用于燃料电池的供氢系统的制作方法

文档序号:5647191阅读:148来源:国知局
专利名称:用于燃料电池的供氢系统的制作方法
技术领域
本发明涉及一种用于燃料电池的供氢系统。更具体地,本发明涉 及一种用于燃料电池的供氢系统,其可以补偿当高压罐充氢和排氢时 因发热导致的温度变化。
背景技术
通常,燃料电池是通过电化学反应在不发生燃烧的情况下将燃料 的化学能直接转化成电能的装置。这种燃料电池是用作交通工具电源、 激光装置电源、和类似物的零排放发电系统。
在燃料电池中,包括燃料电池组件(其中堆叠有多个单元电池) 和其他周边元件的燃料电池堆产生电,氢提供给阳极作为燃料气,氧 提供给阴极作为氧化剂。
在燃料电池交通工具中,安装有储氢罐,其用于存储从位于交通 工具外部的氢燃料补给站供应的氢气,并向燃料电池堆提供用以产生 电的氢气。
即,燃料电池中的氢首先存储在安装在交通工具中的储氢罐中, 然后提供给在其中产生电的燃料电池堆。
因此,需要用氢再充满储氢罐,用以在燃料电池堆中连续产生电。 氢燃料补给站包括供氢罐和压縮器。运行压縮器,以提高出自供氢罐 的氢的压力,并将加压氢提供至交通工具中的储氢罐。
已知有若干种储氢方法。例如,氢可以储存成液态氢。它可以使 用高压压縮来储存。另外,它还可以使用储氢材料,例如金属氢化物、
多孔钠米结构材料等来储存。
其中,普遍使用的是涉及高压压縮的方法。使用储氢材料的方法 已经得到广泛研究。
图1是说明根据高压压縮方法的燃料提供模式的示意图。如图1 所示,将供自氢燃料补给站1的氢充至高压氢罐2,将高压氢罐2中储
存的氢提供至燃料电池堆,如果必要,通过高压调节器3和低压调节 器4来调节氢的压力。
在该情况下,在高压氢罐2的一端处装配电磁阀5,另一端装有端 塞,使得氢通过电磁阀5充入,其中通过将工作信号传输至电磁阀5 来打开和关闭其阀门。
目前,燃料电池系统中的储氢方法将氢气压縮至350巴或700巴 的高压。
但是,该方法的缺点在于其储存密度很低,压縮压力必须在指 定的体积下增加,和/或存储体积必须在指定得压縮压力下增加,以保 证长的驱动距离,这对交通工具的稳定性和有限空间方面是不利的。
而且,当氢被压縮并在高压氢罐中存储时,由压力影响造成的温 度增加会引起安全问题。
图2中的图显示了储氢材料的氢吸收和释放。当氢存储在储氢材 料中时,通过放热反应产生热,当从外部施加热量时,氢得以释放。
但是,尽管储氢材料的优势在于与高压压縮法相比其提供更高的 储氢密度,但与高压压縮法相比,其在氢吸收和释放速率以及热管理 方面是不利的。
背景技术
部分公开的信息仅用于有助于理解本发明的背景技术, 不应当被认为是认可或以任何方式暗示该信息形成了本领域技术人员 已经公知的现有技术。

发明内容
为了解决上述问题致力于本发明,本发明的目的是提供一种用于 燃料电池的供氢系统,其中高压罐中装配有金属氢化物(MH)罐,并 且在高压罐的两端均安装有电磁阀(solenoid valve )。
一方面,本发明提供一种用于燃料电池的供氢系统,其包括高
压罐,其能够存储从氢燃料补给站接受的氢,并且在其中包括能够存 储氢的金属氢化物(MH)罐;设置在高压罐两端的第一和第二电磁阀; 与高压罐并行连接的缓冲罐;和与缓冲罐连接的燃料电池堆,使得来
自高压罐或MH罐的氢通过缓冲罐提供至该电池堆。运行该系统,使
得氢通过第一电磁阔从氢燃料补给站充至高压罐中,并从高压罐中排
出,氢通过第二电磁阀充入MH罐和从MH罐排出,当氢充至高压罐 时,氢在第一和第二电磁阀同时打开时从MH罐排出,从MH罐排出 的氢存储在缓冲罐中,然后提供至燃料电池堆。
在优选的实施方式中,当氢充至MH罐时,高压罐中的氢在第一 和第二电磁阀同时打开时排出,从高压罐排出的氢存储在缓冲罐中, 然后提供至燃料电池堆。
优选地,第一电磁阀处安装有第一温度传感器,以在氢充至高压 罐时测量高压罐的温度,如果温度增加,打开第二电磁阀,使得MH 罐中的氢被排出。
合适地,第二电磁阀处安装有第二温度传感器,以在氢充至MH 罐时测量MH罐的温度,如果温度增加,打开第一电磁阀,使得高压 罐中的氢被排出。
更优选地,第一电磁阀处安装有第一压力传感器,缓冲罐处安装 有第三压力罐,如果第一压力传感器测得的压力高于第三压力传感器 测得的压力,打开第一电磁阀,使得高压罐中的氢排放至缓冲罐。
更合适地,第二电磁阀处安装有第二压力传感器,如果第二压力 传感器测得的MH罐的压力高于第一压力传感器测得的高压罐的压力, 打开第二电磁阀,使得MH罐中的氢排放至缓冲罐。
而且,缓冲罐和燃料电池堆之间设置有高压调节器和低压调节器, 缓冲罐中氢的压力通过高压和低压调节器降低,将压力降低的氢提供 至燃料电池堆。
根据本发明的系统,当氢充至高压罐时,氢从MH罐中排出,而 当氢从高压罐中排出时,氢被充至MH罐。当高压罐充入和排放氢时 产生的热所导致的温度变化可以得到补偿,从而有可能提供有效的热 管理和安全性。
本文所用的术语"交通工具"、"交通工具的"和其它类似术语应
当理解成包括通常的机动车辆,例如包括运动型多功能车(SUV)、公 共汽车、卡车、各种商务车的载客汽车,包括各种艇和船的船只,飞 机,和类似交通工具。本发明的系统在许多种机动车辆中特别有用。 下文讨论本发明的其他方面。


图1是说明常规的燃料供应系统的示意图2是说明常规储氢材料的氢吸收和释放的示意图3的示意图说明在充入高压罐的过程中,根据本发明的优选实
施方式的用于燃料电池的供氢系统中的氢流向;
图4的示意图说明在充入金属氢化物(MH)罐的过程中,根据本
发明的优选实施方式的用于燃料电池的供氢系统中的氢流向;
图5的示意图说明了根据本发明的优选实施方式的用于燃料电池
的供氢系统中的氢流向;
图6的图说明了高压氢充入过程中的温度升高;以及 图7的图说明了高压氢排出过程中的温度降低。 附图中列出的参考数字包括涉及下文详述的如下元件
10:高压罐11: MH罐
12:缓冲罐13至16:第一至第四电磁阀
17:氢燃料补给站18:燃料电池堆
19:再循环鼓风机20:高压调节器
21:低压调节器
具体实施例方式
现在详细参考本发明的优选实施方式,下文所附的附图中对其实 施例进行说明,其中通篇以相同参考数字标记相同元件。以下对实施 方式进行说明,通过参考附图来解释本发明。
图3的示意图说明在充入高压罐的过程中,根据本发明的优选实 施方式的用于燃料电池的供氢系统中的氢流向,图4的示意图说明在 充入金属氢化物(MH)罐的过程中,根据本发明的优选实施方式的用 于燃料电池的供氢系统中的氢流向,图5的示意图说明了在运行过程 中根据本发明的优选实施方式的用于燃料电池的供氢系统中的氢流 向。
燃料电池交通工具中使用的氢燃料通常以高压压縮,并存储于具
有预定体积空间的气瓶(bomb)中。但是,由于压縮氢气分子之间的 距离很长,气瓶中存储的氢气的量有限,而且由于高压罐10在充氢和 排氢时产生的热所造成的温度变化,会引起安全方面的问题。
而且,金属氢化物(MH)是一种在低温下吸收并存储氢、在高温 下释放所存储氢的金属合金。在使用MH储氢的情况下,储氢容量得 到提高;但是,储氢合金的重量也增加,导致能耗高。
根据本发明的优选实施方式的储氢罐包括用于存储压縮氢气的高 压罐10、使用金属氢化物的MH罐11、和用于存储自高压罐10和MH 罐11中任何一个排出的氢的缓冲罐12。
用于存储压缩氢气的高压罐10是通常用于存储高压氢气的气瓶, 其通过自旋法(spinning process)禾口螺纹法(screwing process )安装有 铝内衬。
MH罐11是安装在高压罐10内的储氢罐。尽管MH罐11的体积 小,由于MH罐11中存储的氢分子之间的距离短,MH罐11的储氢 量大于相同体积高压罐10的储氢量。
在高压罐10内安装MH罐的方法如下。首先,将铝内衬的一端部 分通过自旋法加工,入口部分(突出区域)进行螺纹法处理,然后将 制成的MH罐11安装在高压罐10内。
随后,对铝内衬的另一端部分进行自旋法、螺纹法、绕丝法(filament winding process)和树脂固化法处理,从而完成安装过程。
用于打开和关闭高压罐10的第一电磁阀13、第一温度传感器和第 一压力传感器安装在其中装有MH罐11的高压罐10的一端。而且, 用于打开和关闭MH罐11的第二电磁阀14、第二温度传感器和第二压 力传感器安装在高压罐10的另一端。
而且,缓冲罐12与高压罐10并联设置,使得氢通过第一电磁阀 13从氢燃料补给站17充至高压罐10,从高压罐10排至缓冲罐12,并 且氢通过第二电磁阀14从氢燃料补给站17充至MH罐11,从MH罐 11排至缓冲罐12。
以上述结构,氢充至高压罐IO,并同时从MH罐11排出,或者氢
充至MH罐ll,并同时从高压罐10排出。因此,缓冲罐12安装成当 氢提供至高压罐IO和MH罐11中的任何一个时,氢从另一个排出。
与第一电磁阀13连接的第三电磁阀15、第三温度传感器和第三压 力传感器安装在缓冲罐12的一端。而且,与第二电磁阀14连接的第 四电磁阀16、第四温度传感器和第四压力传感器安装在缓冲罐12的另
i山i而。
电磁阀13至16处可以安装温度传感器和压力传感器。 下面说明根据本发明优选实施方式的具有上述结构的用于燃料电 池的供氢系统的运行。
1) 向高压罐充入压縮氢气时
将压縮氢气从氢燃料补给站17充入高压罐10时,通过高压罐10 处安装的第一温度传感器测量高压罐10内部的温度。
如果温度升高,向MH罐11处设置的第二电磁阀14传送控制信 号,打开阔门14,使得MH罐11中的氢排放至缓冲罐12。
因此,将压縮氢气充入高压罐10时提高的温度可以通过从MH罐 11排出氢来降低,缓冲罐12中存储的氢提供至燃料电池堆18。
2) 向MH罐充入压縮氢气时
将压縮氢气从氢燃料补给站17充入MH罐11时,通过MH罐11 处安装的第二温度传感器测量MH罐ll内部的温度。
如果温度升高,向高压罐10处设置的第一电磁阀13传送控制信 号,打开阀门13,使得高压罐10中的氢排放至缓冲罐12。
因此,将压縮氢气充入MH罐11时提高的温度可以通过从高压罐 10排出氢来降低,缓冲罐12中存储的氢提供至燃料电池堆18。
3) 运行过程中
对于燃料电池系统的运行,打开缓冲罐12处设置的第四电磁阀 16,使得氢的压力首先通过高压调节器20降低至,例如10巴,然后 通过低压调节器降低至,例如0.2巴。
随后,将压力降低的0.2巴的氢气提供至燃料电池堆18,与燃料 电池堆18中的空气反应之后剩余的氢通过再循环鼓风机19再循环。
压力通过第一和第三压力传感器监控,如果高压罐10的压力高于
缓冲罐12的压力,打开高压罐10处的第一电磁阀13。
如果通过第一和第三压力传感器测得的压力低于通过MH罐11处 的第二压力传感器测得的压力,打开MH罐11处的第二电磁阀14,排 出MH罐11中存储的氢。
尽管MH罐11的储氢量很大,由于MH罐11中所存储氢的压力 低,在运行过程中氢以如下连续顺序使用(1)缓冲罐12、 (2)高压 罐10、禾卩(3) MH罐11。
因此,就高压罐10而言,由于充入压縮氢气时产生的压缩热通过 从MH罐11排出氢气时导致的冷却效应而降低,压縮氢气可以高速充 至高压罐10 (其受到以下限制在高压罐10的充入过程中,高压罐 10中的温度不应当超过85°)。
而且,就MH罐11而言,当MH罐11充入和排放高压氢气时产 生的热的吸收和释放,可以通过高压罐10的压縮热和释放热而得到补 偿。
图6中的图说明了高压氢充入过程中的温度升高。当罐充入3至4 分钟时,就温度升高而言,罐内的温度升高至8(TC。如果罐在2分钟 内充入,这是美国能源部(DOE)规定的标准,则温度会升高得更快。
图7中的图说明了高压氢排放过程中的温度降低。在罐内存储的 氢用IO分钟排放的情况下,温度将会降低至-4(TC,如果氢通过更大的 流路排出,则温度降低得更急剧。
如上所述,根据本发明的用于燃料电池的供氢系统的高压罐中装 有金属氢化物(MH)罐,如果高压罐的温度在高压罐充入过程中升高, 打开MH罐的电磁阀来排氢,使得高压罐的温度得以降低。如果MH 罐的温度在MH罐的充入过程中升高,打开高压罐的电磁阀以排氢, 使得高压罐的温度得以降低,然后通过在MH罐的充入过程中产生的 热得到补偿。因此,有可能提供有效的热管理和安全性,并提高充氢 速度。
本发明已经参考其优选实施方式进行了详细说明。但是,本领域 技术人员将会认识到,可以在不偏离本发明的原理和精神的前提下对 这些实施方式进行改变,本发明的范围以所附权利要求及其等同物定 义。
权利要求
1.一种用于燃料电池的供氢系统,其包括高压罐,其能够存储从氢燃料补给站接受的氢,并且在其中包括能够存储氢的金属氢化物(MH)罐;设置在所述高压罐两端的第一和第二电磁阀;与所述高压罐并行连接的缓冲罐;和与所述缓冲罐连接的燃料电池堆,使得来自所述高压罐或所述MH罐的氢通过所述缓冲罐提供至所述电池堆,其中氢通过所述第一电磁阀从所述氢燃料补给站充至所述高压罐中和从所述高压罐中排出,氢通过所述第二电磁阀充入所述MH罐和从其中排出,当氢充至所述高压罐时,氢在所述第一和第二电磁阀同时打开时从所述MH罐排出,并且从所述MH罐排出的氢存储在所述缓冲罐中,然后提供至所述燃料电池堆。
2. 根据权利要求1所述的系统,其中当氢充至所述MH罐时,所 述高压罐中的氢在所述第一和第二电磁阀同时打开时排出,并且从所 述高压罐排出的氢存储在所述缓冲罐中,然后提供至所述燃料电池堆。
3. 根据权利要求1所述的系统,其中所述第一电磁阀处安装有第 一温度传感器,以在氢充至所述高压罐时测量所述高压罐的温度,如 果温度增加,打开所述第二电磁阀,使得所述MH罐中的氢被排出。
4. 根据权利要求2所述的系统,其中所述第二电磁阀处安装有第 二温度传感器,以在氢充至所述MH罐时测量所述MH罐的温度,如 果温度增加,打开所述第一电磁阀,使得所述高压罐中的氢被排出。
5. 根据权利要求1所述的系统,其中所述第一电磁阀处安装有第 一压力传感器,所述缓冲罐处安装有第三压力罐,如果所述第一压力 传感器测得的压力高于所述第三压力传感器测得的压力,打开所述第 一电磁阀,使得所述高压罐中的氢排放至所述缓冲罐。
6. 根据权利要求5所述的系统,其中所述第二电磁阀处安装有第二压力传感器,如果所述第二压力传感器测得的所述MH罐的压力高于所述第一压力传感器测得的所述高压罐的压力,打开所述第二电磁阀,使得所述MH罐中的氢排放至所述缓冲罐。
7. 根据权利要求1所述的系统,其中所述缓冲罐和所述燃料电池 堆之间设置有高压调节器和低压调节器,所述缓冲罐中氢的压力通过 所述的高压调节器和低压调节器降低,将压力降低的氢提供至所述燃 料电池堆。
全文摘要
本发明提供了一种用于燃料电池的供氢系统,其可以补偿当高压罐充氢和排氢时因发热导致的温度变化,该系统使用安装在高压罐内的提供高储氢密度的金属氢化物(MH)罐,使得当氢充至高压罐时氢从MH罐排出,而当氢从高压罐排出时氢充入MH罐。为此,本发明提供一种用于燃料电池的供氢系统,其包括高压罐,其能够存储从氢燃料补给站接受的氢,并且包括安装于其中的能够存储氢的金属氢化物(MH)罐;设置在高压罐两端的第一和第二电磁阀;与高压罐并行连接的缓冲罐;和与缓冲罐连接的燃料电池堆,使得来自高压罐或MH罐的氢通过缓冲罐提供至电池堆,其中氢通过第一电磁阀从氢燃料补给站充至高压罐中,并从高压罐中排出,氢通过第二电磁阀充入MH罐和从其排出,当氢充至高压罐时,氢在第一和第二电磁阀同时打开时从MH罐排出,并且从MH罐排出的氢存储在缓冲罐中,然后提供至燃料电池堆。
文档编号F16C7/00GK101355175SQ20071019495
公开日2009年1月28日 申请日期2007年12月7日 优先权日2007年7月26日
发明者李勋熙, 金亨基, 金相铉 申请人:现代自动车株式会社;起亚自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1