具有电动反转马达的往复式容积式泵的制作方法

文档序号:5494788阅读:213来源:国知局
具有电动反转马达的往复式容积式泵的制作方法
【专利摘要】一种泵系统,包括电动马达、泵、转换器和控制器。电动马达具有能够在第一旋转方向和相反的第二旋转方向上可逆地旋转的输出轴。泵具有能够在第一线性方向和相反的第二线性方向上移动的输入轴。转换器将输出轴连接至输入轴使得输出轴在第一旋转方向上的旋转使输入轴在第一线性方向上平移,并且输出轴在第二旋转方向上的旋转使输入轴在第二线性方向上平移。控制器反复地反转输出轴的旋转以产生输入轴的往复运动。
【专利说明】具有电动反转马达的往复式容积式泵
【技术领域】
[0001]本公开内容一般地涉及容积式泵系统。更具体地,本公开内容涉及用于使泵往复运动的驱动系统和用于控制往复运动的方法。
【背景技术】
[0002]容积式泵包括其中固定体积材料被吸入膨胀室并在容积式泵收缩时被推出所述室的系统。这种泵通常包括往复泵送机构,如活塞,或者旋转泵送机构,如齿轮组。因此,往复活塞泵需要可以驱动活塞以膨胀和收缩增压室的双向输入装置。典型的泵送系统由旋转驱动装置,如具有旋转输出轴的马达驱动。马达传统上被配置为由压缩空气提供动力的气动马达或由交流电流提供动力的电动马达。因此,旋转输入装置需要将输出轴的单向旋转转换成往复运动。这在传统上是通过使用曲柄或凸轮系统实现,如在授权给Lehrke等人的、转让给Graco公司的美国专利N0.5,145,339中描述的那样。由于需要马达驱动压缩机,将压缩空气转换成旋转运动,以及将旋转运动转换成往复运动,气动马达在能耗方面是低效的。而且,气动马达和给它们提供动力的压缩机产生不希望的噪声量,并且由于空气的收缩和膨胀而会带来与结冰相关的问题。电动马达相对于气动马达实现节能,但仍然需要复杂的用于将单向旋转转换成泵的双向往复线性运动的机械装置。因此,存在对用于使容积式泵往复运动的改进的驱动系统的需求。

【发明内容】

[0003]一种泵系统,包括电动马达、泵、转换器和控制器。电动马达具有能够在第一旋转方向和相反的第二旋转方向上可逆地旋转的输出轴。泵具有能够在第一线性方向和相反的第二线性方向上移动的输入轴。转换器将输出轴连接至输入轴使得输出轴在第一旋转方向上的旋转使输入轴在第一线性方向上平移,并且输出轴在第二旋转方向上的旋转使输入轴在第二线性方向上平移。控制器反复地反转输出轴的旋转以产生输入轴的往复运动。
[0004]一种操作泵的方法,包括使至电动马达的电流流动方向反复地反转以引起马达的输出轴在顺时针和逆时针方向上的交替旋转,以及将输出轴的交替旋转转换成泵轴的往复线性运动。
【专利附图】

【附图说明】
[0005]图1是具有通过运动转换器由双向电动马达驱动的容积式泵的泵送系统的示意图。
[0006]图2是根据图1的配置的泵送系统的透视图,其中线性位移活塞泵由无刷直流马达驱动。
[0007]图3是图2的泵送系统的分解图,示出用于将无刷直流马达的输出轴连接至线性位移活塞泵的输入轴的齿轮减速系统。
[0008]图4是图3的泵送系统的透视图,示出由齿轮减速系统连接的输出轴的小齿轮和输入轴的齿条。
[0009]图5A是示出至图2-4的无刷直流马达的输入电流极性与时间之间的关系的曲线图。
[0010]图5B是示出图2-4的线性位移活塞泵的泵轴的冲程与时间之间的关系的曲线图。【具体实施方式】
[0011]图1是泵送系统10的示意图,该泵送系统10具有由电动马达14驱动的容积式泵12和运动转换器16。泵12从容器18抽吸流体,如油漆,并将加压流体传递至喷雾器20。未被喷雾器20消耗的流体返回至容器18。马达14的驱动轴22和泵12的泵轴24机械地连接至转换器16。转换器16根据驱动轴22的旋转产生泵轴24的正排量。泵12的出口26和入口 28经由流体管线30A和30B分别连接至容器18。喷雾器20通过软管32连接至流体管线30A。马达14由包括位置传感器35的控制器34电控制。
[0012]从控制器34给电动马达14提供电源以将原动力提供至驱动轴22。在所公开的实施例中,马达14包括旋转马达,其中轴22围绕中心轴线旋转。控制器34电连接至马达14以控制提供至马达14的电流,从而控制轴22的旋转。在参照图2-4描述的实施例中,马达14包括无刷直流(DC)电动马达。然而,马达14可以包括带刷直流马达或永磁铁交流(AC)马达。
[0013]轴22的旋转转动转换器16内的转换机构。转换器16将轴22的旋转运动转换成轴24的线性运动。具体地,转换器16将轴22的单向旋转转换成轴24在单个方向上的位移。在参照图2-4描述的实施例中,转换器16包括齿条和小齿轮系统,其中轴22旋转与连接至泵轴24的线性齿条啮合的小齿轮。转换器16通常还包括齿轮减速系统,其例如相对于驱动轴22降低泵轴24的速度。然而,转换器16可以包括其它类型的转换系统,如凸轮系统或曲柄系统。
[0014]转换器16连接至泵12的泵轴24。泵12包括容积式泵,其中轴24的往复运动膨胀和收缩增压室。在参照图2-4描述的实施例中,泵12包括线性位移活塞泵,其中活塞设置在缸中以将流体吸入入口 28并将压缩流体从出口 26退出。然而,泵12可以包括其它类型的容积式泵,如隔膜泵。
[0015]加压流体离开泵出口 26。加压流体被推动通过流体管线30A到达容器18。泵12通过泵12的泵送机构吸引来自容器18的未加压流体通过流体管线30B和入口 28。喷雾器20平行于容器18连接以从流体管线30A吸引加压流体。喷雾器20被选择性地操作以分配容器18的流体。喷雾器20可以被直接手动操作,或者可以由作为自动喷雾处理的一部分的控制器操作。
[0016]在本发明中,系统10利用可反转电动马达,如无刷直流马达14,其给诸如转换器16之类的线性致动器提供动力,用于驱动往复泵,如活塞泵12。在利用无刷直流马达的实施例中,控制器34操作以提供反转电流至马达14以产生往复运动。更具体地,控制器34使马达14上的电流的流动方向反转以产生轴22的旋转方向的改变。无刷直流马达可以具有低的惯性并且可以对电流流动方向的快速响应反转方向。而且,无刷直流马达在零速处提供完整的转矩范围,从而使得泵12能够维持全压力,这类似气动马达的响应,而没有噪声、费用和结冰问题。无刷直流马达还具有所施加的电流和轴转矩之间的直接关系。因此,仅马达14的速度将改变,因为马达14的恒定转矩(和电流)输出维持泵12处的恒定压力输出。而且,在本发明的另一个方面中,控制器34利用位置传感器35监测泵轴24的位置,使得泵12的反转可以随机化或变化以减少系统10的内部部件的磨损。
[0017]图2是根据图1的配置的泵送系统10的透视图,其中线性位移活塞泵12由无刷直流马达14驱动。泵12和马达14被装入壳体36中,壳体36还包装运动转换器16 (未示出)。转换器16包括安装在壳体36内的齿轮减速系统38。包括轴40和42的齿轮减速系统38将马达14的小齿轮连接至泵12的齿条。泵12包括入口 28、出口 26、活塞筒44和轴护罩46,轴护罩46包住泵12的输入轴(图3)。泵12经由系杆50A、50B和50C(图3)被组装至壳体36。系杆50A-50C保持泵12相对于壳体36固定,使得护罩46内的泵轴24可以由马达14通过转换器16和齿轮减速系统38致动。
[0018]图3是图2的泵送系统10的分解图,示出用于将无刷直流马达14的驱动轴22连接至线性位移活塞泵12的泵轴24的齿轮减速系统38。转换器16(图1)包围齿轮减速系统38,齿轮减速系统38包括第一齿轮组56和第二齿轮组58。壳体36包括主壳体36A、齿轮罩36B和马达罩36C。
[0019]马达14插入主壳体36A内的腔中,使得驱动轴22延伸穿过开口 60A以提供用于驱动齿轮减速系统38的输出轴。马达罩36C定位在主壳体36A上以包围马达14。第一齿轮组56的轴40固定在主壳体36A中的开口 60B和齿轮罩36B中的开口 60C之间。第二齿轮组58的轴42固定至齿轮罩36B中的开口 60D并延伸到主壳体36A的腔62中。泵轴24提供用于操作泵12的输入轴。泵12的泵轴24的第一端延伸到主壳体36A的腔62中并通过齿条(参见图4中的齿条70)连接至第二齿轮组58。泵轴24的第二端延伸穿过护罩46进入活塞筒44以致动活塞(未示出)。系杆50A-50C将泵12的平台64连接至主壳体36A的基部66。护罩部件46A和46B围绕泵轴24定位在系杆50A-50C之间。泵12的输入端28连接至未加压流体源,如流体管线30B(图1)。泵12的出口 26连接至流体分配器,如喷雾器20 (图1)。
[0020]在一种实施例中,马达14安装在壳体32内,使得驱动轴22垂直于泵轴24。例如,系统10意图在平面顶上被操作。如在地板上运行。泵轴24被构造成大致垂直于该平面。因而马达14通常被安装成垂直于轴24并平行于该平面。这样,轴22的旋转如通过使用齿条和小齿轮系统可以容易地转换成轴24的上下线性平移。马达14旋转驱动轴22,其提供旋转至第一齿轮组56。第一齿轮组56引起第二齿轮组58旋转,这通过齿条(未示出)引起泵12的泵轴24运动。泵轴24驱动缸44内的活塞以将未加压流体吸入入口 28中并将加压流体推出出口 26。在本发明的一种实施例中,泵12包括如从Graco公司可购买到的4球活塞泵。在授权给Powers的、转让给Graco公司的美国专利N0.5,368,424中大致描述了 4球活塞泵的例子。其中,护罩部件46A和6B防止污垢、灰尘和碎屑通过泵轴24的检修口进入泵缸44。系杆50A-50C刚性地维持泵12与壳体36隔开,使得转换器16,包括齿轮减速系统38,可以使泵轴24相对于缸44往复运动。从而系杆50A-50C可以反作用于由马达产生并施加至泵12的作用力。
[0021]在组装时,齿轮减速系统38在驱动轴22的小齿轮68和泵轴24的齿条70 (图4)之间提供动力传递连接。具体地,小齿轮68连接至齿轮组56的输入齿轮56A。输出齿轮56B连接至齿轮组58的输入齿轮58A,其驱动输出齿轮58B。输出齿轮58B提供旋转输入至齿条70。这样,轴22借助于马达14的旋转引起轴24的线性位移。转换器16,包括齿轮减速系统38,仅提供力从轴22至轴24的单向传递,使得轴24的单个运动方向与轴22的单个旋转方向相关联。马达14驱动的轴22的旋转方向由控制器34 (图1)反转以引起轴24的重复的往复运动,以提供活塞在缸44内的泵送动作。
[0022]图4是图3的泵送系统10的透视图,示出由齿轮减速系统38连接的驱动轴22 (图3)的小齿轮68和泵轴24的齿条70。壳体36在图4中未被示出,使得可以看到泵送系统10的组装。驱动轴22借助于马达14的旋转引起泵12的泵轴24的平移。从控制器34(图1)给马达14提供反转的直流电流流动,以引起驱动轴22的交替的、两向的或双向的旋转。
[0023]对于第一时间周期,直流电流的第一方向流动被提供至马达14,以引起轴22在顺时针方向上旋转,这将最终引起泵12的泵轴24相对于图4向上移动。小齿轮68在顺时针方向上的旋转引起输入齿轮56A在逆时针方向上的旋转。由于齿轮56A的直径大于小齿轮68的直径,输入齿轮56A以较慢的速率旋转。输入齿轮56A和输出齿轮56B安装在轴40上,使得输出齿轮56B以与输入齿轮56A相同的速率在逆时针方向上旋转。输出齿轮56B与第二齿轮组58的输入齿轮58A啮合,使得输出齿轮56B的逆时针旋转引起输入齿轮58A的顺时针旋转。输入齿轮58A具有比输出齿轮56B大的直径,使得输入齿轮58A以比输出齿轮56B慢的速率旋转。输入齿轮58A和输出齿轮58B安装至轴42,使得输出齿轮58B以与输入齿轮58A相同的速率在顺时针方向上旋转。这样,与小齿轮68的顺时针旋转速度相比,输出齿轮58B的顺时针旋转速度被降低。特定的减速取决于马达14和泵12的具体参数以及系统10的目标输出。输出齿轮58B顺时针旋转以参照图4的方位向上推动齿条70。
[0024]齿条70的向上运动也向上推动泵轴24。泵轴24向上移动的距离与控制器34引起马达14使轴22在第一方向上旋转的时间周期直接相关。因此,泵轴24或活塞在缸44内的冲程长度直接对应于在给定方向上将电流提供至马达14的时间长度。轴24向外远离泵12移动以在入口 28处将流体吸入缸44中。
[0025]为了将轴24重新插入缸44和在出口 26处将加压流体推出缸44,控制器34引起马达14将轴22的旋转方向反转至与第一方向相反的第二方向。在一种实施例中,控制器34使通过马达14的定向电流流动反转。这可以通过反转马达14的电枢处的电流的极性实现,如在现有技术中已知的那样。因此,通过第一齿轮组56和第二齿轮组58的相互作用向下推动齿条齿轮70 (参照图4),这引起泵轴24被推入缸44中。因此,通过在由控制器34(图1)控制的时间周期内在相反的两个方向上交替马达14上的连续电流流动,实现泵轴24的线性往复。
[0026]马达14的控制参数由系统10的操作者基于泵12的目标输出设置。这样,控制器34包括计算机系统,其包括处理器、存储器、图形显示器、用户界面、存储器等,如本领域已知的那样。提供至马达14的电流的量值、电流的极性(方向)的交替、以及每种极性的电流提供至马达14的时间长度由控制器34(图1)指示。控制器34运行以在每种极性处维持至马达14的稳定大小的电流。恒定电流导致马达14提供恒定转矩输出。来自驱动轴22的转矩通过小齿轮68、齿轮减速系统38和齿条70以线性关系直接传递至泵轴24。驱动轴22的速度因此由从泵12内的压力通过齿轮减速系统38反作用在驱动轴22上的作用力控制。如上所述,无刷直流马达对输入的变化快速地响应,这允许马达14快速地反转方向,期间短暂地物理地停止转动(其中速度等于零),同时始终维持转矩输出。因此,无刷直流马达可以由控制器34操作以往复泵轴24的运动,而不需要用于将输出轴的旋转转换成泵轴的双向、往复平移的精密机械装置。进一步,无刷直流马达比较安静并利用比现有气动马达少的电力。这样,与其它系统相比,泵送系统10减少噪声输出并改善运行成本。
[0027]图5A是示出图2-4的无刷直流马达14的输入电流(i)与时间(t)之间的关系的曲线图。图5B是示出图2-4的线性位移活塞泵12的泵轴24的冲程(d)与时间⑴之间的关系的曲线图。参照图5A,电流i的量值在所有时间点处都近似相等。因此,轴22的转矩输出近似恒定。例如,在时刻A处,控制器34运行以提供正向电流流动流过马达14,根据传动装置,这引起泵轴24向上移动。随后,控制器34运行以立即提供具有与正极性相等的量值的负向电流流动流过马达14。这种反转引起泵轴24向下移动。因此,在时刻A和时刻B之间,出现一次完整的泵反转循环。定向电流流动i在多个时间周期内在正向流和负向流之间连续地交替,从而只要需要,就引起泵轴24连续地往复运动。
[0028]泵轴24的包括向上冲程和向下冲程的泵反转循环由一对正负电流极性实现。每个泵反转循环进行的时间量可以改变以在系统10的性能方面获得益处,如下文描述的那样。在所图示的实施例中,每个正极性和负极性在所示出的时间周期内增加。因此,第二泵反转出现在时刻B和时刻C之间并且比时刻A和时刻B之间的第一泵反转长。每个后续的泵反转的时间相对于之前的泵反转增加。这对应于泵轴24横过更大的线性长度,增加活塞在缸44内的冲程长度,如图5B所示。冲程长度的这些变化引起泵轴24在齿轮减速系统38、小齿轮68和齿条70内的齿轮的每个不同的相互啮合位置处反转方向,从而改善传动装置中的磨损分布。
[0029]参照图5B,对于所示出的实线,示出从时刻A至时刻D,活塞在缸44的内的位置的大小增加。例如,在时刻A和时刻B之间,冲程d增加至特定位置,且随后回缩至起始位置。每个后续泵反转相对于前一次泵反转增加冲程。因此,图5A的时刻A至时刻B对应于图5B中的相同时帧,示出冲程长度增加。在冲程长度增加以在时刻D时利用缸44的全部或大部分之后,冲程长度可以逐渐减小。图5A和5B的时刻A至时刻B因此可以沿着时刻D处的垂直轴线成镜像以逐渐缩短电流间隔和冲程长度。
[0030]改变冲程长度的好处包括增加泵送系统10的磨损寿命。特别地,转换器16的齿轮的磨损寿命增加。泵反转在齿轮齿,特别是在小齿轮68中引起冲击负载。这在泵反转时间被最小化和驱动轴22快速地反转方向时特别是如此。改变泵轴24的冲程长度改变在出现反转时接合哪个齿轮齿,从而将冲击负载分布到更大数量的齿轮齿之间。而且,沿着泵送系统10内的轴承接触区域,如沿着轴24、轴40或轴42的、出现泵反转的位置将变化,从而增加系统10内的轴承的磨损寿命。
[0031]图5A和5B的实线曲线示出冲程长度在预定图案范围内的线性的、均匀的变化。如在图5A中可以看到的那样,在时刻A和时刻B之间,已经出现完整的泵反转。每个反转时间周期在正电流流和负电流流之间被相等地划分。这种相等分布确保泵轴24不引起缸44内的活塞到头或撞击缸的端部,从而不会引起空间不足以完成被编程的泵冲程。然而,冲程长度可以任意地改变或者可以在非均匀图案范围内改变。每个泵反转内的正负极性的时间分布可以改变,只要控制器34监测活塞的绝对位置或被提供由避免活塞在缸内到头的程序模式。这样,控制器34利用位置传感器35监测泵轴24相对于缸44的绝对位置。可替换地,缸44可以设置有用于监测活塞的位置的位置传感器。[0032]作为示例,图5B中的实线示出在每个位置(由峰尖指示)处从向上冲程至向下冲程的改变,但从向下冲程至向上冲程的改变总是出现在相同的初始位置(由零轴处的波谷指示)。然而,虚线示出从向下冲程至向上冲程的改变可以出现在不同的位置处。冲程长度因此一直被维持在缸44的整个可用空间内,但每次冲程转变的位置可以改变。因此,不仅可以改变冲程长度的量值,而且可以关于轴24相对于缸44的位置(以及转换器16中的传动装置的齿的啮合)改变出现冲程转变的位置。
[0033]虽然已经参照优选实施例描述了本发明,但本领域技术人员将会认识到,在不偏离本发明的精神和范围的情况下,可以在形式和细节上进行改变。
【权利要求】
1.一种泵系统,包括: 电动马达,具有能够在第一旋转方向和相反的第二旋转方向上可逆地旋转的输出轴; 泵,具有能够在第一线性方向和相反的第二线性方向上移动的输入轴;和 转换器,将输出轴连接至输入轴使得: 输出轴在第一旋转方向上的旋转使输入轴在第一线性方向上平移; 输出轴在第二旋转方向上的旋转使输入轴在第二线性方向上平移;和 控制器,反复地反转输出轴的旋转以产生输入轴的往复运动。
2.根据权利要求1所述的泵系统,其中泵包括容积式泵。
3.根据权利要求1所述的泵系统,其中转换器包括齿条和小齿轮系统。
4.根据权利要求3所述的泵系统,其中转换器还包括齿轮减速系统。
5.根据权利要求4所述的泵系统,其中齿轮减速系统包括两级减速系统。
6.根据权利要求1所述的泵系统,还包括: 其中电动马达包括无刷直流马达;并且 控制器使提供至电动马达的电流的电流流动方向反转以反转输出轴的旋转。
7.根据权利要求6所述的泵系统,其中控制器维持电动马达的恒定转矩输出。
8.根据权利要求6所述的泵系统,其中控制器改变电流流动方向反转之间的时间间隔。
9.根据权利要求8所述的泵系统,其中控制器改变电流流动方向从一次反转到下一次反转的两次反转之间的时间。
10.根据权利要求9所述的泵系统,其中控制器改变电流流动方向反转之间的时间以逐渐地增加和逐渐地减小上限和下限。
11.一种操作泵的方法,该方法包括下述步骤: 使至电动马达的电流流动方向反复地反转以引起电动马达的输出轴在顺时针和逆时针方向上的交替旋转;以及 将输出轴的交替旋转转换成泵轴的往复线性运动。
12.根据权利要求11所述的方法,其中: 电动马达包括无刷直流马达;并且 泵包括容积式泵。
13.根据权利要求11所述的方法,其中将输出轴的交替旋转转换成泵轴的往复线性运动的步骤包括: 用输出轴旋转小齿轮;以及 用小齿轮平移齿条。
14.根据权利要求11所述的方法,其中: 输出轴在顺时针方向上的旋转产生泵轴在第一方向上的线性运动;以及 输出轴在逆时针方向上的旋转产生泵轴在相反的第二方向上的线性运动。
15.根据权利要求11所述的方法,还包括下述步骤: 将恒定的电流流动供给至电动马达以维持恒定转矩;以及 维持泵处的恒定压力输出。
16.根据权利要求11所述的方法,还包括下述步骤:改变电流流动方向反转之间的时间。
17.根据权利要求16所述的方法,其中电流流动方向反转之间的时间在规则的可重复图案的范围内变化。
18.根据权利要求17所述的方法,其中电流流动方向反转之间的时间在上限和下限之间逐渐地增加和逐渐地减小。
19.根据权利要求16所述的方法,其中电流流动方向反转之间的时间被随机地改变。
20.根据权利要求16所述的方法,还包括下述步骤: 改变泵轴的冲程长度的量值。
21.根据权利要求16所述的方法,还包括下述步骤: 改变泵轴的转变位置,在转变位置处泵轴反转线性平移。
22.一种栗系统,包括: 具有旋转输出轴的无刷直流电动马达; 具有线性可移位输入轴的容积式泵; 齿条和小齿轮转换系统,将输出轴连接至输入轴,使得输出轴的顺时针旋转使输入轴在第一方向上平移,并且输出轴的逆时针旋转使输入轴在相反的第二方向上平移;和控制器,反复地反转输出轴的旋转方向以产生输入轴的往复平移。
23.根据权利要求22所述的泵系统,其中齿条和小齿轮转换系统包括: 连接至输出轴的小齿轮; 连接至输入轴的齿条;和 连接至小齿轮和齿条的齿轮减速系统。
【文档编号】F04B17/03GK103814213SQ201280043742
【公开日】2014年5月21日 申请日期:2012年9月10日 优先权日:2011年9月9日
【发明者】蒂姆西·S·罗曼, 格雷克·T·莫洛泽克 申请人:格瑞克明尼苏达有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1