另外,本实施方式的涡轮压缩机的其他部分的构成与上述第一实施方式相同。
根据本实施方式的涡轮压缩机20,由于第一级离心叶轮23和第二级离心叶轮26配置成相互的背面侧对置的朝向,所以如上所述,作用于轴承50上的推力载荷大幅度降低,能够降低轴承50的机械损失。
此外,由于轴承50的推力载荷大幅度降低,以及通过采用深槽球轴承54、55而不必要像角接触球轴承那样组合多个轴承进行使用,所以能够减少轴承的使用数量,故能够降低轴承的机械损失。因此,能够延长轴承的寿命。
此外,对一个支撑位置进行支撑的深槽球轴承54由于配置在第一级离心叶轮23和第二级离心叶轮26之间,所以能够提高临界速度而不必缩短叶轮的轴向长度。
另外,关于与第一实施方式相同的部分能够获得与第1实施方式相同的作用·效果。
(第三实施方式)以下对本发明的第三实施方式的涡轮压缩机20进行说明。图7是表示第三实施方式的涡轮压缩机20的结构的局部放大剖视图。
如图7所示,在本实施方式中,轴承50包括分别在轴向上分开的两个支撑位置对作用于旋转轴28上的径向载荷进行支撑的圆柱滚子轴承51、52和对作用于旋转轴28上的推力载荷进行支撑的推力轴承53。
这些轴承均配置在旋转轴28的轴向部位中的、以第二级离心叶轮26为基准与第一级离心叶轮23轴向相反侧的部位(该图中,比第二级离心叶轮26靠左侧的部位)。
此外,如图7所示,本实施方式中,增速机构70配置在对两个支撑位置进行支撑的圆柱滚子轴承51、52之间。
本实施方式的涡轮压缩机20的其他部分的构成与上述第一实施方式相同。
本实施方式中,并不是像第一实施方式那样的将对一个支撑位置进行支撑的轴承配置在第一级离心叶轮23和第二级离心叶轮26之间的构成,但是在本实施方式的涡轮压缩机20中第一级离心叶轮23和第二级离心叶轮26也配置在相互的背面侧相对置的朝向,所以如上所述,作用于轴承50的推力载荷被大幅度降低,因此能够降低轴承50的机械损失。
此外,仅由推力轴承对推力载荷进行支撑,对径向载荷进行支撑的轴承采用了圆柱滚子轴承51、52,所以不必像角接触球轴承那样组合多个轴承进行使用,能够减少使用数量,故能够使轴承部的构造紧凑,同时能够降低轴承部的机械损失。
此外,圆柱滚子轴承51、52由于能够比球轴承支撑更大的径向载荷,所以支撑相同径向载荷时,能够将轴承做得比球轴承小。
另外,也可以将上述圆柱滚子轴承51、52制成深槽球轴承。此时,省略推力轴承53。另外,这种情况下,能够获得与第二实施方式中所述的通过采用深槽球轴承所获得的作用效果相同的作用效果。
(其他实施方式)上述第一和第二实施方式中,尽管限定了轴承50的种类,但是作为其他的实施方式,并不特别限定轴承50的种类,也可以将除轴承以外的其他结构制成与第一或者第二实施方式相同。此时,轴承可以采用滑动轴承、滚动轴承、气体轴承、磁轴承等。
在这样的其他实施方式中,对一个支撑位置进行支撑的轴承由于配置在第一级离心叶轮23和第二级离心叶轮26之间,所以能够获得下述优良效果减小旋转轴28的悬伸量,能够提高临界速度而不缩短叶轮的轴向长度。
此外,尽管在上述第一及第二实施方式中,另一个轴承52和另一个深槽球轴承55以增速机构70的小齿轮72的位置为基准配置在第二级离心叶轮26的相反侧,但是也可以代替这种配置,将另一个轴承52和另一个深槽球轴承55配置在小齿轮72和第二级离心叶轮26之间(例如,图7所示的“一个轴承51”的位置)。
此外,在上述各实施方式中,按照远离由马达60向旋转轴28传递驱动力侧的顺序配置了第一级离心叶轮23和第二级离心叶轮26,但是也可以与此相反,从由马达60传递旋转轴28的驱动力一侧依次配置第一级离心叶轮23和第二级离心叶轮26。即,相对于驱动力被传递给旋转轴28的部位,第一级压缩级21A和第二级压缩级21B也可以是与上述各实施方式相反的配置。
从上述各实施方式的说明可知,根据本发明的涡轮压缩机,能够获得下述优良效果能够降低轴承部处的机械损失并能够延长轴承的寿命,同时能够提高临界速度而不会缩短叶轮的轴向长度。
另外,本发明并不限于上述实施方式,在不脱离本发明主旨的范围内可以进行各种变更。
权利要求
1.一种涡轮压缩机,包括设于壳体内并由驱动源驱动进行旋转的旋转轴、旋转自如地支撑该旋转轴的轴承、和在轴向上隔开间隔地配置在上述旋转轴上的第一离心叶轮和第二离心叶轮,其特征在于上述第一离心叶轮和上述第二离心叶轮配置在相互的背面侧对置的方向上,上述轴承包括分别在轴向上分开的两个支撑位置上对作用于上述旋转轴上的径向载荷进行支撑的圆柱滚子轴承、和对作用于上述旋转轴上的推力载荷进行支撑的推力轴承。
2.一种涡轮压缩机,包括设于壳体内并由驱动源驱动进行旋转的旋转轴、旋转自如地支撑该旋转轴的轴承、和在轴向上隔开间隔地配置在上述旋转轴上的第一离心叶轮和第二离心叶轮,其特征在于上述第一离心叶轮和上述第二离心叶轮配置在相互的背面侧对置的方向上,上述轴承是在轴向上分开的两个支撑位置对上述旋转轴进行支撑的轴承,并且至少对一个支撑位置进行支撑的轴承是深槽球轴承。
3.如权利要求1或2所述的涡轮压缩机,其特征在于,从上述旋转轴的一端侧依次配置上述第一离心叶轮和上述第二离心叶轮,上述旋转轴以上述第二离心叶轮为基准从上述第一离心叶轮的轴向相反侧的部位被传递驱动力,上述轴承中的对一个支撑位置进行支撑的轴承配置在上述第一离心叶轮和第二离心叶轮之间,对另一个支撑位置进行支撑的轴承以上述第二离心叶轮为基准配置在上述第一离心叶轮的轴向相反侧。
4.一种涡轮压缩机,包括设于壳体内并由驱动源驱动进行旋转的旋转轴、旋转自如地支撑该旋转轴的轴承、和在轴向上隔开间隔地配置在上述旋转轴上的第一离心叶轮和第二离心叶轮,其特征在于上述第一离心叶轮和上述第二离心叶轮从上述旋转轴的一端侧依次配置在相互的背面侧对置的方向上,上述旋转轴以上述第二离心叶轮为基准从上述第一离心叶轮的轴向相反侧的部位被传递驱动力,上述轴承中的对一个支撑位置进行支撑的轴承配置在上述第一离心叶轮和第二离心叶轮之间,对另一个支撑位置进行支撑的轴承以上述第二离心叶轮为基准配置在上述第一离心叶轮的轴向相反侧。
5.如权利要求1-4任一项所述的涡轮压缩机,其特征在于还具有将从上述驱动源输出的旋转驱动力进行增速并传递给上述旋转轴的增速机构,该增速机构配置在上述第二离心叶轮和对上述另一个支撑位置进行支撑的轴承之间。
全文摘要
第一离心叶轮和第二离心叶轮以相互背面侧对置的朝向配置。轴承(50)包括分别在轴向上分开的两个支撑位置上对作用于旋转轴(28)的径向载荷进行支撑的圆柱滚子轴承(51、52)和对作用于旋转轴(28)的推力载荷进行支撑的推力轴承(53)。对上述两个支撑位置进行支撑的轴承中的对一个支撑位置进行支撑的轴承配置在第一离心叶轮和第二离心叶轮之间。
文档编号F04D17/12GK1991182SQ20061015627
公开日2007年7月4日 申请日期2006年12月28日 优先权日2005年12月28日
发明者高桥俊雄, 平田丰, 小林一夫, 栗原和昭, 小田兼太郎 申请人:石川岛播磨重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1