高压储罐及其制造方法和高压储罐制造装置与流程

文档序号:14831459发布日期:2018-06-30 10:37阅读:220来源:国知局
高压储罐及其制造方法和高压储罐制造装置与流程

本发明涉及一种内层被由纤维增强树脂构成的外层覆盖的高压储罐及其制造方法、和用于获得该高压储罐的制造装置。



背景技术:

高压储罐例如被设置于燃料电池系统,储存供应给阳极的氢气。这种高压储罐将由具有氢气阻隔性的热塑性树脂等构成的树脂衬里作为内层且具有围绕该内层(树脂衬里)的外层。许多情况下,外层由使树脂基体浸渗于增强纤维的纤维增强树脂(FRP)构成。作为增强纤维,一般选择碳纤维。

这种结构的高压储罐例如通过如下方式得到:将浸渗有作为树脂基体的树脂液的增强纤维缠绕在树脂衬里上之后,通过对所述树脂液进行加热使之硬化,来形成纤维增强树脂。所述缠绕也称为纤维缠绕(filament winding)。

最近,提出了一边进行纤维缠绕一边从树脂衬里的中空内部侧进行加热的技术。例如,在日本发明专利公开公报特开2011-136491号中记载了以下技术:通过插入到树脂衬里的中空内部的加热器,来使浸渗于被缠绕在树脂衬里的外部的增强纤维中的树脂液从接近内层侧的一侧向远离内层侧的一侧硬化。

另外,在日本发明专利公开公报特开2014-124901号中公开了以下技术:将浸渗有具有紫外光硬化性的热硬化性树脂的增强纤维缠绕于树脂衬里,从插入到树脂衬里的中空内部的紫外光照射部照射紫外光,并且,从树脂衬里的外部对被缠绕于树脂衬里的增强纤维进行加热。



技术实现要素:

在如日本发明专利公开公报特开2011-136491号中记载的那样通过被设置于树脂衬里内部的加热器对树脂衬里外部的树脂液进行加热的情况下,树脂衬里的温度变得比外部侧的增强纤维及树脂液高。因此,存在导致树脂衬里的热变形的担忧。尤其是,在树脂衬里由聚乙烯树脂构成的情况下,由于耐热温度为100~120℃左右,因此,为了避免树脂衬里的热变形,需要将树脂衬里内部的温度抑制在80℃左右。

因此,作为用于得到树脂液的树脂,需要选择能够在80℃的温度下硬化的树脂。即,选择项较少。另外,这种树脂从进行双组份混合(two-component mixing)到硬化为止的可使用时间(pot life:适用期)大体上较短,不容易长时间保存。因此,必须每次混合浸渗所需量的树脂,较为麻烦。而且,虽然这种树脂的可使用时间短,但是硬化到能够作为高压储罐的外层使用的程度为止需要较长时间。因此,难以提高高压储罐的生产效率。

另外,树脂衬里一般由高密度聚乙烯构成,但高密度聚乙烯难以透射紫外光。因此,如日本发明专利公开公报特开2014-124901号记载的那样使用从树脂衬里内部放射的紫外光使树脂衬里外部的树脂液硬化,必须在树脂液中添加大量的紫外光硬化剂。从这种树脂液得到的树脂基体需要在不易有紫外光照射的环境下管理或使用。由于太阳光中也含有紫外光,因此,例如设想使用遮光片材来覆盖高压储罐的情况等。因此,在该情况下,设备投资和管理成本上涨的问题显著。

本发明的主要目的在于提供一种能够提高生产效率的高压储罐。

本发明的另一目的在于提供一种能够实现管理成本的降低的高压储罐。

本发明的又一目的在于提供一种上述高压储罐的制造方法。

本发明的再一目的在于提供一种能够实现设备投资的降低的高压储罐制造装置。

根据本发明的一实施方式,提供一种具有由树脂衬里构成的内层和由纤维增强树脂构成的外层的高压储罐,所述外层含有近红外光吸收材料。

如后面所述,通过近红外光吸收材料,能够避免引起内层热变形的同时,高效地形成外层。因此,在该高压储罐中,构成外层的纤维增强树脂的树脂基体的选择自由度提高。

而且,在该高压储罐中,无需如添加了紫外光硬化剂的现有技术那样屏蔽紫外光。即,不需要使用遮光片材覆盖该高压储罐、或在不易有紫外光照射的环境下管理或使用。因此,能够实现降低设备投资和管理成本。

优选为近红外光吸收材料在外层中均匀地分散,且存在于增强纤维彼此之间。这是由于,在该情况下,外层中的树脂基体被均等地硬化,因此,外层被无遗漏地增强。

优选为内层的原材料为高密度聚乙烯树脂、尼龙树脂或EVOH(乙烯-乙烯醇共聚物)树脂中的至少任意一种。尤其是,高密度聚乙烯树脂容易加工,因此能够容易地得到内层。而且,耐久性和耐压性优异。另外,聚乙烯树脂容易透射近红外光。因此,即使近红外光入射,温度也不容易上升,因此,不容易引起热变形,是优选的。

根据本发明的另一实施方式,提供一种高压储罐的制造方法,通过在由树脂衬里构成的内层上设置由纤维增强树脂构成的外层来得到高压储罐,其具有:

浸渍工序,将增强纤维浸渍于添加有近红外光吸收材料的树脂液;

缠绕工序,将浸渗有所述树脂液的增强纤维缠绕于树脂衬里;和

硬化工序,通过对该树脂液照射近红外光来进行加热而使所述树脂液硬化,

所述缠绕工序和所述硬化工序同时进行。

在本发明中,树脂液的加热使用近红外光。即,伴随着添加于树脂液的近红外光吸收材料吸收近红外光而发热,据此,树脂液被加热而硬化。因此,能够只对树脂液高效地进行加热而作为树脂基体。因此,能够容易地避免引起作为内层的树脂衬里热变形。而且,由于得到的高压储罐不含有紫外光硬化剂,因此,不需要屏蔽紫外光。

另外,由于同时进行缠绕工序(对树脂衬里缠绕增强纤维)和硬化工序(外层的形成),因此能够高效地制造高压储罐。

放射近红外光的近红外光放射机构例如能够插入于树脂衬里的内部。在该情况下,无需以围绕树脂衬里的方式设置近红外光放射机构,因此,能够使近红外光放射机构变成简单且小型的机构。

另外,优选为使用非接触式温度计来测量形成于树脂衬里的外部的纤维增强树脂的温度。在该情况下,能够避免在纤维增强树脂上形成温度计的接触痕。因此,能够得到美观性优异的高压储罐。

而且,优选为根据所述温度测量结果进行反馈控制,来控制近红外光放射机构的近红外光放射量。据此,能够更有效地避免引起作为内层的树脂衬里热变形。

也可以使浸渗于增强纤维的树脂液预硬化来得到丝束预浸料。在缠绕工序中,将该丝束预浸料缠绕于树脂衬里即可。在该情况下,避免树脂液飞溅或附着于后述的送线机构等。

根据本发明的又一实施方式,提供一种高压储罐制造装置,其用于制造具有由树脂衬里构成的内层和由纤维增强树脂构成的外层的高压储罐,其具有:

送线机构,其送出浸渗有树脂液的增强纤维;

保持机构,其保持所述树脂衬里;

旋转驱动机构,其使所述树脂衬里旋转;和

近红外光放射机构,其放射近红外光,该近红外光用于加热被缠绕于所述树脂衬里的所述增强纤维中所浸渗的所述树脂液。

通过采用这种结构,能够避免引起内层热变形的同时高效地形成外层。即,能够提高高压储罐的生产效率。

优选为近红外光放射机构为插入于树脂衬里的内部的机构。这是由于,如上所述,与围绕树脂衬里的近红外光放射机构相比,能够使近红外光放射机构变成简单且小型的机构。

另外,优选为设置非接触式温度计,该非接触式温度计用于测量形成于树脂衬里的外部的纤维增强树脂的温度。通过根据该非接触式温度计的测量结果来控制近红外光放射机构的近红外光放射量(进行反馈控制),能够更有效地避免引起树脂衬里热变形。而且,能够避免在纤维增强树脂(外层)上形成温度计的接触痕。

送线机构可以将增强纤维作为浸渗于该增强纤维的树脂液被预硬化的丝束预浸料的形式送出。这是由于,能够避免树脂液飞溅或附着于该送线机构。

如上所述,根据本发明,得到一种将覆盖内层的外层形成为含有近红外光吸收材料的外层的高压储罐。因此,用于得到成为外层的纤维增强树脂的树脂液中添加有近红外光吸收材料。

因此,树脂液中的近红外光吸收材料高效地吸收近红外光而发热。其结果,该树脂液被加热而硬化,成为树脂基体。因此,能够避免引起作为内层的树脂衬里热变形的同时,高效地形成由纤维增强树脂构成的外层。因此,能够提高高压储罐的生产效率。

在该情况下,不需要如含有紫外光硬化剂的现有技术那样屏蔽紫外光、或在不易有紫外光照射的环境下管理或使用。因此,能够实现降低设备投资和管理成本。

通过参照附图对以下实施方式所做的说明,上述的目的、特征和优点被容易理解。

附图说明

图1是本发明的实施方式所涉及的高压储罐的沿长度方向的概略整体剖视图。

图2是本发明的实施方式所涉及的高压储罐制造装置的主要部位的概略侧视图。

图3是含有近红外光吸收材料的环氧树脂的吸收曲线和不含有近红外光吸收材料的环氧树脂的吸收曲线。

图4是表示在由树脂衬里构成的内层上由不含有近红外光吸收材料的丝束预浸料(Tow Prepreg)形成纤维增强树脂层(外层)的情况下从近红外光入射到的内层的内表面至纤维增强树脂层的外表面的温度变化的、深度方向曲线。

图5是表示在由树脂衬里构成的内层上由含有近红外光吸收材料的丝束预浸料形成纤维增强树脂层(外层)的情况下从近红外光入射到的内层的内表面至纤维增强树脂层的外表面的温度变化的、深度方向曲线。

具体实施方式

下面,举出优选实施方式并参照附图,通过高压储罐与其制造方法和实施该制造方法的高压储罐制造装置之间的关系来对本发明所涉及的高压储罐进行详细说明。

图1是本实施方式所涉及的高压储罐10的沿长度方向的概略整体剖视图。该高压储罐10例如与燃料电池一起被搭载于汽车车身上,其中以高压填充有供应给所述燃料电池的阳极的氢气。

高压储罐10具有内层12和覆盖该内层12的外层14。在该情况下,内层12由树脂衬里构成,该树脂衬里由作为具有氢气阻隔性的热塑性树脂的高密度聚乙烯(HDPE)树脂构成。HDPE树脂价格低且容易加工,因此,能够以低成本且容易地制作内层12。另外,HDPE树脂强度和刚性优异,因此,能确保内层12具有充分的耐压性。

在内层12的两端分别形成有开口16a、16b。这些开口16a、16b中的至少任意一方上设有管头18a、18b,该管头18a、18b与用于向阳极供给氢气或者用于从氢气补给源补给氢气的配管(未图示)连接。管头18a、18b的顶端从外层14露出。

外层14由树脂基体浸渗于增强纤维的纤维增强树脂(FRP)构成。另外,外层14含有近红外光吸收色素等近红外光吸收材料20,该近红外光吸收材料20在外层14中均匀地分散,并且存在于增强纤维彼此之间。

接着,对用于制造该高压储罐10的制造方法和制造装置进行说明。

图2是本实施方式所涉及的高压储罐制造装置30的主要部位的概略侧视图。该高压储罐制造装置30具有由中空体构成且可旋转的保持轴32a、32b(保持机构)、被这些保持轴32a、32b支承的卤素灯加热器34(近红外光放射机构)、和送出丝束预浸料36的送线器38(送线机构),其中,丝束预浸料36为浸渗有树脂液的增强纤维。

保持轴32a经由旋转驱动部40(旋转驱动机构)支承于支柱42a。即,保持轴32a能够在旋转驱动部40的作用下进行旋转。另一方面,保持轴32b经由旋转支轴44以可旋转的方式支承于支柱42b。如后面所述,保持轴32b随着保持轴32a的旋转而从动旋转。

或者,也可以在保持轴32a上设置第1带轮。在该情况下,在该第1带轮的附近配置旋转轴上设有第2带轮的旋转用马达(旋转驱动机构),并且,在第1带轮和第2带轮上挂设同步带。在该结构中,当旋转用马达被提供动力而旋转轴旋转时,同步带随着该旋转而进行转圈动作。其结果,致使保持轴32a旋转。

在保持轴32a、32b与内层12之间装有旋转接头46a、46b。构成旋转接头46a的转子48a的图2中的左端插入于保持轴32a,在其左端的内部收装有未图示的第1定子。另外,管头18a插入于转子48a的右端。同样,管头18b插入于构成旋转接头46b的转子48b的左端,另一方面,转子48b的右端插入于保持轴32b。而且,在转子48b的右端的内部收装有未图示的第2定子。即使转子48a、48b旋转,第1定子和第2定子也不会从动旋转。

所述卤素灯加热器34支承于第1定子和第2定子,据此间接地支承于保持轴32a、32b。由于第1定子和第2定子不会旋转,因此,卤素灯加热器34也不会从动旋转。

在本实施方式中,通过由热硬化性树脂构成的树脂液预先浸渗于增强纤维而构成的丝束预浸料36被缠绕于送线器38。在该情况下具有以下优点:在从送线器38到内层12(树脂衬里)的途中,不需要用于储存树脂液而浸渍增强纤维的浸渍槽。此外,浸渗于增强纤维的树脂液事先被预硬化为失去流动性的程度。因此,防止该树脂液附着到缠绕有丝束预浸料36的送线器38等。

树脂液中预先添加有近红外光吸收材料20。因此,在浸渗有该树脂液的增强纤维中,近红外光吸收材料20存在于增强纤维彼此之间,并且在增强纤维中均匀地分散。

送线器38能够沿着内层12的长度方向适当地位移,以便变更丝束预浸料36相对于内层12的缠绕位置。或者,也可以对送线器38进行定位固定,并且在送线器38与内层12之间设置公知的出线孔(delivery eye)。

高压储罐制造装置30还具有:放射温度计50,其为非接触式温度计;和控制部54,其经由信号线52a、52b电气连接于该放射温度计50和所述卤素灯加热器34。放射温度计50配置在内层12的附近,测量缠绕形成于该内层12的纤维增强树脂(外层14)的温度。该测量结果作为信息信号经由信号线52a被传递给控制部54。另外,控制部54通过经由信号线52b发送的控制信号来控制卤素灯加热器34的输出。

本实施方式所涉及的高压储罐制造装置30基本上如上述那样构成,接着,通过其与本实施方式所涉及的高压储罐10的制造方法之间的关系来对其作用效果进行说明。

为了得到高压储罐10,首先,通过使用HDPE树脂的熔融物的吹塑成型等来制作成为内层12的树脂衬里。接着,将该树脂衬里(内层12)保持于高压储罐制造装置30的保持轴32a、32b。具体而言,将管头18a、18b分别插入到旋转接头46a、46b的转子48a、48b的中空内部,并且,将转子48a、48b分别插入到保持轴32a、32b的中空内部。此时,卤素灯加热器34从管头18a、18b插通到内层12内,并且,该卤素灯加热器34的各端部支承于旋转接头46a、46b的第1定子、第2定子。

另一方面,例如使环氧树脂熔融来调制树脂液,且储存于浸渍槽。并且,在该树脂液中添加吸收波长为400~1000nm左右的近红外光的近红外光吸收材料20。作为近红外光吸收材料20的优选的具体例,可列举花青化合物、酞菁化合物、二硫醇金属络合物、萘醌化合物、色素炭黑等近红外光吸收色素。当然也可以是色素以外的近红外光吸收体。另外,用于调制树脂液的树脂也可以是聚酯树脂、酚醛树脂、聚酰胺树脂等。

近红外光吸收材料20相对于树脂液的添加比例优选为0.5~20重量%。低于0.5重量%时,在后述的硬化工序时吸收近红外光的效果不充分。另外,近红外光吸收能力在20重量%左右饱和,因此,添加超过20重量%的量是不经济的。

优选为还在树脂液中添加分散剂。或者,也可以在添加近红外光吸收材料20时或添加之后对树脂液进行搅拌。当然也可以在添加分散剂的同时对树脂液进行搅拌。通过这样,能够使近红外光吸收材料20在树脂液中均匀地分散。

在该情况下,没有特别添加近红外光吸收材料20和分散剂以外的物质的必要。因此,能够避免影响到树脂液的可使用时间。另外,由于能够使用现有的设备来调制树脂液,因此,设备投资不会上涨。

接着,进行浸渍工序。即,将碳纤维等增强纤维浸渍于如上述那样分散有近红外光吸收材料20的树脂液。据此,树脂液浸透于增强纤维彼此间的空隙。即,增强纤维中浸渗有树脂液。此后,通过将树脂液干燥到失去流动性的程度来进行预硬化,而得到丝束预浸料36。

由于近红外光吸收材料20在树脂液中均匀地分散,因此近红外光吸收材料20在丝束预浸料36中均匀地分散。另外,由于树脂液浸透于增强纤维彼此之间的空隙,因此,近红外光吸收材料20存在于增强纤维彼此之间。

接着,同时进行缠绕工序和硬化工序。即,在将丝束预浸料36缠绕于送线器38之后,将丝束预浸料36的一端从送线器38引出,缠绕到被保持于高压储罐制造装置30的保持轴32a、32b的树脂衬里(内层12)上。此后,对旋转驱动部40提供动力来使保持轴32a旋转。与此相随,旋转接头46a的转子48a、内层12、旋转接头46b的转子48b、保持轴32b和旋转支轴44一体地跟从旋转。此外,旋转接头46a、46b的第1定子、第2定子、支承于这些第1定子和第2定子的卤素灯加热器34不旋转。

在保持轴32a开始旋转的同时,或者在其旋转前后,对卤素灯加热器34提供动力。据此,从卤素灯加热器34向内层12的内表面放射近红外光。

送线器38以沿着内层12的长度方向往复的方式进行位移,与此相随,丝束预浸料36的缠绕位置发生变化。因此,内层12整体被丝束预浸料36覆盖。在该期间,在内层12的内部近红外光持续放射。因此,在进行纤维缠绕的过程当中,近红外光从内层12的内表面入射。

在本实施方式中,作为内层12的树脂衬里由HDPE树脂构成。聚乙烯树脂是良好地透射近红外光的物体,因此,从内层12的内表面入射的近红外光容易地到达外表面侧的丝束预浸料36。到达丝束预浸料36的近红外光被树脂液中的近红外光吸收材料20吸收。

图3中同时示出含有近红外光吸收材料20的环氧树脂的吸收曲线和不含有近红外光吸收材料20的环氧树脂的吸收曲线。此外,在图3中含有近红外光吸收材料20的环氧树脂表示为“有添加”,其吸收曲线用虚线表示。另一方面,不含有近红外光吸收材料20的环氧树脂表示为“无添加(blank)”,其吸收曲线用实线表示。通过对比虚线和实线明确可知:通过添加近红外光吸收材料20,变成尤其容易地吸收400~900nm附近的近红外光。

并且,由不含有近红外光吸收材料20的丝束预浸料形成纤维增强树脂层60来作为外层的情况下的、从近红外光入射到的内层12的内表面到纤维增强树脂层60的外表面的温度变化作为深度方向曲线在图4中示出。由该图4可知:在作为内层12的树脂衬里中,温度随着从内表面靠向外表面而下降,在纤维增强树脂层60中也同样,温度随着从内表面靠向外表面而下降。

与此相对,在由含有近红外光吸收材料20的丝束预浸料36形成外层14的情况下,如图5所示,在近红外光入射到的内层12中,温度随着从内表面靠向外表面而稍微上升,在外层14(或丝束预浸料36)中大致保持一定。其理由在于,外层14中的近红外光吸收材料20吸收透射过内层12的近红外光而发热,并且,外层14的热量传递到内层12。

如此,树脂液中的近红外光吸收材料20有效地吸收从卤素灯加热器34放射的近红外光,因此,树脂液由于被高效地加热,因此在短时间内硬化。即,由树脂液形成树脂基体,与此相随而形成由纤维增强树脂构成的外层14。如此,在本实施方式中,同时进行缠绕工序(纤维缠绕)和硬化工序(外层14的形成),除此之外,能够缩短树脂液的硬化所需的时间,因此,能够高效地得到高压储罐10。换言之,能够提高高压储罐10的生产效率。

而且,即使近红外光入射到内层12,该内层12的温度也不会上升太多(参照图5)。其理由在于,近红外光透过内层12(内层12透射近红外光)。因此,能够避免引起内层12热变形。因此,作为用于得到树脂液的树脂,不限于能够在80℃的温度下硬化的树脂,而能够选择各种树脂。即,树脂基体的选择自由度提高。

并且,由于近红外光吸收材料20在丝束预浸料36中均匀地分散,因此,近红外光被均等地吸收。因此,内层12上的树脂液均等地硬化。因此,能够得到无遗漏地被增强的外层14。

外层14的温度通过在稍微离开该外层14的位置与该外层14相向的放射温度计50进行测量。由于无需使放射温度计50与外层14接触,因此,能够避免在外层14上形成凹部等接触痕。

由放射温度计50测量到的温度经由信号线52a作为信息信号传递给控制部54。接收到该信息信号的控制部54经由信号线52b向卤素灯加热器34发送控制信号。据此,按照测量温度、换言之,根据外层14的温度来控制卤素灯加热器34的输出。即,在外层14的温度过高的情况下,使卤素灯加热器34的输出小。与此相反,在外层14的温度过低的情况下,使卤素灯加热器34的输出大。

总之,执行反馈控制,来变更卤素灯加热器34的近红外光放射量。因此,外层14中的发热量发生变化。通过这样,也能够避免引起内层12热变形。

在形成外层14之后,根据需要,进一步对外层14进行加热。该加热可以通过卤素灯加热器34进行,也可以通过另行配置于外层14的外部的加热器等加热机构进行。

通过上述那样,能够得到高压储罐10。在使用该高压储罐10时,无需如添加了紫外光硬化剂的现有技术那样屏蔽紫外光。即,使用遮光片材覆盖、或在不易有紫外光照射的环境下管理或使用等对策是不需要的。因此,能够实现降低设备投资和管理成本。

本发明不特别局限于上述实施方式,能够在不脱离本发明主旨的范围内进行各种变更。

例如,也可以使浸渍工序通过将从送线器38送出的增强纤维浸渍于树脂液来进行。在该情况下,在送线器38与被保持于保持轴32a、32b的内层12之间配置浸渍槽。然后,将树脂液浸透的增强纤维缠绕于内层12即可。

另外,内层12不仅可以由高密度聚乙烯树脂构成,还可以由尼龙树脂或EVOH树脂中的至少任意一种构成。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1