用于在自动变速器蓄能器内存储动能的方法和设备与流程

文档序号:16279649发布日期:2018-12-14 22:48阅读:374来源:国知局
用于在自动变速器蓄能器内存储动能的方法和设备与流程

本公开涉及控制自动变速器内的液压回路以捕获动能。

背景技术

机动车辆的燃料经济性和排放性能是重要特征。更高的燃料经济性和更低的排放等级可能会使车辆对潜在买家更具吸引力,并且可能帮助机动车辆制造商满足当地政府实施的燃料经济性和排放标准。降低燃料消耗和减少车辆排放的一种方法是捕获由移动中的车辆产生的动能。捕获应用摩擦制动器时消耗的动能是众所周知的。然而,这些方法通常涉及复杂且昂贵的部件。动能也可能在自动变速器中存在和损失。自动变速器可以利用加压液压流体来为变速器内的各种液压部件提供动力。



技术实现要素:

根据本公开的一个实施例,公开了一种用于车辆的系统。该系统可以包括蓄能器、泵和控制器。控制器可以被配置成响应车辆的制动,关闭线路压力调节器以将蓄能器和泵与变速器压力线路需求隔离,并且在不满足任何需求的情况下操作泵以对蓄能器进行加载,并且响应于踩加速器踏板(tip-in)事件,打开线路压力调节器并操作蓄能器和泵以满足需求。

根据本公开的另一实施例,公开了一种操作车辆的方法。该方法可以包括响应于车辆的制动,关闭线路压力调节器以将蓄能器和泵与变速器线路压力需求隔离。该方法还可以包括在不满足任何需求的情况下操作泵以对蓄能器进行加载并且响应于踩加速器踏板事件打开线路压力调节器并且操作蓄能器以满足变速器线路压力需求。

根据本公开的另一个实施例,公开了一种车辆。车辆可以包括控制器,该控制器被配置成响应于车辆以恒定速度行驶预定的时间量,关闭线路压力调节器以将蓄能器和泵与变速器压力线路需求隔离,并且在不满足任何需求的情况下操作泵以对蓄能器进行加载,并且响应于踩加速器踏板事件,打开线路压力调节器并操作蓄能器和泵以满足需求。

根据本发明的一个实施例,其中所述控制器进一步被配置成操作流体地连接到所述泵、所述线路压力调节器和所述蓄能器的阀,以促进流体从蓄能器和所述泵的流动以满足所述需求。

根据本发明的一个实施例,其中所述控制器进一步被配置成响应于所述蓄能器的压力降至阈值以下,打开所述线路压力调节器并且仅操作所述泵以满足所述需求。

根据本发明的一个实施例,其中所述控制器进一步被配置成操作流体地连接到所述泵、所述线路压力调节器和蓄能器的阀,以防止从所述泵流动到所述蓄能器并促进流体从所述泵到线路压力调节器的流动以满足需求。

根据本发明的一个实施例,其中所述控制器进一步被配置成响应于踩加速器踏板事件,打开所述线路压力调节器并操作所述蓄能器以满足所述需求。

根据本发明的一个实施例,其中所述控制器进一步被配置成操作流体地连接到所述泵、所述线路压力调节器和蓄能器的阀,以防止从所述泵流动到所述线路压力调节器并促进流体从泵到蓄能器的流动,以便对蓄能器进行液压加载。

附图说明

图1是根据本公开的一个实施例的示例液压回路的示意图;

图2是示出了蓄能器和泵的操作状态的图;

图3是示出了在利用蓄能器和泵的同时操作泵所需的能量的曲线图。

具体实施方式

根据需要,本文公开了本发明的详细实施例;然而,应该理解,所公开的实施例仅仅是可以以各种替代形式实施的本发明的示例。附图不一定按比例;一些特征可能被夸大或最小化以显示特定部件的细节。因此,本文公开的具体结构和功能细节不应被解释为限制性的,而仅仅是作为用于教导本领域技术人员以各种方式使用本发明的代表性基础。

当前的自动变速器具有液压致动离合器和制动器,用于使用液压泵来控制传动装置以对控制元件加压和泵送流体。通常,泵由发动机经由诸如输入轴的机械连接器直接驱动。泵可以将液压流体提供给各种控制元件以及连接到自动变速器或在自动变速器内的蓄能器。蓄能器可以包括活塞或隔膜或气囊,其用于存储液压流体并且通过一系列压力线路分散液压流体以致动离合器和制动器以控制自动变速器内的传动装置。

捕获应用摩擦制动器时消耗的动能是众所周知的。然而,这些方法通常涉及复杂且昂贵的部件。动能也可能在自动变速器中存在并损失。自动变速器可以利用加压液压流体来为变速器内的各种液压部件提供动力。捕获、存储和释放在自动变速器内产生的这种动能是有利的。当车辆正在制动或减速时,车辆产生动能。该动能可以通过利用动能来操作泵并提供加压液压流体来对蓄能器进行加载来捕获。以加压液压流体的形式存储在蓄能器内的能量可用于在随后的驾驶事件期间液压地致动变速器内的离合器和制动器。一旦蓄能器卸载,泵就可以被调节以满足变速器的液压要求。

参考图1,示出了根据本公开的一个实施例的在自动变速器内使用的示例液压回路10的示意图。回路10包括与可变排量泵14可操作地连接的蓄能器12。蓄能器12可以包括活塞和弹簧,其可以被致动以存储和分散由泵14接收的液压流体。蓄能器的尺寸可以从泵的尺寸的二十(20)至二百(200)倍变动。这意味着如果泵的尺寸为每转0.025升,蓄能器可以具有在0.5l至5.0l之间的尺寸。如果蓄能器太小,则无法捕获在制动事件期间产生的足够数量的动能。如果蓄能器太大,则蓄能器可能难以封装在变速箱或车辆内。

泵14直接或间接机械地连接到与发动机(未示出)连接的输入轴并将机械能转换为液压能。在泵运转时,输入轴每转泵送的流体的排量或量可以变化。泵的排量可以通过排量改变机构16改变。改变的流量可以基于来自控制器30的输入并且独立于线路压力而被主动地控制。排量改变机构可以包括弹簧和活塞或其他合适的装置来控制泵的排量。排量控制阀18液压地连接到排量改变机构16和泵14。阀18可以打开或关闭或设置在打开和关闭位置之间的某处以主动控制通过泵的流体的排量。

根据车辆的运行状态增加或减小泵的排量可能是有利的。例如,如果车辆正在加速或以相对恒定的速度(例如在±10英里/小时内)行驶达预定时间(例如大于30秒的时间),则发动机效率相对高。因为发动机的效率相对高,所以通过改变排量改变机构16的状态来增加泵14的排量是有利的。相反,如果发动机正在起停状态下运行(例如交通量、拥挤等),则发动机可能以较低的效率运行,并且可能不是以增加的排量速率来操作泵的时间。当发动机以较低的效率水平运行时,从蓄能器12向压力线路回路38提供加压液压流体可能是有利的。虽然压力线路回路38由黑盒表示,但压力线路回路可以包括多个压力线路,每个压力线路连接到各种控制元件,例如变速器内的制动器和离合器。

线路压力传感器24设置在压力线路回路38和排量控制阀18之间。压力传感器24可以确定线路22内的压力并向控制器30提供指示测量压力的信号。阀26被液压地连接在蓄能器12和泵14之间。阀26可以具有两个操作位置,位置1和位置2。在位置1处,泵流与蓄能器分离,并且流体流被发送到压力线路回路38。在位置2处,泵流被引导以对蓄能器12进行加载。阀26也可以是成比例的类型,位于位置1和位置2之间的任何位置。

阀26可以接收来自控制器30的信号以将操作位置从位置1改变到位置2,反之亦然。蓄能器压力传感器28可以设置在阀26和蓄能器12之间。蓄能器压力传感器28配置成向控制器30提供指示蓄能器容量的信号。如果蓄能器没有容量,则蓄能器12的压力处于其最高点。如果蓄能器具有容量,则蓄能器12的压力将小于最高测量点。

线路压力调节器20可以液压地连接在阀26和线路压力回路38之间。线路压力调节器20可以包括电致动器,诸如螺线管或小型马达,其可以致动阀以调节压力线路22内的压力。随着变速器线路压力需求的变化,线路压力调节器20也变化。例如,响应于线路压力需求的增加,线路压力调节器20可以致动以促进加压流体从泵14、蓄能器12或两者流入线路压力回路38。此外,线路压力调节器可以向控制器30提供指示线路压力需求增加的信号。

控制器30可以是经由串行总线(例如,控制器局域网(can)、flexray、以太网等)或经由专用电导管进行通信的多个控制器。控制器大体上包括任何数量的微处理器、微控制器、asic(专用集成电路)、ic(集成电路)、易失性(例如,ram(随机存取存储器)、dram(动态随机存取存储器)、sram(静态随机存取存储器)等)和非易失性存储器(例如,闪速存储器、rom(只读存储器)、eprom(可擦除可编程只读存储器)、eeprom(电可擦除可编程只读存储器)、mram(磁性随机存取存储器)等)和软件代码相互合作以执行一系列操作。控制器还可以包括预定数据或基于计算和测试数据并且存储在存储器内的“查找表”。控制器可以使用公共总线协议(例如,can、lin(局部互连网络)、以太网等)通过一个或多个有线或无线车辆连接与其他车辆系统和控制器通信。本文使用的对“控制器”的引用是指一个或多个控制器。

控制器30还可以被配置成基于车辆在未来的时间点的状况动态地改变阀26的操作位置。例如,能量管理系统36可以与控制器30电连接,使得控制器可以针对各种状况改变回路10的操作。

制动踏板34和加速器踏板32可以电连接到控制器30。当制动踏板34被驾驶员按压或施加时,控制器可以接收指示制动事件的信号并且控制器30可以发送信号以液压地对蓄能器12进行加载或利用蓄能器12向压力线路回路38提供加压流体。当发生“踩加速器踏板”事件时,信号从加速器踏板32发送到控制器30,这表示发生了踩加速器踏板事件。响应于踩加速器踏板事件,控制器30可以发送表示制动事件的信号,并且控制器30可以发送信号以液压地对蓄能器12进行加载或利用蓄能器12向压力线路回路38提供加压流体。另外,控制器30可以接收指示加速踏板32被按下或已经被压下的量的信号。例如,如果加速器踏板正在被压下超过某个阈值并且车辆正在预定速度阈值以上运动,则泵的排量可以通过排量改变机构16来改变。因为发动机高于特定速度以最高效率运行,以高排量百分比(高于75%)操作泵14可能是有利的。作为另一示例,如果控制器30接收到指示踩加速器踏板事件的信号,则控制器30发送信号以将来自蓄能器12的加压流体提供给压力线路回路38。蓄能器12是否提供来自蓄能器12的加压流体可能取决于蓄能器12是否具有足够的容量来满足压力线路回路38的需求。

参考图2,曲线示出了在驾驶和制动事件期间液压部件的状态以及液压部件的泵排量和压力特性。顶部曲线表示蓄能器压力(psi)以及随时间变化的需求和实际变速器线路压力。线s1表示蓄能器压力,线s2表示压力线路回路38的需求的变速器线路压力。线s4表示压力线路回路38的实际压力。压力线路回路38的平均实际压力紧密跟踪需求的变速器线路压力。底部曲线中的线s3表示泵的排量以百分比表示。

在t0处,蓄能器容量低于与道路坡度和发动机效率相关联的阈值。命令泵的排量为100%或接近100%来加载蓄能器。在t1处,蓄能器容量阈值已经满足,并且存储在蓄能器内的加压流体被用于满足变速器线路压力需求。在t2处,蓄能器卸载,并且命令泵的排量为100%或接近100%以再次加载蓄能器。

参考图3,曲线说明了在非制动事件期间和在制动事件期间运行泵所需的能量的量以及在制动事件期间回收的能量的量。线s6表示在制动事件期间所需的泵能量。线s7表示在非制动事件(包括但不限于以恒定速度行驶或在即将发生制动事件时滑行)期间所需的能量。线s8表示当前用于制动和非制动事件的泵所需的能量。线s9表示在制动事件期间回收的能量。线s10表示总泵能量或者线s8和线s9的总和。线s8和线s9之间的差别表示除了从泵回收的能量之外由泵提供的能量的量。线s9也表示燃料节约的能量。

虽然以上描述了示例性实施例,但这些实施例并不旨在描述本发明的所有可能的形式。相反,说明书中使用的词语是描述性词语而非限制性词语,并且应该理解,可以在不脱离本发明的精神和范围的情况下做出各种改变。另外,各种实现实施例的特征可以被组合以形成本发明的另外的实施例。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1